Trends and Concepts in the Software Industry I Summer 2010

Complexity of enterprise applications

EA requirements are diverse and complex

SAP for Consumer Products:

customers with 1.4 million sales order line items per day

SAP Enterprise Resource Planning:

no maintenance downtime allowed for Apple iTunes Store

SAP Supply Chain Management:

customers with over 3 million different product configurations

SAP Human Capital Management:

compute the payroll for 500.000 employees within hours

SAP Netweaver Portal:

handle 300.000 users in a web portal (40.000 concurrently active)

SAP Business Intelligence:

customer with a live database of 40 terabytes in size

EA have different interaction paradigms

Automated, machine to machine interaction

Repeated, batch-wise processing of data sets

Data entry (repetitive, transactional, isolated)

Transactional work with human workflow

Collaborative workflow amongst people

Unstructured, ad-hoc collaboration

EA process data that is not alike

So what?

Facebook has 100 terabytes of data

So what?

Facebook has 100 terabytes of new data per day

Reflect on what you've heard so far! Does Facebook ...

... have to deal with different customer requirements in various industries in different countries ?

... have to be afraid of being sued when they have a downtime ?

... have the need for consistency?

... have to provide an infrastructure that supports individual customizing?

... have to consider different user interaction paradigms ?

... send you an invoice ?

Financial accounting – extended example OLTP & OLAP

Old financials system

Tomorrow's financials system

Only base table and algorithms

OLTP & OLAP characteristics

OLTP	OLAP/Decision Support Systems
Full row operations	Retrieve small number of columns
Simple Queries	Complex Queries
Detail Row Retrieval	Aggregation and Group By
Inserts/Updates/Selects	Mainly Selects
Short Transactions	Long Transactions
Small Found Sets	Large Found Sets
Pre-determined Queries	Adhoc Queries
Real Time Updates	Batch Updates
"Source of Truth"	Alternative representation

Accounting document headers

Consumer Goods

High Tech

~99 attributes Logistics

Mechanical/ Industrial Engineering

Electrical/ Electronic Manufact.

Sales order items

~250 attributes

Electrical/ Electronic Manufact.

Consumer Goods

Mechanical/ Industrial Engineering

13

Star schema example

Multi-dimensional analysis

In-memory databases

Rows vs. columns

Document Number	Document Date	Sold-To Party	Order Value	Status	Sales Organization	
95769214	2009-10-01	584	10.24	CLOSED	Germany Frankfurt	
95769215	2009-10-01	1215	124.35	CLOSED	Germany Berlin	
95779216	2009-10-21	584	47.11	OPEN	Germany Berlin	
95779217	2009-10-21	454	21.20	OPEN	Germany Frankfurt	

Row Store

95769214 2009-10-01 584 10.24 CLOSED Germany Frankfurt ... 95769215 2009-10-01 1215 124.35 CLOSED Germany Berlin ... 95779216 2009-10-21 584 47.11 OPEN Germany Berlin ... 95779217 2009-10-21 454 21.20 OPEN Germany Frankfurt

Column Store

95769214 95769215 95779216 95779217 ... 2009-10-01 2009-10-21 2009-10-21 2009-10-21 ... 584 1215 584 454 ... 10.24 124.35 47.11 21.20 ... CLOSED CLOSED OPEN OPEN ... Germany Frankfurt Germany Berlin Germany Berlin Germany Frankfurt ...

Read- and write-optimized storage

Compression techniques

Ordered Run-length encoding Delta representation

Unordered Bit vector encoding Dictionary compression

Dictionary compression

Compressed Tables

Document Number	Document Date	Sold-To Party	Order Value
95769214	2009-10-01	584	10.24
95769215	2009-10-01	1215	124.35
95779216	2009-10-21	584	47.11
95779217	2009-10-21	454	21.20

Document Number	Document Date	Sold-To Party	Order Value
0	0	1	0
1	0	2	3
2	1	1	2
3	1	0	1

Dictionaries

Docur	Document Number		
0	95769214		
1	95769215		
2	95779216		
3 95779217			

Document Date			
0	2009-10-01		
1	2009-10-21		

Order Value		
0	10.24	
1	21.20	
2	47.11	
3	124.35	

Sold-To Party				
0	454			
1 584				
2 1215				

Column store example

C4 C5 C6

Parallelization

Parallel system architectures

(a) Shared Memory Architecture - Single Machine

(b) Shared Disk Architecture - Single Machine

(c) Shared Nothing Architecture - Multiple Machines

Operator parallelism

Aggregation

Serial

Inter Operator Parallelism

Aggregation w. multiple threads

Limits of parallelism

Insert-only and historical data

Value updates

Financial Accounting

Sales pipeline forecast

Use case: inventory management

Characteristics on material movements

(Table MSEG from HANA2 customer ERP instance)

- 80M material movements in MSEG (SAP ERP 6.0 used due to huge amounts of realistic data)
- 117.869 different materials,
 100 different storage locations
- Amount of movements/material scale from 1 to 1.407.401
- Data schema:
 - 2 base tables
 - 2 tables for materializing aggregates
 (plant/material and storage location/material)

Compression on material movements

(Table MSEG from HANA2 customer ERP instance)

	TREX	mySQL
MSEG wo/ indices	10.1 GB	51GB
MSEG w/ indices (mandt, mblnr, matnr, lgort, werks,)	10.7GB (+5.9%)	51GB + 9.4GB (+18.4%)

Used MSEG: 80M records

Characteristics on material movements

(Table MARD from HANA2 customer ERP instance)

- 628.413 records, 21MB on TREX, 144M mySQL (materialized aggregates)
- keeps track of amount of stock at certain location
- Select single
 - TREX: simple lookup wo/ index: 2ms, w/ index: 0.5ms
 - mySQL: key lookup w/ index: 10-20ms uncached, 1-4ms cached

Question:

How many different materials generate xx% of all material movements?

# Materials	# Materials in %	Material Movements	Movements in %
1	0.00	1407401	1.75
4	0.00	4404921	5.47
12	0.01	8253393	10.25
30	0.03	12092634	15.02
68	0.06	16127953	20.03
231	0.20	24182013	30.03
531	0.45	32216729	40.01
1037	0.88	40276183	50.01
1874	1.59	48319632	60
3347	2.84	56374387	70
6142	5.21	64425848	80
8592	7.29	68451732	58
12612	10.70	72477980	90
20819	17.66	76504573	95

Answer: 17% of all different materials generate **95%** of the material movements.

OLTP-style query: single select operation

SELECT matnr FROM mseg WHERE matnr=?

Compute stock at specific storage location on-the-fly Select sum(menge) from mseg where lgort=0100 and matnr=?

Compute stock at specific storage location on-the-fly Select sum(menge) from mseg where lgort=0100 and matnr=?

Use case: dunning

Quantity structure (1)

- European division of consumer packaged goods (CPG) company
- **5.5 TB** database size
- ERP 2005 Release ECC 6.0 EhP3
- Accounting documents
 - 23 million headers / 8 GB in main memory
 - 252 million items / 50 GB in main memory

Quantity structure (III)

Financials

- 250mio accounting document line items,
- 380k open items accounts receivable,
- 200k overdue open items

Master data

- 200k customers
- 10k customers with open items

Dunning (1)

- Dunning is the process of scanning through unpaid invoices to identify ones that are overdue, generating reminder notices for those orders, and tracking which notices have been sent.
- Today: background process

Dunning schema (1)

- Tables grouped into:
 - Transactional tables (BSEG, BKPF)
 - Sum tables and secondary indices (BSID, BSAD, KNC1)
 - Pre-calculated and materialized tables
- → We use **transactional tables** only
- → Change documents removed

Dunning schema (II)

Dunning (III)

- Select accounts to be dunned, **for each**:
 - Select open account items from BSID, for each:
 - Calculate due date
 - Select dunning procedure, level and area
 - Create MHNK entries
- Create and write dunning item tables

Dunning (II)

1 SELECT

• Select accounts to be dunned, **for each**:

10000 SELECT's

- Select open account items from BSID, for each:
 - Calculate due date

10000 SELECT's

- Select dunning procedure, level and area
- Create MHNK entries

31000 Entries

Create and write dunning item tables

Dunning (II)

• Select accounts to be dunned, **for each**:

Select op

• Calcula

One single stored procedure executed within TREX

- Select du
- Create MHNK entries
- Create and

Calculated on-the-fly

Dunning (III)

- TREX capabilities enable new dunning possibilities
- Customer Segmentation (Identification of customers which are very reliable and should not receive a standard dunning letter)
 - Calculates the average of all BSEG items
 - Searches all customers which never had an item with a dunning level higher one

Acceleration: 800x

(Quantity: 250 mio items, 380k open, 200k due)

#	Operation	Original	Version I	Variant 2	Variant 3
ı	Select open items		0.63s	I.01s (incl.T047 & ⊞	0.6s (incl.T047 & _⊞
2	Due date, dunning level		27s	Deferred to aggregation	0.5s
3	Filter I (verify dunning levels)		~19s	l.ls	0.5s
4	Filter 2 (check last dunning)		~15s	0.8s	0.4s
5	Generate MHNK (aggregate)		done in #1	1.2s	Done in #1
6	Generate MHND (execute filters)		done in #1	I 40ms	Done in #1
	Total	~20 minutes	~l minute	~3.0s (#3, #4 exec. in parallel)	~ 1.5s (#2, #3, #4 exec. in parallel)

49

Cloud computing

Cloud Computing

As Defined by Business Analysts:

Gartner's Five Attributes of Cloud Computing

But isn't this only another marketing buzzword for existing technologies?

Cloud Computing Technologies

In distributed systems ...

... cannot be achieved at the same time!

ACID vs. eventual consistency

ACID

- Atomicity
- Consistency
- Isolation
- Durability

Eventual Consistency

- Achieve Partioning and Availability
- Weaken consistency

Commodity vs.

high end server clusters

Commodity Clusters

- Fewer bytes scanned per second per server
- Cheap, but fail easily

High End Clusters

- More bytes scanned per second per server
- Expensive but more reliable
- Less communication costs

Key value stores vs. DBMS

No SQL Approach **Distributed Key Value Stores**

SQL / Relational Approach

	Id	Cust	Adr.
Daw	29	Schmidt	•••
Row Based	45	Maier	
_ 3.3 0 0.	49	Schulze	
	76	Müller	

Adr.

...

• • •

• • •

ld Cust 29 Schmidt Maier 49 Schulze 76 Müller

Column Based