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What to take home from this talk?

Answer to the following questions:

m What makes an in-memory database fast?

m What are differences of an in-memory
database to disk-based systems?

m How does the physical data representation

affect the performance of a in-memory
database?

m How to leverage sequential data access?

m HoOw can compression improve read access?
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Recap: Workload Characteristics

OLTP OLAP/DSS

Full row operations Retrieve small number of columns
Simple Queries Complex Queries

Detail Row Retrieval Aggregation and Group By
Inserts/Updates/Selects Mainly Selects

Short Transactions Long Transactions

Small Found Sets Large Found Sets

Pre-determined Queries Adhoc Queries

Real Time Updates Batch Updates

~Source of Truth" Alternative representation

Clark D. French, ,Teaching an OLTP Database Kernel Advanced Datawarehousing Techniques” ICDE 97
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Recap: Trends in Enterprise Apps

Today's Enterprise Applications
m Complex processes
m Increased data set (but real-world events driven)
m Separated into OLTP and OLAP

Enterprise data management
m Wide schemas
m Sparse data with limited domain
m Workload consists of complex, analytic-style queries
m Workload is mostly:
m Set processing
m Read access
m Insert instead of updates

) Mixed Workload
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Question

Why is an in-memory database
faster than a fully cached disk-
based database?
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Excursus: Magnetic Disks

m Random Access (even though slow)
m Inexpensive
m Non-volatile

m Parts of an magnetic disk

o Platter: covered with magnetic recording material
(turning)

o Track: logical division of platter surface
o Sector: hardware division of tracks

o Block: OS division of tracks
Typical block sizes: 512B, 2KB, 4KB

o Read/write head
(moving)
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Files on Disk

m Metadata defines

m Stored are (data)

m Records (== tuple)

Tables
Attributes
Data Types

Logs

Indices

m Data is stored in files
m A file has one or more pages

m A page contains of one or more records.

File 1
Flle O 1 ] )
—— f —
:}E ree e

page 2

page 3
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s Column-oriented page layout (decomposed storage model)
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Buffer Management
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11 m Buffer caches copies of pages in main memory
m Buffer Manager maintains these pages

o Hit: requested page in buffer
o Miss: page on disk

— Allocate page frame

— Read page

o Page replacement
- Dirty flag for write back
— Least Recently Used (LRU)
— Most Recently Used (MRU)

SIS

V\/

page request

buffer

Y

page request disk




In a Nutshell

Y m Optimizations

m Sequential Access

m Buffering and scheduling algorithms
m In-memory indices to pages

m Pre-calculation and materialization
m Etc.

m Page structure leads to

m Good write performance
m Efficient single tuple access

m Overhead if single attributes scanned
- regardless of disk throughput -
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Question + Answer

13
Why is an in-memory database faster than a fully cached

disk-based database?
m Disk access
0 Low throughput

0 Slow random access
m Buffer Management

m Disk-oriented data structures
(even in main memory)

0 Page layout

0 Indices
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Question

Does this mean to keep data in main
memory to achieve performance

while the physical data
representation can be neglected?

Why?
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Capacity vs. Speed (latency)
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Memory hierarchy:

m Capacity restricted by price/performance
m SRAM vs. DRAM (refreshing needed every 64ms)

m SRAM is very fast but very expensive

> Memory is organized in hierarchies
o Fast but small memory on the top
o Slow but lots of memory at the bottom

technology latency

SRAM <1ns

L1 Cache SRAM ~ 1ns

L2 Cache SRAM < 10 ns
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size
bytes
KB

MB

GB
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Capacity vs. Speed (latency)

latency size

<1ns bytes

 CPU
100 ns G
~ 10 000 000 ns B

(10 ms)
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Data Processing

18

In DBMS, on disk as well as in memory,
data processing is often:

m Not CPU bound
m But bandwidth bound
m "I/O Bottleneck”

= CPU could process data faster

Memory Access:
m Not truly random (in the sense of constant latency)
m Data is read in blocks/cache lines
m Even if only parts of a block are requested

Vi|v2|V3|V4|V5]|Vv6]|V7]V8]|V9o|Vl0

= potential waste of bandwidth

I 1
Cache Line 1 Cache Line 2
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Memory Basics I

19 m Cache

Small but fast memory, which keeps data from
main memory for fast access.

" Cache performance is crucial
m Similar to disk cache (e.g. buffer pool)

But: Caches are controlled by hardware.

m Cache hit
Data was found in the cache.
Fastest data access since no lower level is involved.
m Cache miss
Data was not found in the cache. CPU has to load
data from main memory into cache (miss penalty).



Memory Basics 11

20 ]
m Cache lines

The cache is partitioned into lines.
m Data is read or written as whole line
m Size: 4-64 bytes

— Due to unnecessary data in cache lines
the cache gets polluted.
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Cache
123456

Cache line
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Locality is King!
" To improve cache behavior
m Increase cache capacity
m Exploit locality
o Spatial: related data is close (nearby references are likely)
0 Temporal: Re-use of data (repeat reference is likely)

To improve locality
m Non random access (e.g. scan, index traversal):
0 Leverage sequential access patterns
0 Clustering data to a cache lines

o Partition to avoid cache line pollution
(e.g. vertical decomposition)

0 Squeeze more operations into a cache line
m Random access (hash join):
o Partition to fit in cache
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A Simple C++
m Logical

1111111111111
1111111111111

7 111111111111

E’ 111111111111
1111111 ]1

! 1111111 ]1

>
columns

m Physical int *table = (int*) calloc((rows * columns), sizeof(int));

Lelofefafefafeafoafafafa]afa]ef |,
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Example for Sequential Access

A EEEEEEEEE

\./\-/\./\./

for (r = 0; r < rows; r++)
for (c = 0; c < columns; c++)

sum += tablelr * columns + c]l;

Simulates sequential access
m All data in a cache line is read

m Prefetching and pipelining further improve performance
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Traversal Sequential Access

| EEE R

3
for (c = 0; c < columns; c++)

for (r = 0; r < rows; r++)

sum += table[c * columns + rl;

Simulates traversal sequential access
m Fixed stride (access offset) leads to cache misses

m Cache size / performance can by measured by varying the stride



T Systems Engineering | Universitit Potsdam

A Simple C++
25 m Logical
B B S AEIEINANAT
B I o o AEIEIITINREAN
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columns columns
m Physical int *table = (int*) calloc((rows * columns), sizeof(int));

Lelofefafefafeafoafafafa]afa]ef |,
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Demo
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In-Memory Database

28
In an In-Memory Database (IMDB)

m Data resides permanently in main memory
m Main Memory is the primary "persistence”
m Still: logging to disk/recovery from disk

m Main memory access is the new bottleneck

m Cache-conscious algorithms/data structures are crucial
(locality is king)

Differences to disk-based systems
= Volatile
m Direct access
m Access time

m Access cost
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Question

Does an entire database fit in main
memory?
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Question + Answer

30
Does an entire database fit in main memory?

m Yes:
0 Limited DB size, i.e. enterprise applications
o Due to data compression (factor 10 feasible)
o Redundant-free data schemas

m No:
0 Data could be partitioned over nodes

o Data aging strategies for extended memory hierarchies
(e.g. SSD/disks for non-active data)
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More Main Memory
for Disk-based DBMS?

31
What is the difference between an IMDB

and a disk-based DB with a large cache?
m Different optimizations for data structures, e.q.
o Page layout
o No access through a buffer manager
o Index structures
o Cache-aware data organization
o Random access capabilities, e.g. for locking

m As disk-based DB’s can have in-memory optimization,
they still would have to maintain different data structures.



Hasso
Plattner
Institut

T Systems Engineel ring | Universitét Potsdam

IMDB: Relations and Cache Lines

32 The physical data layout with regards to the workload has a

significant influence on the cache behavior of the IMDB.
m Tuples are spanned over cache lines
m Wrong layout can lead to lots of (expensive) cache misses

m Row- or column-oriented can reduce cache misses
if matching workload is applied

al | a2 ' a3 ' a4 ' ab
ro i ' '

r1 . | |
r2 : Cachq;e Line >:

r3

- Tuple >
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Question

How to optimize an IMDB?

IT Systems Engineering | Universitat Potsdam
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Question + Answer

How to optimize an IMDB?
m Exploit sequential access

m Leverage locality
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Row- or Column-oriented Storage

35

SELECT *
FROM Sales Orders
WHERE Document Number = ‘95779216

SELECT SUM(Order Value)
FROM Sales Orders
WHERE Document Date > 2009-01-20

Row Store
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Column Store

Doc Doc Sold- Value Sales
Num Date To Status Org

L] [

R<1)w I ’\I?UE DDst((;e S'CI)':)d_ Valuesmljlssglrzs
el

i L]

ow

° L

Row .I
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Row-oriented storage

Al||B1}|C1

A2 B2]|C2
A3 || B3| C3

A4 1 B4]|C4
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Row-oriented storage

37

A2 B2||C2

A3 || B3| C3

A4 1 B4]|C4
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Row-oriented storage

R EEEE
BEE
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Row-oriented storage

’
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Row-oriented storage

’
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Column-oriented storage

Al||B1}|C1

A2 B2]|C2
A3 || B3| C3

A4 1 B4]|C4
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Column-oriented storage

i mmmm

Bl]|C1

B2 || C2
B3||C3

B4 || C4
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Column-oriented storage

3 A3‘A4‘81‘BZ‘BB‘B4‘

1

efefefe
A W N



Hasso
Plattner
Institut

nnnnnnnnnnnnnnnnn ring | Universitt Potsdam

Column-oriented storage

44 A3‘A4‘Bl‘BZ‘BB‘B4‘C1‘C2‘C3‘C4‘
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Example: OLTP-Style Query

struct Tuple {
int a,b,c;

¥

Tuple data[4];
fill (data);

Tuple third = data[3];

IT Systems Engineering | Universitat Potsdam
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Example: OLTP-Style Query

struct Tuple {
int a,b,c;

¥

Tuple data[4];
fill(data);

Tuple third = data[3]; "A1

Cache line

Row Oriented Storage

sssssssss

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

B1||C1 A2ULBQ|CZ||A3IBS C3|A4|B4|Ca
7 @ )

Tuple 1
Column Oriented Storage

a2 | a3 | a4 JB1|82"83|B4 c1[c2|ca|ca

A1l

Allribute A




47

Example: OLAP-Style Query

struct Tuple {
int a,b,c;

¥

Tuple data[4];
fill (data);

int sum = 0;
for(int i = 0;i<4;i++)

sum += data[i].a;

ssssssssss

Engineering | Universitét Potsdam
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Example: OLAP-Style Query

struct Tuple {
int a,b,c;

:
fill(data);

int sum = 0;
Row Oriented Storage

A2 B2IC2||A3IBS %CS A4 | B4 | C4

for(int i = 0;i<4;i++)

A1|B1|Ct

Tuple 1
Column Oriented Storage

:!!A1IA2|IA3IA4 B1[B2 |83 |B4| [C1[C2|C3]|CH

Altribute A

sum += data[i].a;

Cache line




Hasso

Plattner

Institut
T Systems Engineering | Universitat Potsdam

Mixed Workloads

o m Mixed Workloads involve attribute- and

entity-focused queries

OLTP-style queries OLAP-style queries
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Mixed Workloads: =~ e
Choosing the Layout

Layout OLTP- (o] W.\ 10
Misses Misses
Row 2 3 5

Column 3 1 4

50

OLTP-style queries OLAP-style queries

A2 |l B2 || c2 A2 BZE

B3| C3

A3 1| B3| C3 A3

A4 |1 B4 ]| C4 A4 |1 B4 ]| C4
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Question

What is the best layout for mixed
workloads?
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Hybrid-oriented storage

Al||B1}|C1

A2 B2]|C2
A3 || B3| C3

A4 1 B4]|C4

T Systems Engineel
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Hybrid-oriented storage

 [[m[ml

Bl]|C1

B2 || C2
B3||C3

B4 || C4
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Hybrid-oriented storage

S e e

B2 || C2

B3||C3

B4 || C4
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Hybrid-oriented storage

> A3‘A4‘81‘C1‘BZ‘C2‘

B3||C3

B4 || C4



Hasso
Plattner
Institut

T Systems Engineering | Universitét Potsdar

Hybrid-oriented storage

>0 A3‘A4‘81‘C1‘BZ‘C2‘BB‘C3‘
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Hybrid-oriented storage

57 A3‘A4‘81‘C1‘BZ‘C2‘BB‘CB‘B4‘C4‘
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Hybrid: Grouping of Columns

58 Access tuple 3

IIA1 A2 | A3 | Aa I|B1 c1 |82 |C2 %33[03 B4 [ C4
I —

Attribute A Rest of Tuple 1

Query attribute A

!Im IA2IA3IA4 || B1 |C1 ||Bz c2 ||83 c3 B4|C4
~ — H‘/

Attribute A Rest of Tuple 1

Layout OLTP- OLAP-

Misses Misses
Row 2 3 5
Column 3 1 4

Hybrid 2 1 3



59

Question

What other optimization for an
IMDB?

T Systems Engineering | Universitit Potsdam
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Motivation

°. @ Main memory is the new bottleneck

m Processor speed increases faster than memory speed
m Trade CPU time to compress and decompress data
m Compression

m Reduces I/O operations to main memory

m Leads to less cache misses due to more
information on a cache line

m Enables operations directly on compressed data



Compression Techniques

62

m Lightweight compression techniques:

m Lossless
m Reduce the amount of data
m Improve query execution

m Better utilizes cache lines

m Techniques
o Run Length Encoding
o Null Suppression
o Bit Vector Encoding

o Dictionary Encoding
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Run Length Encoding (RLE)

63

m Subsequent equal values are stored as one value
with offset (value, run_length)

m Especially useful for sorted columns
m But:

o If column store works with Tupleld, only
sorting by one column is possible
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Null Suppression

64

m Remove leading 0’'s

m Most effective when encoding random sequence
of small integers

oint X = 7; uses 32 bits but first 29 are 0's
o store (length, encoding) => (3, 111)

m Optimization: store byte count for next 4 values
as two bits in one byte



Bit vector encoding

65

m Store a bitmap for each distinct value

m Values to encode: abaacch
Da=>(1011000)
ob=>(0100001)
oc=>(0000110)

m Useful with few distinct values

T Systems Engineering | Universitit Potsdam



Dictionary Encoding

66 m Store distinct values once in separate

mapping table (the dictionary)
m Associate unique mapping key for each

distinct value

m Store mapping key instead of value in value

table

RecId 1 | JAN INTEL RED €1
Recld 2 | FEB ABB GREEN €
Recld 3 | MAR HP BLUE €
Recld 4 | APR INTEL RED €4
Recld 5 | MAY IBM WHITE €5
Recld 6 | JUN IBM BLACK €5
RecId 7 | JuL SIEMENS BROWN €4
Recld 8 | AUG INTEL

Valueld
1

u b~ WN
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IT Systems Engineering

RecId Valueld
1

= W N

= = =0 DNWN
W N = O
= Ul BN

Attribute Table
Dictionar/ l

Index
Value
INTEL Valueld RecIdList
ABB 2 1,4,8

HP 3 2
IBM 4 3
SIEMENS 5 5,6
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Example (1)

67

m Store fixed length strings of 32 characters
0 SQL-Speak: CHAR(32) - 32 Bytes
o 1 Million entries consume 32 * 1076 Bytes

0 ~ 32 Megabytes
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Example (2)

68
m Associate 4 byte valuelID with distinct value

m Dictionary: assume 200.000 distinct values
o Each: 1 key, 1 value => 36 Bytes
0~ 7.2 Megabytes
o 1 million * 4 Bytes = ~ 4 Megabytes
m Overall: 11.2 Megabytes
m 64 byte cache line
o Uncompressed: 2 values per cache line

0 Compressed: 16 valuelD’s per cache line
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Question

69

How can this compression

technique further be improved?
With regards to:
m Amount of data

m Query execution
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Answer

0
’ m Amount of data

0 Idea: compress valuelD’s

0 Use only bits needed to represent the cardinality
of distinct values - log2(distinct values)

o Optimal for only a few distinct values

o Re-encoding if more bits to encode needed
m Query execution

0 Use order-preserving dictionaries

0 ValuelD’s have same order as uncompressed
values

0 valuel < value2 <=> valuelD1 < valuelD?2
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Strategies for Tuple Reconstruction

72

Strategies:

m Early materialization

Create a row-wise data representation
at the first operator

m Late materialization
Operate on columns as long as possible

Reference: D. Abadi: SIGMOD 2009
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Example:

Query:

SELECT kunnr, sum(dmbtr)
FROM BSEG

WHERE gjahr = 4

AND bukrs = 1
GROUP BY kunnr

Reference: D. Abadi: SIGMOD 2009
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Table BSEG
4 2 2 7
4 1 3 13
4 3 3 42
4 1 3 80
gjahr bukrs kunnr dmbtr
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Early materialization
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ASeIect + Aggreg:

4 |1 2| 2|7
4 11 3|13
4 1 3| 3 |42
4 11 3|80

EOI‘IStI‘UCt

T~
(4,1,4) 2 2 7
1 3 13
3 3 42
1 3 80
gjahr bukrs kunnr dmbtr

ate Query:
SELECT kunnr, sum(dmbtr)
FROM BSEG
WHERE gjahr = 4
AND bukrs = 1

GROUP BY kunnr

m Create rows first
But:

0 Need to construct ALL tuples

0 Need to decompress data

o Poor memory bandwidth
utilization

Reference: D. Abadi: SIGMOD 2009
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Late materialization I

m Operate on columns

Query:
AGG 4 2
SELECT kunnr, sum(dmbtr)
4 1 FROM BSEG
WHERE  gjahr = 4
4 3 AND bukrs = 1
523:; 523:; 4 1 GROUP BY kunnr

kunnr || dmbtr

-
Data Data
AND N ? ’ ’
2 4 1 3 13
1 4 3 3 42
3
QData || Data (4,1,4) 4 1 3 80
iah bukrs
gjahr DUXES gjahr 1 | pukrs gjahr bukrs kunnr dmbtr

Reference: D. Abadi: SIGMOD 2009
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Late materialization II

m Operate on columns

0 Query:
AGG
SELECT kunnr, sum(dmbtr)
1 FROM BSEG
WHERE gjahr = 4
0 AND bukrs = 1
nglt_ze nglt_ze ) GROUP BY kunnr
kunnr dmbtr
o
AND
TN 4 2 2 7
1 0 4 1 3| |13
1 1 4 3 3 42
1 0
Source Source 4 1 3 80
iah bukrs
quanr | e gjahr| 1 1| bukrs gjahr bukrs kunnr dmbtr

Reference: D. Abadi: SIGMOD 2009
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Late materialization III

m Operate on columns
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AGG
3 13
3 80
Data Data 2
Source Source
kunnr dmbtr 3
Data
3 Source
3
kunnr

Source Source
gjahr bukrs

Query:

SELECT kunnr, sum(dmbtr)
FROM BSEG

WHERE gjahr = 4

AND bukrs = 1

GROUP BY kunnr

13

dmbtr

4 2 2 7

4 1 3 13

4 3 3 42

4 1 3 80
gjahr bukrs kunnr dmbtr

Reference: D. Abadi: SIGMOD 2009
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Late materialization IV

m Operate on columns

AGG

19r"‘1

Source
dmbtr

Source
kunnr

AND

Source Source
gjahr bukrs

AGG
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Query:

SELECT kunnr, sum(dmbtr)
FROM BSEG

WHERE gjahr = 4

AND bukrs = 1

GROUP BY kunnr

13

80

4 2 2 7
4 1 3 13
4 3 3 42
4 1 3 80

gjahr bukrs kunnr dmbtr

Reference: D. Abadi: SIGMOD 2009



