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■  Organization and Schedule 

■  Topics 
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Agenda 



■  Supervisors: Cindy Perscheid, Milena Kraus, Harry Freitas da Cruz 
■  Time: Tuesdays 9.15-10.45 AM, and Wednesdays 1.30 – 3.00 PM, 

individual appointments with your supervisor 
■  Location: D.E-9/10, HPI Campus II 
■  Periods: 4 SWS (6 graded ECTS) 
■  Enrollment: 

□  Prioritized topic wish list via e-mail to cindy.perscheid (at) hpi.de 
□  Due Wed Oct 24, 11.59 PM 
□  Topic assignment notification by Thu Oct 25, 1 PM 
□  Sign up for the course until Fri Oct 26 
□  https://hpi.de//plattner/teaching/winter-term-201819/trends-in-

bioinformatics.html 
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Seminar Organization –  
Setup 



■  The grading of the seminar works as follows (aka 
“Leistungserfassungsprozess”): 
□  40% intermediate and final presentation 
□  40% scientific research article 
□  20% individual commitment 

■  All individual parts have to be passed to pass 
the complete seminar 

Seminar Organization –  
Grading 
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http://www.hpi.uni-potsdam.de/fileadmin/hpi/presse/Fotos/campus_und_gebaeude/
20111017_HPI_Hoersaal.jpg 



How to apply for a topic? 
■  Send prioritized list of top 3 topics to Cindy Perscheid (cindy.perscheid 

(at) hpi.de) until:  Wed Oct 24, 11.59 PM 
■  Topic Assignments: Thu Oct 25, 2017 1 PM 
■  HPI course registration deadline:  Fri Oct 26, 2017 

Seminar Organization –  
Enrollment for Seminar Topics 
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■  Nov 26 –  30: Intermediate presentations 
□  10 minutes presentation 
□  Introduce your topic, problem/motivation, how you want to solve it 
□  Slides due at day of presentation, 9 AM 
□  Concrete dates tbd after topic assignment 

■  Jan 21 - 25: Final presentations 
□  30 minutes presentation 
□  Slides due at day of presentation, 9 AM 
□  Present your approach and planned experimental setup 
□  Concrete dates tbd after topic assignment 

Seminar Schedule –  
Presentations 
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■  Jan 29, 9.15 AM: Introduction to scientific writing 

■  Mar 10, 11.59 PM: Paper Submission Deadline 
□  One paper per topic 
□  4-6 pages for single students, 6-8 for teams (fixed upper bound!) 
□  Iterate with your supervisor 

■  Mar 18: Notification of reject or accept w/o (minor) revisions 

■  Mar 30: Submission of camera-ready version 
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Seminar Schedule –  
Paper Writing  



A.   Analysis of RNAseq Data (Supervisor: Cindy Perscheid) 
1.  Integrative Gene Selection 
2.  Association Rule Mining 

3.  Integrative Gene Selection vs. Integrative Clustering 
4.  Biological Evaluation of Marker Genes 

B.   Analysis of Multi-Omics Data (Supervisor: Milena Kraus) 
1.  Calculate and validate eQTLs in Heart Failure 
2.  Calculate and validate pQTLs in Heart Failure 

3.  Feasibility of “expQTLs” 
4.  Bayesian Clustering of Multi-Omics 
5.  Similarity Network Fusion on Multi-Omics 

C.   Interpretability Approaches applied to Clinical Predictive Modeling 
(Supervisor: Harry Freitas da Cruz) 

Seminar Topics 
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■  Protein: Gene product 
controlling cell metabolisms 

■  Gene Expression: Cell process 
where protein is built from gene 
information encoded in DNA 

■  Expression Level: Production 
rate of protein 

Perscheid, Kraus, 
Cruz 

TiB Seminar 
Kickoff 

Central Dogma of Molecular Biology –  
From DNA to RNA 

Chart 9 

Transcription 

Translation 

DNA 

RNA 

Protein 



Perscheid, Kraus, 
Cruz 

TiB Seminar 
Kickoff 

Chart 10 

Gene Expression Rates –  
What Differentiates Cells 

Breast - Healthy 

HER2 Gene 

HER2 Protein  

Breast - Cancer 



 
 
 
RNAseq – 
A Complete Snapshot of a Cell‘s Gene Activity 
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Integrating Biological Context into the Analysis of 
Gene Expression Data 
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Pattern Mining Dimensionality 
Reduction 
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■  Integrative approaches have shown to improve gene selection 
□  Higher accuracy 
□  Lower computational complexity 

■  Network-based approaches are most promising 
□  Map genes to protein-protein networks or pathways 
□  Identify densely coupled subnetworks 

■  Your task: Implement an integrative approach for gene selection 
□  Review existing literature for integrative approaches for gene selection 
□  Integrate approach into existing framework 
□  Evaluate against existing approaches 
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A1. Integrative Gene Selection 



■  Association rule mining can help to identify correlations between 
expression profiles and genes, e.g. 

 

■  Your Task: Apply association rule mining on RNAseq data 
□  Benchmark overall feasibility 
□  Identify limitations and address one selected limitation 
□  Integrate into existing framework 
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A2. Association Rule Mining  
on RNAseq Data 

GeneA é à GeneBé 



■  Integrating external resources into the analysis can… 
□  … reduce computational complexity 
□  … deliver biologically relevant results 

■  External resources can be incorporated at multiple points 
□  Gene selection 
□  Pattern mining 

 
■  Your task: Evaluate the effect of integrating external information at 

different steps in the analysis pipeline 
□  Integrate external information into clustering 
□  Integrate approach into existing framework 
□  Evaluate integrative gene selection vs. integrative clustering  
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■  Analysis results must be validated for their biological relevance 
□  State of the art: Gene Set Enrichment Analysis (GSEA) 
□  Literature review 
□  Keyword search 

 
 
■  Your task: Implement an automatic evaluation for marker genes 

□  Identify suitable resources 
□  Decide on evaluation strategy, e.g. GSEA 
□  Integrate approach into existing framework Perscheid, Kraus, 
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B. Multi-level Data Integration in Systems Medicine 
of Heart Failure 

Trans-Omics: How To Reconstruct Biochemical Networks Across Multiple ‘Omic’ Layers, Yugi, K., (2016), Cell Press 
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Quantitative Trait Loci (QTL) 
 

The role of regulatory variation in complex traits and disease, Frank W. Albert1,2 and Leonid Kruglyak (2005), Nature Reviews 
Genetics  

 



■  Understand: 
□  How to combine genomic variation and RNA expression to derive 

eQTLs 
■  Try out:  

□  PEERs normalization for confounding variation in expression data and 
known confounders  

□  Matrix QTL package to infer genomic regions that alter RNA 
expression 

□  Compare found eQTLs to GWAS and know HF variants 
■  Write:  

□  Describe the algorithms and experiments in a scientific paper 
□  Discuss results in a technical and biological manner 
□  (Optional: Compare your results with B2) 
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B1. Calculate and Validate eQTLs in  
Heart Failure 



■  Understand: 
□  How to combine genomic variation and protein expression to derive 

pQTLs 
■  Try out:  

□  PEERs normalization for confounding variation in expression data and 
known confounders  

□  Matrix QTL to infer genomic regions that alter protein expression 
□  Compare found pQTLs to GWAS and known HF variants 

■  Write:  
□  Describe the algorithms and experiments in a scientific paper 
□  Discuss results in a technical and biological manner 
□  (Optional: Compare your results with B1) 
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B2. Calculate and Validate pQTLs in  
Heart Failure 



■  Understand: 
□  The impact of genomic variants in coding regions  

■  Try out:  
□  Mapping of tissue-specific eQTLs to expressed genomic regions from 

GTEX 
□  Matrix QTL on expressed genomic regions that alter RNA and/or 

protein expression for at least one GTEX tissue à expQTLs 
□  Compare expQTLs and eQTLs 

■  Write:  
□  Describe your algorithm and experiments in a scientific paper 
□  Quantify expQTLs 
□  Evaluate the feasibility to extract expQTLs from eQTL data  
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B3. Assess the Feasibility of Expressed QTLs 
 



■  High-throughput multi-omic 
information is available 

■  Unsupervised classification 
is used to classify molecular 
profiles on a single omic 
basis 

■  Patient subgroup detection 
may help to find a 
personalized therapy based 
on molecular data 
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Multi-omics Clustering 
 

Johnson, Kipp W., et al. "Enabling precision cardiology through multiscale biology and systems 
medicine." JACC: Basic to Translational Science 2.3 (2017): 311-327. 

 



■  Understand: 
□  How to perform a model-based multi-omics clustering  

■  Try out:  
□  iClusterBayes unsupervised subgroup detection for multiple omics 

data sets 
□  Infer molecular subgroups of heart failure patients  
□  Link subgroups to clinical features (e.g., obesity or HF regression) 

■  Write:  
□  Describe the algorithms and experiments in a scientific paper 
□  Discuss results in a technical and biological manner 

B4. Bayesian Clustering of Multi-Omics 
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■  Understand: 
□  The (dis-) advantages of late integration for omics clustering 

■  Try out:  
□  SNF for unsupervised subgroup detection in multiple omics data sets 
□  Infer molecular subgroups of heart failure patients  
□  Link subgroups to clinical features (e.g., obesity or HF regression) 

■  Write:  
□  Describe the algorithms and experiments in a scientific paper 
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B5. Similarity Network Fusion on Multi-Omics 
 



■  Understand: 
□  How differential gene expression analysis is 

implemented in our DEAME application 
■  Try out:  

□  Create a user questionnaire 
□  Conduct user interviews with our clinical partners 
□  Find strengths and weaknesses of our current 

application 
■  Write:  

□  Describe the user research metodology and 
interviews in a scientific paper 

□  Discuss if DEAME is a valuable tool for clinical 
research 
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B6. Acceptance of the DEAME Application for Clinical 
Research 



C. Interpretability Approaches applied to 
Clinical Predictive Modeling 

■  Modeling of patient-level outcomes: 
□  Hospital mortality 
□  Length of ICU stay 
□  Onset of complications 
□  Disease recovery, etc. 

■  It can help doctors answer questions like: 
□  Will patient develop disease ‘x’? 
□  Should this patient be treated with ‘y’? 
□  Should testing be done? 
□  Is this patient likely to recover? 
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http://www.mii.ucla.edu/images/research/areas/clinical_decision.png 
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It’s Elementary, my Dear IBM Watson! 

Who among you have already met Dr. Watson in ‘silico’? 

Source: https://www.ibm.com/watson/ 



■  Progress in machine learning has yet 
to deliver on its promises 

■  There is often a trade-off between 
accuracy and model complexity 

■  Specially in sensitive domains such 
as medicine, interpretability is key 

■  New GDPR 2018: establishes the 
”right to explanation” 
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C. Interpretability Approaches applied to 
Clinical Predictive Modeling 

Linear Regression 

Decision Trees 
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Hall, P., & Gill, N. An Introduction to Machine Learning Interpretability: An Applied Perspective on Fairness, Accountability,Transparency, and Explainable AI. 
O’Reilly M (2018). Retrieved from http://www.oreilly.com/data/free/an-introduction-to-machine-learning-interpretability.csp  



■  Interpretability approaches are needed, e.g. mimic learning 
■  Use a complex model in combination with a more intelligible one 
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C. Interpretability Approaches applied to 
Clinical Predictive Modeling 

Zhengping Che, Sanjay Purushotham, Robinder Khemani and Yan Liu: Interpretable Deep Models for ICU Outcome Prediction (2017) 
Doshi-Velez, F., & Kim, B. Towards A Rigorous Science of Interpretable Machine Learning (2017). 
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■  Your tasks: 
□  Develop a clinical prediction model (CPM) 

together with clinical experts 
□  Perform literature research on state-of-the-art 

interpretability approaches 
□  Implement, evaluate and compare 

selected methods 
□  Identify key areas for improvement 

■  The tools you will need: 
□  Python + SQL 
□  ML tookit scikit-learn 
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C. Interpretability Approaches applied to 
Clinical Predictive Modeling 

Wilfred Bonney (2011). Impacts and Risks of Adopting Clinical Decision Support Systems, Efficient Decision Support Systems - Practice and 
Challenges in Biomedical Related Domain, Prof. Chiang Jao (Ed.), ISBN: 978- 953-307-258-6, InTech 

Source: Bonney (2011) 



■  Choose your favorite topics by Wed Oct 24, 11.59 PM 
■  Come by at our offices for questions:  

□  V-1.19, Campus II 
□  G-2.2.16, Campus III 

Thanks for your attention! 
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