

Trends in Bioinformatics: **Causal Inference on Gene Expression Data**

Philipp Bode

Causal Inference on **Gene Expression Data**: Snapshotting the Transcriptome^[1]

CI on Gene Expression Data

27.11.2018

Causal Inference on **Gene Expression Data**: Snapshotting the Transcriptome^[1]

Repeat across tissue type, individuals, time

Differential Expressions

CI on Gene Expression Data

27.11.2018

Differential Gene Expression AnalysisMotivation^[2]

- Cellular functions heavily regulated by RNA expression
- Gain insights into processes in healthy and cancerous cells:
 - As biomarkers for prognostic or diagnostic evaluation
 - As potential drug targets

Large steady-state observational RNA-seq data sets available

CI on Gene Expression Data

27.11.2018

Causal Graphical Models

Motivation^[3]

E.g., is gene G2 higher expressed if **we see** that gene G1 is higher expressed?

Q(P)=PExpressionG2□Expression G1

E.g., is gene G2 higher expressed if **we do** express gene G1 higher?

Q(G)=PExpression $G2\square do(Expression G1)$ CI on Gene **Expression Data**

27.11.2018

Causal Inference on Gene Expression Data: Graphical Causal Models

Cooling House Example:

V₁: Target temp.

V₂: Sunlight level

 V_3 : Outside temp.

V₄: Cooling action

V₅: Thermal waste

V₆: Electricity consumption

CI on Gene Expression Data

27.11.2018

Causal Inference on Gene Expression Data: Conditional Independence

Cooling House Example:

V₁: Target temp.

V₂: Sunlight level

 V_3 : Outside temp.

V₄: Cooling action

V₅: Thermal waste

V₆: Electricity consumption

CI on Gene Expression Data

27.11.2018

Causal Inference on Gene Expression Data: Conditional Independence

Cooling House Example:

V₁: Target temp.

V₂: Sunlight level

V₃: Outside temp.

V₄: Cooling action

V₅: Thermal waste

V₆: Electricity consumption

CI on Gene Expression Data

27.11.2018

 V_1 : Target temp.

V₂: Sunlight level

V₃: Outside temp.

V₄: Cooling action

V₅: Thermal waste

V₆: Electricity consumption

CI on Gene Expression Data

27.11.2018

CI on Gene Expression Data

27.11.2018

Fully connected graph

CI on Gene Expression Data

27.11.2018

First iteration: Remove edges without direct correlation

$$V_1 \perp V_2$$

 $V_1 \perp V_3$

CI on Gene Expression Data

27.11.2018

Second iteration: Remove conditionally independent edges

$$V_{1} \perp V_{5} \mid V_{4}$$

$$V_{1} \perp V_{6} \mid V_{4}$$

$$V_{2} \perp V_{5} \mid V_{4}$$

$$V_{2} \perp V_{6} \mid V_{4}$$

$$V_{3} \perp V_{5} \mid V_{4}$$

$$V_{3} \perp V_{6} \mid V_{4}$$

CI on Gene Expression Data

27.11.2018

Rule-based edge directing

CI on Gene Expression Data

27.11.2018

Causal Inference on Gene Expression Data:Motivation

- Working with causal modeling instead of statistical approach: [4]
 - Approximate gene regulatory networks
 - Incorporate known effects of knock-out/down trials
- PC-algorithm: Limited preprocessing and massively parallelizable

Causal Inference on Gene Expression Data: Challenges

- Feasibility of constraint-based learning approach:
 - High dimensionality: 35K genes
 - Density of underlying causal graph
- (Most probably) many non-linear dependencies
 - Conditional independence tests computationally expensive^[5]
- How to:
 - Interpret results?
 - Combine samples to form data sets?

CI on Gene Expression Data

27.11.2018

Causal Inference on GED:Goals and Next Steps

- Next Steps:
 - Run on discretized values
 - Differential graph analysis on healthy/ cancerous tissue
 - (Integrate test for non-linear dependencies)
- Goals: Evaluate...
 - ...feasibility of PC-algorithm
 - ...resulting causal graphs:
 - With external knowledge bases
 - In comparison to other approaches

CI on Gene Expression Data

27.11.2018

- Multi-cancer samples
- Top 2500 genes by variance
- 20.043.623.346 tests
- 5h on 64 cores

Aggretated OpenTargets neoplasm association

Sources

- [1] Oshlack, Alicia, Mark D. Robinson, and Matthew D. Young. "From RNA-seq reads to differential expression results." *Genome biology* 11, no. 12 (2010): 220.
- [2] ICGC-TCGA DREAM Somatic Mutation Calling RNA Challenge https://www.synapse.org/#!Synapse:syn2813589/wiki/401435
- [3] Causal Inference Theory and Applications:
 https://hpi.de/plattner/teaching/archive/summer-term-2018/causal-inference-theory-and-applications.html
- [4] Rau, Andrea, Florence Jaffrézic, and Grégory Nuel. "Joint estimation of causal effects from observational and intervention gene expression data." *BMC systems biology* 7, no. 1 (2013): 111.
- [5] Ramsey, Joseph D. "A scalable conditional independence test for nonlinear, non-Gaussian data." *arXiv preprint arXiv:1401.5031* (2014).

CI on Gene Expression Data

27.11.2018

