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Abstract. Differential gene and protein expression analysis reveals clin-
ically significant insights that are crucial, e.g., for systems medicine ap-
proaches. However, processing of data still needs expertise of a com-
putational biologist and existing bioinformatics tools are developed to
answer only one research question at a time. As a result, current auto-
mated analysis pipelines and software platforms are not fully suited to
help research-oriented clinicians answering their hypotheses arising dur-
ing their clinical routine. Thus, we conducted user interviews in order to
identify requirements and evaluate our research prototype of an appli-
cation that i) automates the complete preprocessing of RNA sequencing
data in a way that enables rapid hypothesis testing, ii) can be run by
a clinician and iii) helps interpreting the data. In our contribution, we
share details of our preprocessing pipeline, software architecture of our
first prototype and the identified functionalities needed for rapid and
clinically relevant hypothesis testing.
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Hypothesis Testing, Web Application

1 Introduction

Analysis of differential expression (DE) is the process of identifying genes or
proteins that have an altered level of expression in a group of samples, which is
statistically significant when compared to another. The differences in expression
levels may be the result of a disease or other perturbations of the examined cells
or tissues. Therefore, the identification of the differences can lead to biomarkers
of a disease [11] or a transcriptomic profile that may be reversed through a new
or existing treatment.

The development of next-generation sequencing (NGS) techniques have en-
abled the usage of RNA sequencing (RNAseq) data as primary source for DE
analysis [5]. Processing of raw RNA reads includes a pipeline of quality control,
read alignment and quantification, all of which require a sophisticated selection
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of tools and methods [6]. Byron et al. (2016) describe examples for how anal-
ysis of RNAseq can benefit clinical practice. However, the great flexibility and
resulting complexity for RNAseq have hindered its path to the clinic so far [5].

In recent years, many studies, e.g., in the context of systems medicine, in-
cluded a detailed clinical examination of patients, supported by a molecular
characterization via omics technologies [10]. Oftentimes these studies have an
observational character and do not include the effect of an active perturbation,
e.g., testing a new drug or therapy in a defined environment. Thus, effects on the
molecular level, e.g., in gene expression, are the result of many in vivo factors.
Research-oriented clinicians, i.e., physicians that work in part as a physician but
also conduct research on their patients, observe these in vivo factors, such as
gender or previous diagnoses, but only have a limited understanding and ca-
pability to interpret DE results. Contrary, computational biologists have little
insights into clinical practice and thus, their research hypotheses are mainly mo-
tivated by literature. In order to find and validate a joint research hypothesis
the clinician and the computational biologist must interact and communicate
efficiently.

In our contribution, we share a software systems architecture as well as our
first prototypical web application, which will enable clinicians and computational
biologists to rapidly perform exploratory hypothesis testing based on gene and
protein expressions and to interpret their results on the clinical data given.

Our contribution is structured as follows: We first describe the generic pro-
cess of how differential expression analysis is performed traditionally in Section
2 and how it has been implemented in related work so far (Section 3). In Section
4 we share details on our user research, which results in specific software require-
ments. The developed software systems architecture and application prototype
are described in Section 5.

2 The Differential Expression Analysis Process
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Fig. 1: Generic differential expression process steps and their results.
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We provide a generic process model of all steps needed for a DE analysis em-
anating from an RNA sequencing experiment using Business Process Modeling
Notation (BPMN) in Figure 1. The pipeline is based on Conesa et al. (2016) [6]
and resembles many of the implemented pipelines described in Section 3.

Experimental Design Inherent to DE analysis are at least two groups of
samples that are assumed to show differences in gene expression. These groups
need to be specified before in vitro testing in order to plan and design the wet
lab process, such as treatment with a specific chemical or drug. In contrast, the
clinical context usually assumes in vivo experiments, e.g., biopsy analysis for
a group of diseased patients as well as a healthy control group. Many of these
studies are purely observational and factors that contribute to the differential
gene expression are multiple and therefore not defined as clearly as in the in
vitro setup. Confounding factors, such as batch effects or other patient specific
clinical parameters, should be recorded and taken into account when analyzing
DE results. As a result, the researcher needs to define a design formula which
resembles the research hypothesis and is the basis of any DE experiment. The
formula is then provided as input of the pipeline.

Bioinformatics Preprocessing The sequencing process results in raw reads.
Raw reads go through quality control and in some cases need to be trimmed
from adapter sequences prior to alignment. All reads are aligned to a reference
genome or transcriptome. In the best case all genomic ranges, such as a gene, an
exon or coding region, are covered by multiple reads after the alignment step.
Counting tools calculate the exact quantity of reads per given genomic range.

Differential Expression Calculation DE calculation is the statistical process
of finding significant expression differences of two or more groups as defined in
the experimental design. In short, all counts of a genomic range in one group
are compared to the counts of the same range in another group of samples. The
calculation provides information about the fold change, i.e., how much more
counts where found in one group when compared to the other. Additionally,
p-values are given, which are adjusted for multiple testing as many data sets
comprise 10-20 k genomic regions to compare.

Visualization Visualization of results is a critical part in DE analysis as raw
and transformed data as well as DE results are usually high in dimension and
therefore need to be displayed in a comprehensive format. Frequently used tech-
niques are principal component analysis and clustering of data. Both give an
impression of similarity between the analyzed samples. For example, plotting
samples on their corresponding first and second principal component (dimension
of largest variation) should result in scatters of samples grouped according to the
experimental design formula. Accordingly, clustering algorithms should be able
to find clusters and a dendrogram resembling the desired study groups. Clustered
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heatmaps are specifically popular as they can display sample-to-sample as well
as gene-to-gene relationships and the corresponding normalized and log trans-
formed count values in a single diagram. Volcano plots depict the p-value versus
expression fold change between two conditions. Differentially expressed genes or
proteins are usually marked and therefore the plot gives a good overview of all
results. Many more diagnostic plots are used as, e.g., depicted in a bioconductor
workflow [17].

Annotation and Interpretation Annotation and interpretation of results is a
critical and complex part of the analysis. Typically, more than 100 genes/proteins
are found to be differentially expressed between patient groups. Regarding the
most relevant expression changes, a manual search for function and involved
pathways is performed. Gene Ontology (GO) annotation and Gene Set Enrich-
ment Analysis (GSEA) help to find perturbed anatomical structures, biochemical
processes or pathways in an automated manner.

3 Related Work

Gaur et al. provide an overview about automated RNAseq analysis platforms
and a short description of their utility [9]. Four of the tools listed by Gaur et al.
show similarities to our apporach:

The main aim of RAP [7] is to provide an RNAseq tool that does not need to
be installed on the client side. The web interface provides possibility for data sub-
mission and a browsing facility for results exploration. While the overall appear-
ance seems more user friendly than command line tools, the platform is suited
for users with bioinformatics knowledge that are able to configure pipelines and
interpret results. Furthermore, RAP offers a great variety of possibilities for ana-
lyzing RNAseq data and thus, no focus on DE analysis. Especially visualizations
and plots are not available so far. DE genes are given as lists.

RNAminer [14] provides three different fully parameterized pipelines that
work simultaneously and results are consolidated among the pipeline. However,
the resulting DE genes are given as text files and any new hypothesis needs
an upload of files and a manual specification of two groups of samples at the
maximum.

QuickNGS [21] has many options to analyze a variety of NGS data and thus
lacks visualizations and functions that are specific for RNAseq analysis. Again,
results are only given in lists. Plots are limited to a static clustered heatmap
and a PCA plot. Additionally, experimental design is static and as described
within the publication only usable for two groups (sample and control) plus
batch effects.

Wolfien et al. (2016) implemented TRAPLINE for automated analysis of
RNAseq data, evaluation and annotation within the Galaxy framework [22, 3].
The TRAPLINE workflow was built to enable experimentalists to analyze data
without requiring programming skills [22]. In addition to preprocessing and DE
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calculation, it provides several lists of results and help or links for visualizing
data. Additionally, links to annotation and interpretation tools are given.

In general, most state-of-the-art tools are designed for users with some bioin-
formatics knowledge that is needed to configure the pipelines and interpret the
data. Moreover, some applications are built on the assumption that there is only
a single experimental design or perturbation to be tested on. As a result, all
programs mentioned have at least two of the following drawbacks: (i) No ad-
hoc or only static visualization for DE results, (ii) a static experimental design
and/or a resulting (iii) cumbersome reconfiguration for any new hypothesis to be
tested. Additionally, the complete pipeline including preprocessing is repeated
in every analysis of the input data, which results in redundancy when multiple
hypotheses are tested on the same or a subset of samples. While the listed tools
work well for interventional studies and a single hypothesis, a new approach is
needed in the case of observational setups and many hypothesis.

4 Requirements Engineering

The idea and development of the web application has been discussed and evalu-
ated iteratively within the SMART (Systems Medicine Approach for Heart Fail-
ure) consortium based on an RNAseq raw data and clinical data raised within
an observational study on heart failure patients. Several iterations on mockups
and prototypes were conducted within the SMART consortium, which consists
of research-oriented clinicians, molecular and computational biologists.

In a literature survey, we identified relevant and state-of-the-art preprocessing
tools as well as DE calculation and visualization options. In order to validate the
pipeline as described in the literature, we conducted informal phone interviews
with experts from different research institutes that are focused on the analysis of
RNAseq data and DE analysis. We discussed all steps of the technical pipeline to
determine the acceptance of tools within the user community and shortcomings
of selected programs.

In the following, key findings gathered in user research and literature review
are assembled to identify concrete user groups of our application.

4.1 User Groups

We identified and characterized two user groups of our application: The Research-
oriented Clinician who is interested in (i) testing own hypotheses based on
daily observations and assessed clinical parameters and (ii) interpretation of
DE results in the clinical context, e.g., if results point to a disease, a poten-
tial treatment or interesting research directions. All of that should not require
any programming skills. The Computational Biologist is primarily interested
in a statistically accurate preprocessing pipeline and calculation of DE results.
The execution of the pipeline should require minimum input and configuration.
It should allow ad-hoc exploration and analysis of DE experiment results. Fur-
thermore, the computational biologist would like to get publication-ready result
reports.
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While the computational biologist has little insights with respect to the pa-
tients studied and the resulting hypotheses, the clinician cannot perform bioin-
formatic processes and algorithms alone. Frequently, the clinician has no expe-
rience with omics data and therefore does not know what information can be
obtained from it. Communication on interesting results and strategies on fur-
ther investigations is therefore hampered. Therefore, both user groups need a
platform that provides a common ground for discussion.

4.2 Software Requirements

Based on our user research observations and the shortcomings of related plat-
forms as depicted in Section 3, we specified the following software requirements
(R) of our DEAME application.

R 1 Automated Preprocessing: Only a single program execution is needed
to preprocess raw RNAseq reads to count matrices.

R 2 Pipeline Configuration Options: The pipeline may be altered and con-
figured by the computational biologist, but does not need to.

R 3 Split of Pipeline: Bioinformatics tools within the processing pipeline need
to allow a split into preprocessing and experimental design/DE calculation.

R 4 State-of-the-art Tools: All bioinformatics tools need to be well-established
and accepted within the scientific community.

R 5 Clinical Information: Clinical data on the samples needs to be readily
accessible to setup the experimental design.

R 6 Rapid Experimental Design Creation: The translation of the clini-
cian’s hypothesis into an experimental design matrix needs to be easy and
fast.

R 7 Interactive Visualization of Results: Results of DE calculation are high
in dimensionality and need proper and interactive visualization.

R 8 Actionable Information on Results: Additional information on DE
calculation results need to be provided within the application context, i.e.,
publications on regulated genes may be available.

R 9 Usability: The overall workflow should resemble the research process. The
representation needs to be visually appealing but at the same time correct in
content. The application provides sufficient features for the computational
biologist yet comprehensible for the clinician.

5 DEAME Application

Our DEAME application is part of the systems medicine IT infrastructure
(SMART IT platform) described in [12] and uses resources, such as the worker
framework and the in-memory database, provided by the AnalyzeGenomes (AG)
platform [18]. In Figure 2, the overall software architecture of the DEAME ap-
plication as well as relevant parts of the SMART platform are modeled using
Fundamental Modeling Concepts (FMC). A thorough explanation of all compo-
nents will be given in this section.
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Fig. 2: Software system architecture of the DEAME application including parts
provided by the SMART and AnalyzeGenomes IT infrastructure [12, 18].

5.1 Data Layer

An in-memory database contains all frequently accessed data: The patient cen-
tric star schema of the SMART platform was expanded within the experiment
section (please refer to [12] for further details on the clinical data and security
aspects). Tables for counts, as they are produced within the preprocessing as
well as intensities from, e.g., proteomics data, are added as well as tables for ex-
perimental parameters and results of DE calculation. Furthermore, an R client
is established to perform DE calculation within an Rserve instance.

5.2 Platform Layer

The platform layer contains the preprocessing pipeline, experimental setup in-
formation and DE calculation functionality. The split into preprocessing and
experimental design plus DE calculation is a design decision that limited the se-
lection of tools to be used within the pipeline when compared to the traditional
setup as in Section 2. The split resembles the need given within a clinical set-
ting, where many hypotheses may be tested and thus, the experimental design
for DE calculation is not known before preprocessing of raw data. As a result,
preprocessing and DE calculation are independent from each other.

Technical Preprocessing Pipeline In our architecture the preprocessing is
embedded within the worker framework of AnalyzeGenomes. In Figure 3 we
describe the pipeline, input and output of the individual steps and the order in
which they are executed. The boxes represent applications, i.e., python wrappers
around the incorporated bioinformatics tools, e.g., TopHat. Such programs could
be extended and interchanged when new tools need to be introduced.
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Fig. 3: Specific implementation of our RNAseq preprocessing pipeline

We identified the following tools to be suitable for our first prototype: FastQC [2]
for quality control before and after trimming of reads with trimmomatic [4],
Tophat [20] or STAR [8] for alignment of reads to the reference genome, and
featureCounts [15] for creating count tables from alignment files. In this setup,
all samples will be preprocessed only once to avoid redundancies.

DE Calculation and Design Formula Creation DE calculation as explained
in Section 2 is done via DESeq2 [16] within our Rserve instance. DESeq2 is called
from a stored procedure within our in-memory database and requires the raw
count table as generated by our preprocessing pipeline. Furthermore, DESeq2
receives metadata on the selected patients, i.e., user selected features and the
corresponding design formula, e.g., gender + age + gender:age. We reduced
the number of possible designs to be a two-factorial, two-level design with an
interaction term to allow for sufficiently large study groups in small data sets.
Factors in the clinical data are of differing statistical types, i.e., they consist
of numerical data, e.g., age, binary data, e.g., gender, or categorical data, e.g.,
race, as given in Table 1. Furthermore, categorial data can be differentiated to
be exclusive, i.e., a patient can only be described by one category (blood group),
or non-exclusive, i.e., a patient may be assigned to more than one instance of a
category (e.g., different medications). The type of data defines how it is handled
within in the experimental design procedure.

In this setting, any given factor needs to to be split into two levels as
specified by the user and therefore will be reduced to a binary representation
(Table 1). While levels are natural in the case of binary data, the levels of
numerical and categorial data need user input. In the case of numerical data the
user defines a split point x which divides the values into two groups. For exclusive
categorial data, the user chooses at least one instance of the factor per level

or can combine multiple instances into one level. Non-exclusive factors need
one binary representation per instance. Thus, e.g., the instance ”Beta-blocker”
of the factor ”Medications” is split into being present or absent (yes/no). A
second instance of the factor can be used to create a second factor. Factors
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Table 1: Description of statistical data types, factors and their corresponding
binary representation (levels).

Data type
Factor
Full range example

Binary level
Example

Binary
Gender
Male/Female

Male = all male patients
Female = all female patients

Numerical
Age
0-90 years

Below x = [0 - x)
AboveAnd x = [x - 90]

Categorial
exclusive

Blood group
A, B, AB, 0

Blood 1 = A, B, AB
Blood 2 = 0

Categorial
non-exclusive

Medication
Beta-blocker, Aspirin, Thyroxin

Med yes = Aspirin yes
Med no = Aspirin no

and levels are subsequently translated into the design formula as expected by
DESeq2.

Interactive Visualization and Annotation Many results and intermediate
results are of interest for both the clinician and computational biologist. Quality
control as done by FASTQC produces an html-file for every sample which is
stored and accessed for display within the application. Additionally, results from
DESeq2, i.e. the list of DE genes, their test statistics and also the complete
normalized and transformed count matrix, are visualized within the application.
Interactive heatmaps are implemented via the clustergrammer software and its
biology-specific extensions to show gene/protein names, cluster statistics and
GSEA [1]. Further plots are implemented in custom D3.

5.3 Application Layer

Our application consists of three parts: (i) the experimental design panel, (ii) a
visualization panel and (iii) a knowledge panel.

Experimental Design Panel The experimental design panel is the main part
of the application as it enables to dynamically choose interesting clinical patient
data categories to be studied in DE analysis (Figure 4). The overall goal is to
split the patient population into at least two subgroups based on the patients’
characteristics. For demonstration purposes, we use data from the SMART study.
Patients are characterized by approx. 200 clinical variables (e.g. gender, height,
blood pressure) that are grouped in categories (e.g. demographics or ECG mea-
surements). All categories are displayed and may be expanded to show the vari-
ables. Binary variables and non-exclusive categorical data can be dragged into
the design matrix directly. Continuous variables are split by the user via an inter-
active slider over the full range of possible values. Exclusive categorical variables
may be combined within one column of the design matrix via drag-and-drop.
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Fig. 4: Screenshot of experimental design panel.

The design matrix displays factors and levels, calculates group sizes and pro-
vides an estimation on the achieved statistical power at user interaction. After
the creation of a valid design, i.e. at least three samples in every group, DeSEQ2
is triggered with the corresponding count tables generated in the preprocessing
step via the ’Run Experiment’-button.

Visualization Panel Within the visualization panel the user may choose be-
tween four different tabs to choose plots on quality control of the preprocess-
ing from FASTQC, overall characteristics of the data (e.g. PCA, sample-to-
sample heatmap) and DE results (e.g. interactive heatmap, volcano plot, list of
Genes/proteins and their statistics). A mouse over on genes/proteins displays a
short description and clusters are clickable for statistics and for an update of the
literature search. All results can be downloaded into a publication-ready report.

Knowledge Panel Especially the clinician needs additional external informa-
tion on analysis results. Instead of querying for mere names of, e.g., a gene, the
found relationship, e.g., effects of upregulation of a gene or the disease context,
are included in the query to find actionable insights. Examples for external re-
sources that can be leveraged are search engines such as Olelo [13] for intelligent
PubMed queries or DisGeNet [19] for gene-disease associations.
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6 Evaluation and Discussion

Our DEAME application is designed for users with limited to no bioinformatics
knowledge while using state-of-the-art tools to meet scientific needs for accuracy
(R 4, R 9). It allows easy configuration of design parameters based on the actual
clinical patient information (R 5). Bioinformatics processing of raw RNA reads
is completed automatically in the background to yield count matrices (R 1, R
2). The split of the pipeline (R 3) does not necessarily reduce the time to test
a single hypothesis, but it avoids redundant preprocessing and thus eliminates
computational overhead as soon as multiple hypotheses are tested. We bridge the
gap between DE calculations and their clinical interpretation by the experimental
design panel. Static design formulation as used in related work is exchanged by
a more flexible handling that allows for ad-hoc adaptions (R 6). The interactive
plots do not require additional experience or tools and display information on
the found genes and proteins (R 7). Additionally, our knowledge panel shows
literature on the found genes/proteins and includes the context of the analysis
to provide actionable insights (R 8).

Within most of the used tools there are many options to fine-tune the anal-
ysis. We purposely do not use many of these options as they most certainly
will confuse the clinician as a user. We expect the results set of regulated genes
or proteins to be smaller than within a fine-tuned environment. While this is
a drawback in a detailed analysis of a computational biologist, the clinicians
we spoke to are interested primarily in the strong signals and are pleased with
a shorter list of candidate genes/proteins. If a specific hypothesis turns out to
be worth more research, the computational biologist may take over or a follow-
study can be set up. Our application provides a platform for communication in
DE results between the research-oriented clinician and the computational biol-
ogist. The concept of DEAME is aimed for use in observational studies, e.g. in
the systems medicine context, were study design lacks a strong intervention or
treatment factor to test in differential expression analysis.

7 Conclusions and Future Work

For the first time, requirements of a clinicians were included and matched with
those of computational biologists in the design of an RNAseq and DE calculation
platform. As a result, we planned and implemented a research prototype of an
application that i) automates the complete preprocessing of RNA sequencing
data in a way that enables rapid hypothesis testing, ii) can be run by a clinician
and iii) helps interpreting the data. Our first working prototype will be validated
in terms of specificity of the results set and the usability of the application within
the SMART systems medicine consortium.

In addition to the RNAseq data, we have also started to use our framework
to analyze DE proteins as calculated from shot gun proteomics. We will also
extend possible design formulas to enable more complex experimental designs.
Currently, our application is only usable within the SMART project, but as
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soon as the data is published, we plan to provide free of cost access to the web
application. Users will then be able to browse the rich SMART data or to create
own projects to explore.
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