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Association Rule Mining
Discovering significant relations between attributes (“items”) in large datasets.

Association Rules

Gene1↑ → Gene2↓

Illness → Gene1↑, Gene2↓
Gene1↑, Gene2↓ → Illness
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Number of features infeasible 
Exponential number of possible frequent item sets
→ Runtime complexity

Huge number of possible / output rules 
n frequent items yield 2n − 2 association rules
→ which rules are relevant/interesting?

⇒ Select relevant subset of rules
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2. Method - Filtering of Association Rules

Filter association rules that can be removed for formal reasons or because of 
what the researcher wants to find out or use the results for.
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Examples

Item-Filter
Filter association rules containing wanted/unwanted items, 
e.g. Gene1― → Gene2―.

Redundancy-Filter
Remove rules that can be deduced from other rules.

If using multiple filters in a row, the order might matter!
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2. Method - Min-Max Filter

Min-Max Filter

Idea 
The antecedent of a rule should be as small, the consequent as large as possible.

Min-Max1: ensure, that            or               hold for rule          .   

Min-Max2: Given two rules,                    and                   , remove    , 
 if              and           . If                          , we do not lose information!

Example                                                              

r0: X,Y,Z → C
r1: X,Y → C 
               Chart 9



(Strong) Monotonicity

If a rule X → Y holds on a statistically large subset of a dataset D, then 
X → ¬Y does not hold on any statistically large subset of D.

Example

G2↓ → G4↑
G2↓, G3↑ → G4↓
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2. Method - Monotonicity Filter

Graph creation Rule Filtering
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Data: TCGA-LAML_TCGA-GBM
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Interestingness Measures
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2. Method - Interestingness Measures

Interestingness Measure

Objective Measure Subjective Measure
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Interestingness Measures

Objective
Depend only on the data and patterns, no knowledge of user or application 
required. Mostly based on theories in probability, statistics or information 
theory.

Examples

Support
Confidence
Lift
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Interestingness Measures

Subjective
Take into account both the data and the user of these data.
Definition requires domain knowledge (or background knowledge about the data) 
and its explicit representation. 

Examples

Novelty
Unexpectedness
Actionability
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External domain knowledge

Genes associated with medical condition:
http://www.disgenet.org/
https://www.targetvalidation.org/

Co-Expression of genes:
http://coxpresdb.jp/
http://www.genefriends.org
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Figure: Disgenet search
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First idea:

Jaccard-Index: 

Jaccard distance:
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Intuition:

Index measures “overlap” / similarity of sets. 
If there are lots of genes associated with a medical condition (B), 
or a rule (A) is very long, an overlap is more likely, 
but the denominator also increases.



First idea:

For a rule X → Y and a set B of genes associated with a medical condition: 
                                                measures how much a rule corresponds to 
the domain knowledge.

                              measures the novelty of an association rule.
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First idea:

For a rule X → Y and a set B of genes associated with a medical condition: 
                                                measures how much a rule corresponds to 
the domain knowledge.

                              measures the novelty of an association rule.

Problems:

Scores for different medical conditions hardly comparable
If B is small,                         is almost always 0!
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Next idea:

Define a subjective interestingness measure based on gene co-expression.

E.g. how strongly do the genes in the antecedent of the association rule
correlate with with the genes in the consequent of the association rule?
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Given    interestingness measures in a vector      and an   -dimensional 
weight vector   , a combined interesting score can be computed by: 

Scalar product

Geometric Method
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2. Method - Weighting

Setting weights

Value range of     
e.g. support       , confidence 

Effect of weights in geometric method

          increases weight of            , 
but decreases weight of
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Setup

Data
RNAseq data from The Cancer Genome Atlas (TCGA)
DSI: TCGA-BRCA_TCGA-PAAD (307 samples; selected 2.7k genes by variance)
DSII: TCGA-LAML_TCGA-GBM (1,28k samples; selected 2.5k genes by variance)

All data sets were discretized by threshold.

Association Rule Miner

      Weka 3.9 Apriori Associator
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Experiment #1
Number of filtered rules

1.1 Min-Max1 filter
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Experiment #1
Number of filtered rules

1.2 Min-Max2 filter                                1.3 Monotonicity filter
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Experiment #2 (planned)
Compute average change in rank for association rules after weighting with 
different subjective interestingness measures.

Experiment #3 (planned)
Evaluate new subjective novelty measure(s) by holding back domain knowledge 
and see, whether it is discovered. 

Experiment #4 (planned)
Retrieve gene network from additional external domain knowledge source and 
compare to (weighted) association rules / generated graph.

...



Filtering techniques are powerful to reduce number of association rules.

Assessing the biological relevance of rules by using subjective interestingness 
measures proved to be challenging at first try.

Discussion

How to improve the first subjective interestingness measure based on the 
Jaccard index?

What other subjective interestingness measures are conceivable?

Other ideas regarding experiments and their evaluation?
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Title/Final Slide:
Boehm Konstruktion 
http://www.boehm-konstruktion.com/referenzen/hasso-plattner-high-tech-park/

[2] Central Dogma of Molecular Biology:
Khan Academy
https://www.khanacademy.org/science/high-school-biology/hs-molecular-genetics/hs-rna-and-protei
n-synthesis/a/intro-to-gene-expression-central-dogma

The BPMN model of the method was made using Signavio Academic Initiative:
https://academic.signavio.com/
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Appendix: Image Sources
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https://www.khanacademy.org/science/high-school-biology/hs-molecular-genetics/hs-rna-and-protein-synthesis/a/intro-to-gene-expression-central-dogma
https://academic.signavio.com/
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Gene
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Sample
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Discretize
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{Headset,Laptop}
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A: Laptop ⇒ Headset
sup(A) = 4
conf(A) = 0.8
B: Headset ⇒ Laptop
sup(B) = 4  _
conf(B) = 0.6
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Transaction

Item: ENSG0..03=-1

Transaction ID
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Redundant Association Rules

An association rule is redundant if its structure and statistical measures can be 
deduced from another rule.

Different notions of redundancy. Based on Galois-closure according to Zaki 
(for approximate association rules):
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Appendix: Redundancy Filter

[Mohammed J. Zaki. 2004. Mining Non-Redundant Association Rules. Data Min. Knowl. Discov. 9, 3 (Nov. 2004), 
223-248.]
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[Mohammed J. Zaki. 2004. Mining Non-Redundant Association Rules. Data Min. Knowl. Discov. 9, 3 (Nov. 2004), 
223-248.]
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[Mohammed J. Zaki. 2004. Mining Non-Redundant Association Rules. Data Min. Knowl. Discov. 9, 3 (Nov. 2004), 
223-248.]
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