

Digital Engineering • Universität Potsdam

Interpretability Approaches applied to Predictive Models in Clinical Healthcare

Trends in Bioinformatics Intermediate Presentation Tom Martensen, Axel Stebner

Interpretability is the degree to which a human can understand the cause of a decision.

- Miller, Tim. 2017. "Explanation in Artificial Intelligence: Insights from the Social Sciences." arXiv Preprint arXiv:1706.07269.

1. Technique

- 2. Use Case
- **3.** Problem Statement
- **4.** Envisioned Solution
- **5.** Methods: LIME, Decision Rules
- **6.** Contribution
- 7. Desired Outcome

Interpretability is the degree to which a human can understand the cause of a decision.

- Miller, Tim. 2017. "Explanation in Artificial Intelligence: Insights from the Social Sciences." arXiv Preprint arXiv:1706.07269.

Technique: Interpretation of Machine Learning Models

Machine Learning
WHAT

Interpretability Approaches

Technique: Interpretation of Machine Learning Models

Machine Learning
WHAT

Interpretability **WHY**

> Interpretability Approaches

Technique: Interpretation of Machine Learning Models

Interpretability Approaches

Use Case: Therapy of Acute Kidney Injury

UniversitätsKlinikum Heidelberg

Interpretability Approaches

Use Case: Therapy of Acute Kidney Injury

UniversitätsKlinikum Heidelberg

Complication: Multiplicity of Good Models

Perfusion (weight)

Interpretability Approaches

Complication: Multiplicity of Good Models

Perfusion (weight)

Which of these weightings should be chosen? Which explanation is useful and valuable? Interpretability Approaches

Complication: Multiplicity of Good Models

Perfusion (weight)

Which of these weightings should be chosen? Which explanation is useful and valuable? Interpretability Approaches

Use Case: Therapy of Acute Kidney Injury

Use Case: Therapy of Acute Kidney Injury

Integrated Interpretability Framework

Interpretability Models: Dimensions of Interpretability

Local Approach LIME: Dimensions of Interpretability

X2 Income Savings X1 X2 X2 > 0.5 X1

Interpretability Approaches

Stebner Martensen 27.11.2018 Chart **20**

Local Approach LIME: What does it do?

Local Approach LIME: What does it do?

1. Perturbate data

- 2. Compute proximity
- 3. Make predictions
- 4. (Select features)
- 5. Fit a simple model
- 6. Extract explanations (feature weights)

Interpretability Approaches

Local Approach LIME: What does it do?

1. Perturbate data

2. Compute proximity

- 3. Make predictions
- 4. (Select features)
- 5. Fit a simple model
- 6. Extract explanations (feature weights)

Interpretability Approaches

2. Compute proximity

Local Approach LIME:

- **3.** Make predictions
- *4.* (Select features)
- 5. Fit a simple model
- 6. Extract explanations (feature weights)

Interpretability **Approaches**

- 2. Compute proximity
- 3. Make predictions
- 4. (Select features)
- 5. Fit a simple model
- 6. Extract explanations (feature weights)

Interpretability Approaches

Stebner Martensen 27.11.2018 Chart **24**

HPI Hasso Plattner Institut

- 2. Compute proximity
- 3. Make predictions
- 4. (Select features)
- 5. Fit a simple model
- 6. Extract explanations (feature weights)

Stebner Martensen 27.11.2018 Chart **25**

Local Approach LIME: What does it do?

- 2. Compute proximity
- 3. Make predictions
- 4. (Select features)
- 5. Fit a simple model
- 6. Extract explanations

(feature weights)

Interpretability Approaches

Stebner Martensen 27.11.2018 Chart **26**

Local Approach LIME: What does it do?

Local Approach LIME: Sample around the instance

- 1. Engineering of perturbation generator
 - Static data?
 - Pictures?
 - Time series?

- 2. Collect a set of permutations
- 3. Define a proximity measure

Interpretability Approaches

Local Approach LIME: Fit a simple model

Select a model family and train the model

Extract explanations (e.g. model weights)

Fidelity-Interpretability Trade-off

$$\mathcal{L}(f,g,\pi_x)$$

Unfaithfulness of the model

Complexity of the model

$$\xi(x) = \underset{g \in G}{\operatorname{argmin}} \ \mathcal{L}(f, g, \pi_x) + \Omega(g)$$

Interpretability **Approaches**

Stebner Martensen 27.11.2018 Chart 28

$$\Omega(g)$$

O()

Local Approach LIME: Example

Interpretability Approaches

Local Approach LIME: Example

Interpretability Approaches

Stebner Martensen 27.11.2018 Chart **30**

It's a great snow detector!

Global Approach: Decision Rule Lists (DRL)

IF perfusion = low && body_temp = high THEN risk = high

Support/Coverage: Share of matched instances by rule

Accuracy/Confidence:

How accurate is the rule in predicting the correct class for the instances for which the rule applies?

 $S(r) = Matched instances/Total instances_A(r) = Correctly classified matched instances/$ Total matched instances

Interpretability Approaches

Stebner Martensen 27.11.2018 Chart **31**

Inspired by: https://christophm.github.io/interpretable-ml-book/rules.html#sequential-covering

Global Approach DRL: Sequential Covering

Sequential Covering

"Create rules until dataset is covered"

Interpretability Approaches

Stebner Martensen 27.11.2018 Chart **32**

Inspired by: <u>https://christophm.github.io/interpretable-ml-book/rules.html#sequential-covering</u>

Global Approach DRL: Learning a Rule

Chart 33

Inspired by: <u>https://christophm.github.io/interpretable-ml-book/rules.html#sequential-covering</u>

Global Approach DRL: Dimensions of Interpretability

Contribution

- Clinical Predictive Model for AKI Use Case
- Extend current Machine Learning Pipeline

Build Integrated Interpretability Framework

- Compare interpretability models
- Select interpretability models based on evaluation metrics
 - Computational Complexity
 - Model Complexity
 - Expert Feedback
 - Discrimination & Calibration

Interpretability Approaches

HPI Hasso Plattner Institut

Desired Outcome

Interpretability Approaches

Hasso Plattner

Institut

Sources

Duck-Rabbit-Illusion: <u>https://en.wikipedia.org/wiki/Ambiguous_image#/media/File:Duck-Rabbit_illusion.jpg</u>

Cardiopulmonary Bypass: https://upload.wikimedia.org/wikipedia/commons/thumb/2/24/Blausen 0468 Heart-Lung Machine.png/300px-Blausen 0468 Heart-Lung Machine.png

Injured Kidney: <u>https://encrypted-tbn0.gstatic.com/images?</u> g=tbn:ANd9GcQ4kVzdKHZ81KazmyE9YXLQvvqp9iF00PI56PfPI0MOV Fxorw1aA

Uni Heidelberg Logo https://de.wikipedia.org/wiki/Universit%C3%A4tsklinikum Heidelberg#/media/ File:Universit%C3%A4tsklinikum Heidelberg logo.svg

Error Plane:

https://image.slidesharecdn.com/navdeepmlinov0117-171102184007/95/ideas-on-machine-learninginterpretability-9-638.jpg?cb=1509648095

Icons by Fontawesome (<u>https://fontawesome.com/license</u>) and by Freepik, Appzgear & Pixel perfect on <u>https://flaticon.com</u>

LIME:

https://www.slideshare.net/0xdata/interpretable-machine-learning-using-lime-framework-kasia-kulma-phd-datascientist

Hide the Pain Harolds:

- <u>https://static.independent.co.uk/s3fs-public/thumbnails/image/2017/07/11/11/harold-0.jpg</u>
- https://ih0.redbubble.net/image.427352071.9413/ap,550x550,16x12,1,transparent,t.png

Digital Engineering • Universität Potsdam

Interpretability Approaches applied to Clinical Predictive Modeling

Trends in Bioinformatics Intermediate Presentation

Discussion

Possible Questions:

- As a patient, in how much level of detail would you expect your doctor to explain Machine Learning results?
- As a physician, how do you want to be trained for interpretable models?
- How could we engineer perturbations for time series in LIME?

Interpretability Approaches