

Digital Engineering • Universität Potsdam

Trends in Bioinformatics Seminar Kickoff

Cindy Perscheid, Milena Kraus, Harry Freitas da Cruz

Agenda

- Organization and Schedule
- Topics

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

Seminar Organization – Setup

- Supervisors: Cindy Perscheid, Milena Kraus, Harry Freitas da Cruz
- Time: Tuesdays 9.15-10.45 AM, and Wednesdays 1.30 3.00 PM, individual appointments with your supervisor
- Location: D.E-9/10, HPI Campus II
- Periods: 4 SWS (6 graded ECTS)
- Enrollment:
 - Prioritized topic wish list via e-mail to cindy.perscheid (at) hpi.de
 - Due Wed Oct 24, 11.59 PM
 - Topic assignment notification by Thu Oct 25, 1 PM
 - Sign up for the course until Fri Oct 26
 - https://hpi.de//plattner/teaching/winter-term-201819/trends-inbioinformatics.html

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

Seminar Organization – Grading

- The grading of the seminar works as follows (aka "Leistungserfassungsprozess"):
 - 40% intermediate and final presentation
 - 40% scientific research article
 - 20% individual commitment
- All individual parts have to be passed to pass the complete seminar

Perscheid, Kraus, Cruz

Seminar Organization – Enrollment for Seminar Topics

How to apply for a topic?

- Send prioritized list of top 3 topics to Cindy Perscheid (*cindy.perscheid* (*at*) *hpi.de*) until: Wed Oct 24, 11.59 PM
- Topic Assignments: Thu Oct 25, 2017 1 PM
- HPI course registration deadline: Fri Oct 26, 2017

Wish List ...

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

Seminar Schedule – Presentations

- **Nov 26 30:** Intermediate presentations
 - 10 minutes presentation
 - Introduce your topic, problem/motivation, how you want to solve it
 - Slides due at day of presentation, 9 AM
 - Concrete dates tbd after topic assignment
- Jan 21 25: Final presentations
 - 30 minutes presentation
 - Slides due at day of presentation, 9 AM
 - Present your approach and planned experimental setup
 - Concrete dates tbd after topic assignment

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

Seminar Schedule – Paper Writing

HPI Hasso Plattner Institut

- Jan 29, 9.15 AM: Introduction to scientific writing
- Mar 10, 11.59 PM: Paper Submission Deadline
 - One paper per topic
 - 4-6 pages for single students, 6-8 for teams (fixed upper bound!)
 - Iterate with your supervisor
- Mar 18: Notification of reject or accept w/o (minor) revisions
- Mar 30: Submission of camera-ready version

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

Seminar Topics

A. Analysis of RNAseq Data (Supervisor: Cindy Perscheid)

- 1. Integrative Gene Selection
- 2. Association Rule Mining
- 3. Integrative Gene Selection vs. Integrative Clustering
- 4. Biological Evaluation of Marker Genes

B. Analysis of Multi-Omics Data (Supervisor: Milena Kraus)

- 1. Calculate and validate eQTLs in Heart Failure
- 2. Calculate and validate pQTLs in Heart Failure
- 3. Feasibility of "expQTLs"
- 4. Bayesian Clustering of Multi-Omics
- 5. Similarity Network Fusion on Multi-Omics
- **c.** Interpretability Approaches applied to Clinical Predictive Modeling (Supervisor: Harry Freitas da Cruz)

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

Central Dogma of Molecular Biology – From DNA to RNA

- **Protein**: Gene product controlling cell metabolisms
- Gene Expression: Cell process where protein is built from gene information encoded in DNA
- **Expression Level**: Production rate of protein

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

Gene Expression Rates – What Differentiates Cells

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

		ENSC00000108821	ENSC00000168542	ENSC00000164602	ENSC00000115414
	110 4248 07	ENSG00000108821	ENSG00000168542	ENSG00000164692	ENSG00000115414
TCGA-IE-A4EI-01A-	11R-A24X-07	ENSG00000108821 19912	ENSG00000168542 90836	ENSG00000164692 182664	ENSG00000115414 138454
TCGA-IE-A4EI-01A- TCGA-IE-A30V-01A-	11R-A24X-07	ENSG00000108821 19912 77145	ENSG00000168542 90836 277426	ENSG00000164692 182664 232004	ENSG00000115414 138454 770781
TCGA-IE-A4EI-01A- TCGA-IE-A30V-01A- TCGA-DX-A8BH-01A-	11R-A24X-07 11R-A22K-07 11R-A37L-07	ENSG00000108821 19912 77145 87523	ENSG00000168542 90836 277426 51317	ENSG00000164692 182664 232004 127552	ENSG00000115414 138454 770781 569322
TCGA-IE-A4EI-01A- TCGA-IE-A30V-01A- TCGA-DX-A8BH-01A- TCGA-DX-A6YU-01A-	11R-A24X-07 11R-A22K-07 11R-A37L-07 12R-A33J-07	ENSG00000108821 19912 77145 87523 592409	ENSG00000168542 90836 277426 51317 734140	ENSG00000164692 182664 232004 127552 284342	ENSG00000115414 138454 770781 569322 316996
TCGA-IE-A4EI-01A- TCGA-IE-A30V-01A- TCGA-DX-A8BH-01A- TCGA-DX-A6YU-01A- TCGA-DX-A63B-01A-	11R-A24X-07 11R-A22K-07 11R-A37L-07 12R-A33J-07 11R-A41I-07	ENSG00000108821 19912 77145 87523 592409 2611872	ENSG00000168542 90836 277426 51317 734140 188255	ENSG00000164692 182664 232004 127552 284342 2042859	ENSG00000115414 138454 770781 569322 316996 198150
TCGA-IE-A4EI-01A- TCGA-IE-A30V-01A- TCGA-DX-A8BH-01A- TCGA-DX-A6YU-01A- TCGA-DX-AB3B-01A- TCGA-X6-A8C7-01A-	11R-A24X-07 11R-A22K-07 11R-A37L-07 12R-A33J-07 11R-A41I-07 11R-A36F-07	ENSG00000108821 19912 77145 87523 592409 2611872 1264072	ENSG00000168542 90836 277426 51317 734140 188255 115894	ENSG00000164692 182664 232004 127552 284342 2042859 190062	ENSG00000115414 138454 770781 569322 316996 198150 162531
TCGA-IE-A4EI-01A- TCGA-IE-A30V-01A- TCGA-DX-A8BH-01A- TCGA-DX-A6YU-01A- TCGA-DX-AB3B-01A- TCGA-X6-A8C7-01A- TCGA-X6-A8C7-01A- TCGA-DX-A7ET-01A-	11R-A24X-07 11R-A22K-07 11R-A37L-07 12R-A33J-07 11R-A41I-07 11R-A36F-07 11R-A36F-07	ENSG00000108821 19912 77145 87523 592409 2611872 1264072 271409	ENSG00000168542 90836 277426 51317 734140 188255 115894 77395	ENSG00000164692 182664 232004 127552 284342 2042859 190062 173086	ENSG00000115414 138454 770781 569322 316996 198150 162531 48850
TCGA-IE-A4EI-01A- TCGA-IE-A30V-01A- TCGA-DX-A8BH-01A- TCGA-DX-A6YU-01A- TCGA-DX-AB3B-01A- TCGA-X6-A8C7-01A- TCGA-X6-A8C7-01A- TCGA-DX-A7ET-01A- TCGA-DX-A8BM-01A-	11R-A24X-07 11R-A22K-07 11R-A37L-07 12R-A33J-07 11R-A41I-07 11R-A36F-07 11R-A36F-07 11R-A36F-07	ENSG00000108821 19912 77145 87523 592409 2611872 1264072 271409 207871	ENSG00000168542 90836 277426 51317 734140 188255 115894 77395 387120	ENSG00000164692 182664 232004 127552 284342 2042859 190062 173086 83256	ENSG00000115414 138454 770781 569322 316996 198150 162531 48850 572023
TCGA-IE-A4EI-01A- TCGA-IE-A30V-01A- TCGA-DX-A8BH-01A- TCGA-DX-A6YU-01A- TCGA-DX-AB3B-01A- TCGA-X6-A8C7-01A- TCGA-DX-A7ET-01A- TCGA-DX-A7ET-01A- TCGA-DX-A8BM-01A- TCGA-DX-A6BE-01A-	11R-A24X-07 11R-A22K-07 11R-A37L-07 12R-A33J-07 11R-A41I-07 11R-A36F-07 11R-A36F-07 11R-A41I-07 41R-A320-07	ENSG00000108821 19912 77145 87523 592409 2611872 1264072 271409 207871 2675793	ENSG00000168542 90836 277426 51317 734140 188255 115894 77395 387120 1114789	ENSG00000164692 182664 232004 127552 284342 2042859 190062 173086 83256 1038408	ENSG00000115414 138454 770781 569322 316996 198150 162531 48850 572023 165573

Integrating Biological Context into the Analysis of Gene Expression Data

HPI

Hasso Plattner

Institut

A1. Integrative Gene Selection

- Preprocessing Dimensionality Reduction Expression Study
- Integrative approaches have shown to improve gene selection
 - Higher accuracy
 - Lower computational complexity
- Network-based approaches are most promising
 - Map genes to protein-protein networks or pathways
 - Identify densely coupled subnetworks
- Your task: Implement an integrative approach for gene selection
 - Review existing literature for integrative approaches for gene selection
 - Integrate approach into existing framework
 - Evaluate against existing approaches

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

A2. Association Rule Mining on RNAseq Data

Preprocessing Dimensionality Reduction	Pattern Mining Validation A>B Meaningful Insights	HPI	Hasso Plattner Institut
---	---	-----	-------------------------------

 Association rule mining can help to identify correlations between expression profiles and genes, e.g.

 $GeneA ~ \bigstar ~ \exists GeneB ~ \bigstar$

- Your Task: Apply association rule mining on RNAseq data
 - Benchmark overall feasibility
 - Identify limitations and address one selected limitation
 - Integrate into existing framework

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

A3. Integrative Gene Selection vs. Integrative Clustering

- Integrating external resources into the analysis can...
 - ... reduce computational complexity
 - ... deliver biologically relevant results
- External resources can be incorporated at multiple points
 - Gene selection
 - Pattern mining
- Your task: Evaluate the effect of integrating external information at different steps in the analysis pipeline
 - Integrate external information into clustering
 - Integrate approach into existing framework
 - Evaluate integrative gene selection vs. integrative clustering

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

A4. Biological Evaluation of Marker Genes

- Analysis results must be validated for their biological relevance
 - State of the art: Gene Set Enrichment Analysis (GSEA)
 - Literature review
 - Keyword search

- Your task: Implement an automatic evaluation for marker genes
 - Identify suitable resources
 - Decide on evaluation strategy, e.g. GSEA
 - Integrate approach into existing framework

TCGA

TiB Seminar Kickoff

Pub

Perscheid, Kraus, Cruz

NCBI

Validation

Pattern Mining

B. Multi-level Data Integration in Systems Medicine of Heart Failure

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

Chart 17

Trans-Omics: How To Reconstruct Biochemical Networks Across Multiple 'Omic' Layers, Yugi, K., (2016), Cell Press

Quantitative Trait Loci (QTL)

Perscheid, Kraus, Cruz

Chart **18**

The role of regulatory variation in complex traits and disease, *Frank W. Albert1,2 and Leonid Kruglyak* (2005), Nature Reviews Genetics

B1. Calculate and Validate eQTLs in Heart Failure

- Understand:
 - How to combine genomic variation and RNA expression to derive eQTLs
- Try out:
 - PEERs normalization for confounding variation in expression data and known confounders
 - Matrix QTL package to infer genomic regions that alter RNA expression
 - Compare found eQTLs to GWAS and know HF variants
- Write:
 - Describe the algorithms and experiments in a **scientific** paper
 - Discuss results in a technical and biological manner
 - Optional: Compare your results with B2)

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

Understand:

Heart Failure

- How to combine genomic variation and protein expression to derive pQTLs
- Try out:
 - PEERs normalization for confounding variation in expression data and known confounders
 - Matrix QTL to infer genomic regions that alter protein expression
 - Compare found pQTLs to GWAS and known HF variants
- Write:
 - Describe the algorithms and experiments in a **scientific** paper
 - Discuss results in a technical and biological manner
 - (Optional: Compare your results with B1)

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

- Try out:
 - Mapping of tissue-specific <u>eQTLs</u> to expressed genomic regions from GTEX
 - Matrix QTL on expressed genomic regions that alter RNA and/or protein expression for at least one GTEX tissue \rightarrow expQTLs
 - Compare expQTLs and eQTLs
- Write:
 - Describe your algorithm and experiments in a **scientific** paper
 - Quantify expQTLs
 - Evaluate the feasibility to extract expQTLs from eQTL data

TiB Seminar Kickoff

Multi-omics Clustering

Treatment Approaches Standard-of-care **Precision Cardiology** Multi-Omic Information **Therapeutic Space** Clinical Evaluation Machine Learning Beta-blocker K⁺ sparing diuretic Standard Data-driven disease subtyping and patient stratification Algorithm Propanolol Amiloride ACE inhibitor Hydrochlorothiazide Lisinopril Non-dihydropyridine Ca²⁺ channel blocker Fibrate Veranami Clofibrate Generalized Recommendation Bile acid sequestrant Data-Driven Recommendation Clinician Review and Decision Colesevelam

High-throughput multi-omic information is available

- Unsupervised classification is used to classify molecular profiles on a single omic basis
- Patient subgroup detection may help to find a personalized therapy based on molecular data

Johnson, Kipp W., et al. "Enabling precision cardiology through multiscale biology and systems medicine." JACC: Basic to Translational Science 2.3 (2017): 311-327.

B4. Bayesian Clustering of Multi-Omics

- Understand:
 - How to perform a model-based multi-omics clustering
- Try out:
 - iClusterBayes unsupervised subgroup detection for multiple omics data sets
 - Infer molecular subgroups of heart failure patients
 - Link subgroups to clinical features (e.g., obesity or HF regression)
- Write:
 - Describe the algorithms and experiments in a scientific paper
 - Discuss results in a technical and biological manner

HPI

Hasso Plattner Institut

B5. Similarity Network Fusion on Multi-Omics

- Understand:
 - The (dis-) advantages of late integration for omics clustering
- Try out:
 - SNF for unsupervised subgroup detection in multiple omics data sets
 - Infer molecular subgroups of heart failure patients
 - Link subgroups to clinical features (e.g., obesity or HF regression)
- Write:
 - Describe the algorithms and experiments in a scientific paper

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

B6. Acceptance of the DEAME Application for Clinical Research

- Understand:
 - How differential gene expression analysis is implemented in our DEAME application
- Try out:
 - Create a user questionnaire
 - Conduct user interviews with our clinical partners
 - Find strengths and weaknesses of our current application
- Write:
 - Describe the user research metodology and interviews in a scientific paper
 - Discuss if DEAME is a valuable tool for clinical research

- Modeling of patient-level outcomes:
 - Hospital mortality
 - Length of ICU stay
 - Onset of complications
 - Disease recovery, etc.
- It can help doctors answer questions like:
 - Will patient develop disease 'x'?
 - Should this patient be treated with 'y'?
 - Should testing be done?
 - Is this patient likely to recover?

http://www.mii.ucla.edu/images/research/areas/clinical_decision.png

TiB Seminar Kickoff

Perscheid, Kraus, Cruz It's Elementary, my Dear IBM Watson!

Who among you have already met Dr. Watson in 'silico'?

IBM Watson

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

Source: https://www.ibm.com/watson/

- Progress in machine learning has yet to deliver on its promises
- There is often a trade-off between accuracy and model complexity
- Specially in sensitive domains such as medicine, interpretability is key
- New GDPR 2018: establishes the "right to explanation"

Interpretability

ΗPI

Hasso Plattner

Institut

- Interpretability approaches are needed, e.g. mimic learning
- Use a complex model in combination with a more intelligible one

Zhengping Che, Sanjay Purushotham, Robinder Khemani and Yan Liu: *Interpretable Deep Models for ICU Outcome Prediction* (2017) Doshi-Velez, F., & Kim, B. *Towards A Rigorous Science of Interpretable Machine Learning* (2017).

- Develop a clinical prediction model (CPM) together with clinical experts
- Perform literature research on state-of-the-art interpretability approaches
- Implement, evaluate and compare selected methods
- Identify key areas for improvement
- The tools you will need:
 - Python + SQL
 - ML tookit scikit-learn

TiB Seminar Kickoff

HPI

Hasso Plattner

Institut

Perscheid, Kraus, Cruz

Thanks for your attention!

- Choose your favorite topics by Wed Oct 24, 11.59 PM
- Come by at our offices for questions:
 - V-1.19, Campus II
 - G-2.2.16, Campus III

TiB Seminar Kickoff

Perscheid, Kraus, Cruz