

Digital Engineering · Universität Potsdam

Trends in Bioinformatics Seminar Kickoff

Cindy Perscheid, Milena Kraus, Harry Freitas da Cruz

Agenda

- Organization and Schedule
- Topics

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

Seminar Organization – **Setup**

- Supervisors: Cindy Perscheid, Milena Kraus, Harry Freitas da Cruz
- Time: Tuesdays $9.15 10.45$ AM, and Wednesdays $1.30 3.00$ PM, individual appointments with your supervisor
- Location: D.E-9/10, HPI Campus II
- Periods: 4 SWS (6 graded ECTS)
- Enrollment:
	- □ Prioritized topic wish list via e-mail to *cindy.perscheid (at) hpi.de*
	- □ Due **Wed Oct 24, 11.59 PM**
	- □ Topic assignment notification by **Thu Oct 25, 1 PM**
	- □ Sign up for the course until **Fri Oct 26**
	- □ https://hpi.de//plattner/teaching/winter-term-201819/trends-inbioinformatics.html

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

Seminar Organization – Grading

- \blacksquare The grading of the seminar works as follows (aka "Leistungserfassungsprozess"):
	- □ **40%** intermediate and final presentation
	- □ **40%** scientific research article
	- **a 20%** individual commitment
- **All individual parts have to be passed** to pass the complete seminar

http://www.hpi.uni-potsdam.de/fileadmin/hpi/presse/Fotos/campus_und_gebaeude/ 20111017 HPI Hoersaal.jpg

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

Seminar Organization – Enrollment for Seminar Topics

How to apply for a topic?

- Send prioritized list of top 3 topics to Cindy Perscheid (*cindy.perscheid (at) hpi.de*) until: **Wed Oct 24, 11.59 PM**
- Topic Assignments: Thu Oct 25, 2017 1 PM
- HPI course registration deadline: **Fri Oct 26, 2017**

Wish List

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

Hasso

Plattner Institut

HPI

Seminar Schedule – Presentations

- **Nov 26 30:** Intermediate presentations
	- □ 10 minutes presentation
	- \Box Introduce your topic, problem/motivation, how you want to solve it
	- □ Slides due at day of presentation, 9 AM
	- □ Concrete dates tbd after topic assignment
- Jan 21 25: Final presentations
	- □ 30 minutes presentation
	- □ Slides due at day of presentation, 9 AM
	- □ Present your approach and planned experimental setup
	- □ Concrete dates tbd after topic assignment

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

Seminar Schedule – Paper Writing

- Jan 29, 9.15 AM: Introduction to scientific writing
- Mar 10, 11.59 PM: Paper Submission Deadline
	- □ One paper per topic
	- \Box 4-6 pages for single students, 6-8 for teams (fixed upper bound!)
	- □ Iterate with your supervisor
- **Mar 18:** Notification of reject or accept w/o (minor) revisions
- **Mar 30:** Submission of camera-ready version

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

Seminar Topics

A. Analysis of RNAseq Data (Supervisor: Cindy Perscheid)

- 1. Integrative Gene Selection
- 2. Association Rule Mining
- 3. Integrative Gene Selection vs. Integrative Clustering
- 4. Biological Evaluation of Marker Genes

B. Analysis of Multi-Omics Data (Supervisor: Milena Kraus)

- 1. Calculate and validate eQTLs in Heart Failure
- 2. Calculate and validate pQTLs in Heart Failure
- 3. Feasibility of "expQTLs"
- 4. Bayesian Clustering of Multi-Omics
- 5. Similarity Network Fusion on Multi-Omics

C. Interpretability Approaches applied to Clinical Predictive Modeling (Supervisor: Harry Freitas da Cruz)

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

Central Dogma of Molecular Biology – From DNA to RNA

- **Protein: Gene product** controlling cell metabolisms
- **Gene Expression: Cell process** where protein is built from gene information encoded in DNA
- **Expression Level: Production** rate of protein

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

Gene Expression Rates – What Differentiates Cells

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

RNAseq – A Complete Snapshot of a Cell's Gene Activity

Integrating Biological Context into the Analysis of Gene Expression Data

Chart **12**

HPI

Hasso Plattner Institut

A1. Integrative Gene Selection

- Dimensionality Validation **Preprocessing Pattern Mining Reduction** Hasso T Y **Plattner** Expression Meaningfu Institut
- Integrative approaches have shown to improve gene selection
	- □ Higher accuracy
	- □ Lower computational complexity
- Network-based approaches are most promising
	- □ Map genes to protein-protein networks or pathways
	- □ Identify densely coupled subnetworks
- Your task: Implement an integrative approach for gene selection
	- □ Review existing literature for integrative approaches for gene selection
	- □ Integrate approach into existing framework
	- □ Evaluate against existing approaches

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

A2. Association Rule Mining on RNAseq Data

Association rule mining can help to identify correlations between expression profiles and genes, e.g.

GeneA ↑ → *GeneB*

- Your Task: Apply association rule mining on RNAseg data
	- □ Benchmark overall feasibility
	- □ Identify limitations and address one selected limitation
	- □ Integrate into existing framework

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

A3. Integrative Gene Selection vs. Integrative Clustering

- Integrating external resources into the analysis can...
	- □ … reduce computational complexity
	- □ … deliver biologically relevant results
- External resources can be incorporated at multiple points
	- \Box Gene selection
	- □ Pattern mining
- Your task: Evaluate the effect of integrating external information at different steps in the analysis pipeline
	- □ Integrate external information into clustering
	- \Box Integrate approach into existing framework
	- □ Evaluate integrative gene selection vs. integrative clustering

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

A4. Biological Evaluation of Marker Genes

- Analysis results must be validated for their biological relevance
	- □ State of the art: Gene Set Enrichment Analysis (GSEA)
	- □ Literature review
	- □ Keyword search

- Your task: Implement an automatic evaluation for marker genes
	- □ Identify suitable resources
	- □ Decide on evaluation strategy, e.g. GSEA
	- □ Integrate approach into existing framework Department of the Series Perscheid, Kraus,

 \sum_{NCBI}

TiB Seminar Kickoff

Pub

Cruz

B. Multi-level Data Integration in Systems Medicine of Heart Failure

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

Chart **17**

Trans-Omics: How Io Reconstruct Biochemical Networks Across Multiple 'Omic' Layers, *Yugi, K.,* (2016), Cell Press

Quantitative Trait Loci (QTL)

Perscheid, Kraus, **Cruz**

Chart **18**

The role of regulatory variation in complex traits and disease, *Frank W. Albert1,2 and Leonid Kruglyak* (2005), Nature Reviews Genetics

B1. Calculate and Validate eQTLs in Heart Failure

- Understand:
	- □ How to combine genomic variation and RNA expression to derive eQTLs
- Try out:
	- □ PEERs normalization for confounding variation in expression data and known confounders
	- □ Matrix QTL package to infer genomic regions that alter RNA expression
	- Compare found eQTLs to GWAS and know HF variants
- Write:
	- □ Describe the algorithms and experiments in a **scientific** paper
	- □ Discuss results in a technical and biological manner
	- □ (Optional: Compare your results with B2)

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

Chart **20**

B2. Calculate and Validate pQTLs in Heart Failure

- Understand:
	- □ How to combine genomic variation and protein expression to derive pQTLs
- Try out:
	- □ PEERs normalization for confounding variation in expression data and known confounders
	- □ Matrix QTL to infer genomic regions that alter protein expression
	- □ Compare found pOTLs to GWAS and known HF variants
- Write:
	- □ Describe the algorithms and experiments in a **scientific** paper
	- □ Discuss results in a technical and biological manner
	- □ (Optional: Compare your results with B1)

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

pQTL

- \Box The impact of genomic variants in coding regions
- Try out:
	- Mapping of tissue-specific eQTLs to expressed genomic regions from **GTEX**
	- □ Matrix QTL on expressed genomic regions that alter RNA and/or protein expression for at least one GTEX tissue \rightarrow expQTLs
	- □ Compare expQTLs and eQTLs
- Write:
	- □ Describe your algorithm and experiments in a **scientific** paper
	- □ Quantify expOTLs
	- □ Evaluate the feasibility to extract expQTLs from eQTL data

TiB Seminar Kickoff

Multi-omics Clustering

Treatment Approaches Standard-of-care **Precision Cardiology** Multi-Omic Information **Therapeutic Space Clinical Evaluation** Machine Learning Beta-blocker K^+ sparing diuretic Standard Data-driven disease subtyping
and patient stratification Algorithm Propanolol Amiloride **ACE** inhibitor Hydrochlorothiazide Lisinopril Non-dihydropyridine $Ca²⁺ channel blocker$ Fibrate **TIB SEMINAR AND SEMINAR A** $k = \frac{1}{2}$ Verapami Perscheid, Kraus, Clofibrate _c **Generalized Recommendation Bile acid sequestrant Data-Driven Recommendation Clinician Review and Decision** Colesevelam

- High-throughput multi-omic information is available
- Unsupervised classification is used to classify molecular profiles on a single omic basis
- Patient subgroup detection may help to find a personalized therapy based on molecular data

Johnson, Kipp W., et al. "Enabling precision cardiology through multiscale biology and systems medicine." *JACC: Basic to Translational Science* 2.3 (2017): 311-327.

B4. Bayesian Clustering of Multi-Omics

- Understand:
	- □ How to perform a model-based multi-omics clustering
- Try out:
	- □ iClusterBayes unsupervised subgroup detection for multiple omics data sets
	- □ Infer molecular subgroups of heart failure patients
	- Link subgroups to clinical features (e.g., obesity or HF regression)
- Write:
	- □ Describe the algorithms and experiments in a **scientific** paper
	- □ Discuss results in a technical and biological manner

HPI

Hasso Plattner Institut

B5. Similarity Network Fusion on Multi-Omics

- Understand:
	- □ The (dis-) advantages of late integration for omics clustering
- Try out:
	- □ SNF for unsupervised subgroup detection in multiple omics data sets
	- □ Infer molecular subgroups of heart failure patients
	- □ Link subgroups to clinical features (e.g., obesity or HF regression)
- Write:
	- □ Describe the algorithms and experiments in a **scientific** paper

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

B6. Acceptance of the DEAME Application for Clinical Research

- Understand:
	- □ How differential gene expression analysis is implemented in our DEAME application
- Try out:
	- □ Create a user questionnaire
	- Conduct user interviews with our clinical partners
	- Find strengths and weaknesses of our current application
- Write:
	- □ Describe the user research metodology and interviews in a **scientific** paper
	- \Box Discuss if DEAME is a valuable tool for clinical research

Hasso HP Plattner Institut

- Modeling of patient-level outcomes:
	- □ Hospital mortality
	- □ Length of ICU stay
	- □ Onset of complications
	- □ Disease recovery, etc.
- It can help doctors answer questions like:
	- □ Will patient develop disease 'x'?
	- \Box Should this patient be treated with 'y'?
	- □ Should testing be done?
	- □ Is this patient likely to recover?

	□ Perscheid, Kraus,

http://www.mii.ucla.edu/images/research/areas/clinical_decision.png

TiB Seminar Kickoff

Cruz

It's Elementary, my Dear IBM Watson!

Who among you have already met Dr. Watson in 'silico'?

IBM Watson®

TiB Seminar Kickoff

Perscheid, Kraus, Cruz

Source: https://www.ibm.com/watson/

- Progress in machine learning has yet to deliver on its promises
- There is often a trade-off between accuracy and model complexity
- Specially in sensitive domains such as medicine, interpretability is key
- New GDPR 2018: establishes the $"$ right to explanation $"$

Hall, P., & Gill, N. *An Introduction to Machine Learning Interpretability: An Applied Perspective on Fairness, Accountability,Transparency, and Explainable AI*. O'Reilly M (2018). Retrieved from http://www.oreilly.com/data/free/an-introduction-to-machine-learning-interpretability.csp

Interpretability

Interpretability

HPI

Hasso Plattner Institut

- Interpretability approaches are needed, e.g. mimic learning
- Use a complex model in combination with a more intelligible one

Zhengping Che, Sanjay Purushotham, Robinder Khemani and Yan Liu: *Interpretable Deep Models for ICU Outcome Prediction* (2017) Doshi-Velez, F., & Kim, B. *Towards A Rigorous Science of Interpretable Machine Learning* (2017).

■ Your tasks:

- □ Develop a clinical prediction model (CPM) together with clinical experts
- \Box Perform literature research on state-of-the-art interpretability approaches
- □ Implement, evaluate and compare selected methods
- \Box Identify key areas for improvement
- The tools you will need:
	- □ Python + SOL
	-

TiB Seminar Kickoff

Cruz

Hasso

Plattner Institut

HPI

Thanks for your attention!

- Choose your favorite topics by **Wed Oct 24, 11.59 PM**
- Come by at our offices for questions:
	- □ V-1.19, Campus II
	- $G-2.2.16$, Campus III

TiB Seminar Kickoff

Perscheid, Kraus, **Cruz**