

Interpretability Approaches applied to Predictive Models in Clinical Healthcare

Trends in Bioinformatics
Final Presentation
Tom Martensen, Axel Stebner

Agenda

- 1. Recap
- 2. Methods
 - 1. Building a Clinical Prediction Model
 - 2. Applying Interpretability Methods in Detail
 - 3. Making Interpretability Available for Domain Experts
- 3. Results
- 4. Outlook

Recap: Visions & Objectives

VISION 1

Find and validate medical hypotheses regarding mortality and recovery of AKI

- Train CPM
- Predict patient outcomes
- Gather interpretations
- Derive and evaluate clinical hypotheses

VISION 2

Make interpretations of CPMs available to physicians

- Interpret any CPM
- Make interpretations comparable side-by-side
- Show complexity-faithfulness tradeoff

Interpretability Approaches

Recap: Use Case – Acute Kidney Injury

Interpretability Approaches

Recap: Use Case – Therapy of Acute Kidney Injury

Interpretability Approaches

- Building a Clinical Prediction Model
- Applying Interpretability Methods in Detail
- Making Interpretability Available for Domain Experts

Interpretability Approaches

Methods

- Building a Clinical Prediction Model
- Applying Interpretability Methods in Detail
- Making Interpretability Available for Domain Experts

Interpretability Approaches

Methods: Building a Clinical Prediction Model

data retrieval

preprocessing

model training

prediction

Interpretability Approaches

Building a Clinical Prediction Model: Data Retrieval

MIMIC-III Database

LAB EVENTS

- Different lab values
- Flagged
- Timestamp

ICU STAYS

- Start
- End

ICU STAY VITALS (FIRST DAY)

Aggregated lab values of first day of ICU stay

Procedure Events

- All procedures in hospital
- Timestamp

Labels

- Labels for classification:
 - Dosage
 - Therapy type

AKI Patients

- Patient master data
- Only patients with AKI

Interpretability Approaches

Stebner Martensen 22.01.2019

Chart 13

Building a Clinical Prediction Model: Data Preprocessing

Interpretability Approaches

Building a Clinical Prediction Model: Data Preprocessing – Dataset Characteristics

→ 944 instances

Interpretability Approaches

Building a Clinical Prediction Model: Model Training

Random Parameter Search:

- Randomly pick parameters from specified range
- Create classifier
- 5-fold cross validation
- Evaluate with AUROC score

Trained model with optimal parameter setting

Interpretability Approaches

Stebner Martensen 22.01.2019 Chart **18**

data retrieval

Building a Clinical Prediction Model: Prediction Patient Outcomes


```
results_gb_all_0_DIED_14_DAYS.dat
{'criterion': 'friedman mse', 'loss': 'exponential', 'max depth': 160, 'max leaf nodes': 653, 'min samples leaf': 38,
'n estimators': 740}
results_gb_all_0_RENAL_RECOVERY.dat
{'criterion': 'mse', 'loss': 'exponential', 'max depth': 77, 'max leaf nodes': 202, 'min samples leaf': 68,
'n estimators': 841}
results gb not all 0 RENAL RECOVERY.dat
{'criterion': 'friedman mse', 'loss': 'deviance', 'max depth': 5, 'max leaf nodes': 569, 'min samples leaf': 15,
'n estimators': 903}
results gb not all 0 DIED 14 DAYS.dat
{'criterion': 'mse', 'loss': 'exponential', 'max depth': 120, 'max leaf nodes': 362, 'min samples leaf': 14,
'n estimators': 165}
results_dt_not_all_0_RENAL_RECOVERY.dat
{'criterion': 'gini', 'max depth': 34, 'max leaf nodes': 941, 'min samples leaf': 6}
results dt all 0 RENAL RECOVERY.dat
{'criterion': 'gini', 'max depth': 50, 'max leaf nodes': 965, 'min samples leaf': 9}
results dt all 0 DIED 14 DAYS.dat
{'criterion': 'gini', 'max depth': 142, 'max leaf nodes': 522, 'min samples leaf': 4}
results_dt_not_all_0_DIED_14_DAYS.dat
{'criterion': 'gini', 'max depth': 127, 'max leaf nodes': 315, 'min samples leaf': 14}
```

Interpretability Approaches

Building a Clinical Prediction Model: Prediction Patient Outcomes

Interpretability Approaches

Building a Clinical Prediction Model: Prediction Patient Outcomes

Interpretability Approaches

Methods

Building a Clinical Prediction Model

Applying Interpretability Methods in Detail

Making Interpretability Available for Domain Experts

Interpretability Approaches

Methods: Applying Interpretability Methods in Detail

- Model-based feature importances
- Global Surrogate
- Local Interpretable Model-Agnostic Explanations (LIME)
- Shapley values

Methods: Applying Interpretability Methods in Detail

- Model-based feature importances
- Global Surrogate
- Local Interpretable Model-Agnostic Explanations (LIME)
- Shapley values

Applying Interpretability Methods in Detail: Model-based Feature Importances

Decision Tree:

= Gini importance

Linear Regression:

Coefficients of linear function

Interpretability Approaches

Applying Interpretability Methods in Detail: Model-based Feature Importances

Decision Tree:

Gini importance

= impurity decrease to descendent nodes

Impurity Decrease:

0.444 - (0.0 + 0.0)

False

impurity = 0.0samples = 50value = [50, 0]

True

impurity = 0.0samples = 100value = [0, 100]

Gini Impurity:

How likely is it to randomly label an instance incorrect, based on the distribution of the label?

Interpretability Approaches

Stebner Martensen 22.01.2019 Chart **28**

Source: https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/tree/tree.py

Applying Interpretability Methods in Detail: Model-based Feature Importances

Advantages:

- + Highly compressed, global insight
- + Availability

Disadvantages:

- Faithfulness linked to the error of the model
- Understandability for lay person
- Definition differs per model type

Interpretability Approaches

Methods: Applying Interpretability Methods in Detail

- Model-based feature importances
- Global Surrogate
- Local Interpretable Model-Agnostic Explanations (LIME)
- Shapley values

Applying Interpretability Methods in Detail: Global Surrogate

IDEA:

Approximate complicated model output with simpler model

Random forest classifier

Predictions: [0, 1, 0, 1, 1, 0]

Decision Tree (Surrogate)

Predictions: [0, 0, 0, 1, 1, 0]

Interpretability Approaches

Stebner Martensen 22.01.2019 Chart **31**

→ 83.33 % accuracy

Applying Interpretability Methods in Detail: Global Surrogate

Applying Interpretability Methods in Detail: Global Surrogate

Advantages:

- + Applicable to any original model (model-agnostic)
- + Surrogate models are "arguably" intuitive
- + Approximation easily measurable

Disadvantages:

- Conclusions about model and not data
- Close for one subset of data, divergent for another?
- Intrinsically interpretable models?

Interpretability Approaches

Methods: Applying Interpretability Methods in Detail

- Model-based feature importances
- Global Surrogate
- Local Interpretable Model-Agnostic Explanations (LIME)
- Shapley values

Interpretability Approaches

- 1. Perturbate data
- **2.** Compute proximity
- 3. Make predictions
- 4. (Select features)
- 5. Fit a simple model
- 6. Extract explanations (feature weights)

Interpretability Approaches

Select a model family and train the model

Fidelity-Interpretability Trade-off

$$\mathcal{L}(f, g, \pi_x)$$
 $\Omega(g)$

Unfaithfulness of the model

Complexity of the model

$$\xi(x) = \underset{g \in G}{\operatorname{argmin}} \ \mathcal{L}(f, g, \pi_x) + \Omega(g)$$

Extract explanations (e.g. model weights)

Interpretability Approaches

Interpretability Approaches

Why Submodular Pick?

- → LIME is **Local** Interpretable Model Explanations
- → Submodular Pick explains model globally by combining local explanations

Parameters:

- # instances (10 percent of dataset)
- # explanations (1 percent of dataset)
- # features (complexity value)

Interpretability Approaches

f3 f4 f5

1. Select k instances

Interpretability Approaches

- 1. Select k instances
- 2. Get k local explanations and the important features

Interpretability Approaches

- 1. Select k instances
- 2. Get k local explanations and the important features
- 3. (f2 has highest importance, because important in 4/5 explanations)

Interpretability Approaches

- 1. Select *k* instances
- 2. Get *k* local explanations and the important features
- 3. (f2 has highest importance, because important in 4/5 explanations)
- 4. Pick *i* explanations with highest coverage

Interpretability Approaches

Coverage of an explanation:

$$c(V, \mathcal{W}, I) = \sum_{j=1}^{d'} \mathbb{1}_{[\exists i \in V : \mathcal{W}_{ij} > 0]} I_j$$

for some set V. But which V?

Pick B explanations to maximize the coverage:

$$Pick(\mathcal{W}, I) = \underset{V, |V| \le B}{\operatorname{argmax}} c(V, \mathcal{W}, I)$$

Interpretability Approaches

Applying Interpretability Methods in Detail: LIME Submodular Pick - Evaluation

Applying Interpretability Methods in Detail: LIME Submodular Pick

Advantages:

- + Not model dependent, based on data!
- + Includes visualization
- + Local and global approach

Disadvantages:

- Requires correct definition of neighborhood
- Submodular pick optimizes coverage, potentially disregards feature interactions
- Instability of model explanations (non-deterministic results)

Interpretability Approaches

Methods: Applying Interpretability Methods in Detail

- Model-based feature importances
- Global Surrogate
- Local Interpretable Model-Agnostic Explanations (LIME)
- Shapley values

How much did the feature **contribute** to the models prediction?

→ Figure out the **marginal contribution** of F4.

$$\varphi_i(x) = f(x_1, \dots, x_n) - E[f(x_1, \dots, X_i, \dots, x_n)]$$

Example for a simple linear model:

$$f(x_1, \dots, x_n) \approx y = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$$
$$\varphi_i(x) = \beta_i x_i - \beta_i E[X_i]$$

→ care!: it's an additive model with no feature interactions

Interpretability Approaches

Interpretability Approaches

$$\varphi_i(x) = \sum_{Q \subseteq S \setminus \{i\}} \frac{|Q|!(|S| - |Q| - 1)!}{|S|!} (\Delta_{Q \cup \{i\}}(x) - \Delta_Q(x)).$$

F1	F2	F3	F4
X			~
	X		~
		X	~
X	X		~
	X	X	~
X		X	~
X	X	X	~

- *S* is a set of all features
- Q a subset of S not including i

Interpretability Approaches

$$\varphi_i(x) = \sum_{Q \subseteq S \setminus \{i\}} \frac{|Q|!(|S| - |Q| - 1)!}{|S|!} (\Delta_{Q \cup \{i\}}(x) - \Delta_Q(x)).$$

F1	F2	F3	F4
Χ	X		~

- *S* is a set of all features
- Q a subset of S not including i

f1	f2	E[F3]	f4	Feature values with i
f1	f2	E[F3]	E[F4]	Feature values without <i>i</i>

$$f_Q(x) = \mathbb{E}[f|X_i = x_i, \forall i \in Q]$$
$$\Delta_Q(x) = f_Q(x) - f_{\{\}}(x)$$
$$f_{\{\}}(x) = \mathbb{E}[f]$$

$$\Delta_{Q \cup \{i\}}(x) - \Delta_Q(x)$$

Interpretability Approaches

$$\varphi_i(x) = \sum_{Q \subseteq S \setminus \{i\}} \frac{|Q|!(|S| - |Q| - 1)!}{|S|!} (\Delta_{Q \cup \{i\}}(x) - \Delta_Q(x)).$$

- |Q|!-many possible rearrangements
- (|S| |Q| 1)!-many possibilities to arrange features following i

Interpretability Approaches

Some unique properties:

Efficiency

Contributions add up to the difference of prediction and expectation

Symmetry

Same value for same contributions

Dummy Feature

Non-contributing features have value 0

Additivity

Multi-model predictions (e.g. random forest) can be analyzed

Interpretability Approaches

Applying Interpretability Methods in Detail: SHAP

Interpretability Approaches

Stebner Martensen 22.01.2019 Chart **55**

Source: https://medium.com/civis-analytics/demystifying-black-box-models-with-shap-value-analysis-3e20b536fc80

Applying Interpretability Methods in Detail: SHAP

Interpretability Approaches

Stebner Martensen 22.01.2019 Chart **56**

Source: https://medium.com/civis-analytics/demystifying-black-box-models-with-shap-value-analysis-3e20b536fc80

Advantages:

- + Contrastive explanations (with respect to the expectation)
- + Applicable for whole dataset, subset or single instance
- + Solid foundation from game theory

Disadvantages:

- Exponential computational complexity
- Always returns all features
- No prediction model

Interpretability Approaches

Methods

- Building a Clinical Prediction Model
- Applying Interpretability Methods in Detail

Making Interpretability Available for Domain Experts

Methods: Making Interpretability Available for Domain Experts

Requirements:

- Compare different Interpretability Method outputs for one CPM
- Rank interpretability models
- Faithfulness-Complexity tradeoff

Visualizations:

- Feature Importances
- Complexity-Faithfulness-Graph

Interpretability Approaches

- Feature Importances
- Complexity-Faithfulness-Graph
- Clinical Hypotheses

Results: Feature Importances

Feature	Model- based A.	LIME	Linear Surrogate Model	Tree Surrogate Model	SHAP
Age					
Platelets					
Blood Gas					

- Comparing interpretability methods output for every feature
- Filter, sort, threshold, ... operations
- (Weighted) average

Interpretability Approaches

Results: Feature Importances

■ Feature Importances ordered by maximal importance

Feature	Model-based importances	LIME	Linear Surrogate Model	Tree Surrogate Model	SHAP
Lab Flag PT			0.4024		
Lab Flag INR(PT)			-0.3983		
Deficiency Anemias			0.2606		
AIDS			-0.2547		
Lab Level Hematocrit (Calculated)			0.2515		
GFR_72	0.1618	0.0607		0.2127	0.1618
Lab Flag Bilirubin	0.0678			0.1610	
CR_72	0.0440	0.0397		0.1530	0.0440
Lactate	0.4508			0.1050	0.4508

Interpretability Approaches

Results: Feature Importances

■ Feature Importances ordered by occurrences (if occurred more than once)

Feature	Model-based importances	LIME	Linear Surrogate Model	Tree Surrogate Model	SHAP
GFR_72	0.1618	0.0607		0.2127	0.1618
CR_72	0.0440	0.0397		0.1529	0.0440
Lactate	0.0451			0.1050	0.0451
Lab Flag Bilirubin	0.0678			0.1610	
Bicarbonate	0.0295			0.0192	

Interpretability Approaches

Results: Complexity-Faithfulness-Graph

Complexity – Faithfulness – Tradeoff:

Complexity ~ Faithfulness Complexity ~ 1 / Interpretability

Increased complexity -> increase in faithfulness Increased complexity -> decrease in interpretability

Interpretability Approaches

Results: Complexity-Faithfulness-Graph

Complexity – Faithfulness – Tradeoff:

Why does this not increase monotonically?

→ Maybe showing incompetence of linear models for complex relations

Interpretability Approaches

Results: Tentative Clinical Hypotheses

Glomelural Filtration Rate 72h before procedure:

- Flow rate of filtered fluid through the kidney
- Known as indicator of kidney function

Creatinine Clearance Rate 72h before procedure:

- Volume of blood plasma cleared of creatinine per unit time
- AKI is defined as increase of CR over baseline

Bilirubin:

Product of breakdown of red blood cells

Platelets / Thrombocytes:

First responders to sites of damages in the body

Do these patients have higher chances of survival/recovery because their AKI is detected earlier?

Interpretability Approaches

Outlook: Next Steps

Interpretability Approaches

VISION 1

Find and validate medical hypotheses regarding mortality and recovery of AKI

- Train CPM
- Predict patient outcomes
- Gather interpretations
- Derive and evaluate clinical hypotheses

VISION 2

Make interpretations of CPMs available to physicians

- ✓ Interpret any CPM
- Make interpretations comparable side-by-side
- Show complexity-faithfulness tradeoff

Interpretability Approaches

Outlook: Future Work

- Evaluate Approach with different cohorts (Heidelberg database, different disease)
- Patient Predictor and Diagnosis Explainer (UI)

Interpretability Approaches

Duck-Rabbit-Illusion: https://en.wikipedia.org/wiki/Ambiguous image#/media/File:Duck-Rabbit illusion.jpg

Sherlock: https://images.fineartamerica.com/images-medium-large-5/sherlock-holmes-c1905-granger.jpg

Cardiopulmonary Bypass:

https://upload.wikimedia.org/wikipedia/commons/thumb/2/24/Blausen 0468 Heart-Lung Machine.png/300px-

Blausen 0468 Heart-Lung Machine.png

Injured Kidney:

https://encrypted-tbn0.gstatic.com/images?

q=tbn:ANd9GcQ4kVzdKHZ81KazmyE9YXLQvvqp9iF00PI56PfPI0MOV Fxorw1aA

Error Plane:

https://image.slidesharecdn.com/navdeepmlinov0117-171102184007/95/ideas-on-machine-learning-interpretability-9-638.jpg?cb=1509648095

Icons by Fontawesome (https://fontawesome.com/license) and by Freepik, Appzgear, Pixel perfect , phatplus & Eucalyp on https://flaticon.com

LIME:

https://www.slideshare.net/0xdata/interpretable-machine-learning-using-lime-framework-kasia-kulma-phd-data-scientist

Feature Importances from sci-kit learn: https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/tree/tree.py

LIME Paper: Ribeiro et al. "Why Should I Trust You?" Explaining the Predictions of Any Classifier (ACL Proceedings 2016)

Interpretable Method (Dis-)Advantages: Molnar, C. (2018). Interpretable Machine Learning. Retrieved from https://christophm.github.io/interpretable-ml-book/

Evaluating Interpretability: Explaining Explanations: An Approach to Evaluating Interpretability of Machine Learning.

Possible Questions:

- How should we normalize the importances, so that they are actually comparable?
- As a patient, in how much level of detail would you expect your doctor to explain Machine Learning results?
- As a physician, how do you want to be trained for interpretable models?

Interpretability Approaches