Parallelization

Motivation: Why Parallelization?

Parallel Hardware

The ideal hardware?

Server

/ 1 PHz CPU, Single Core \

Processor Core —

1 PB Persistent Integrated Memory (PIM) —

The reality: A multi-core processor

Memory

/ 3,2 GHz CPU, Multi Core with Cache Hierarchy \
e 2

{

Processor Processor Processor Processor
Core Core Core Core
_ Y,
Cache][Cache][Cache][Cache
Cache
Memory Crossbar
Controller Switch

A

¥ Chipset or other Processor

A server with multiple processors

Server

A system with multiple servers

How to program parallel
hardware?

Parallel Programming Models

Techniques

Shared Memory/Threads
Message Passing

Data Parallelism
Combinations (hybrid)

Shared Memory

Concurrent tasks share common (logical)
address space

(Does not imply physical shared memory)
No explicit communication required

To coordinate access, locks/semaphores
required

Problem: Data locality hard to manage (which
data belongs to which process)

Threads

An OS process can start multiple threads

Each thread has local data, but shares the
resources of the parent OS process

Threads communicate through global memory

Threads are often associated with shared
memory progamming

Require syncronization, e.g., locks/semaphores
Example: POSIX Threads

Message Passing

Each concurrent task has own local memory

Tasks can reside on one or on different
machines

Tasks communicate and transfer data by
sending/receiving messages

Example: OpenMPI

Data Parallel

Data resides in shared data structure (array,
table, cube, ...)

Concurrent tasks work independently on data
partitions

Tasks perform same operation

Sometimes, merge required to create final result
Task scheduling done by execution framework

Example: OpenMP ParallelFor, Map/Reduce

Map Reduce

An example for data parallel
programming

Parallelization with MapReduce

MapReduce is a programming paradigm for shared-nothing cluster
— Developed by Google/Yahoo to analyze large (petabyte) data-sets
— Allows for automatic parallelization and linear scaling of MapReduce programs

In a narrow sense, MapReduce describes a programming model based on a
map and a reduce function (both well known in functional programming):

map(keyl, valuel) — list of <key2, value2>
reduce(key?2, list of <value2>) — alist of <key3, value3>

map and reduce functions process <key, value> pairs independently and thus can
be parallelized easily.

In a wider sense, MapReduce describes an execution framework for
distributing map and reduce tasks in a shared-nothing cluster.

MapReduce Programming Model

Example: Word Count

mid_key [mid_value
in_key |in_value A 1
File1 | ABB E 1
Fle2 | CBC @ c 1
B 1
C 1

Performed by
system
automatically

S D)

mid_key

mid_value

1

1

1

J\

oO|lo|lw|w|wm| >

Reduce

out_key

out_value

1

i
B

3

2

C

Input is a list of key value pairs (E.g. keys=“file names”, values=“file content”)
A map function produces zero or more <mid_key, mid_value> pairs
The system performs a group-by operation on mid_key

A reduce function processes the list of mid_values belonding to a mid_key and
produces a list of <out_key, out_value> pairs, here aggregate over values

Input

MapReduce Execution Engine

29

map task 0
o -1

X
(.(\’AQ
m/ map task m " Combiner >
map task 1 compiner > .

reduce task r

| reduce task 1

Partitioner

Files in DFS

Engine schedules map and reduce tasks, i.e. the execution of the map or reduce

function on a <key, value> pair

Programmer can focus on algorithm and has to implement only a map and reduce

reduce task 0

Reducer

C/ Reducer

function. The execution engine takes care of:
— Task distribution: takes co-location of data into account

— Shipping data between nodes: communication happens via disk!

Output

Drawbacks and Problems

Not all problems can be implemented efficiently with map
and reduce functions! E.g. iterative algorithms

Batch-oriented execution model, thus not suited for
interactive data analysis

Communication via files is great for fault-tolerance, but
inefficient for small datasets

Good performance is only achieved if additional components
e.g. combiner, partitioner, and sorter are also tuned by the
programmer. -> Programmer cannot focus on algorithm only!

Parallelism in NewDB

(a) Pipeline and (b) Data Parallelism

Approaches to parallelism

Parallelism

Inter Transaction

Intra Transaction

Inter Query

Intra Query

Inter Operation

Intra Operation

Pipeline Parallelism

Data Parallelism

Pipeline Parallelism

Data Parallelism

Example (Single Blade)

* Table “Sales”
— Columns: Product P, Location L, Quantity Q, Year Y

e Table “Forecast”
— Columns: Product P, Location L, Forecast F, Year Y

* Query:

— “Which product at which location had lower quantity forecasted overall sales in 2010?”

SELECT Sales.P, Sales.L, SUM(Sales.Q) as QTY, SUM(Forecast.F) as FCST
FROM Sales, Forecast

WHERE Sales.P = Forecast.P and Sales.L = Forecast.L and Sales.Y = 2010
GROUP BY Sales.P, Sales.L

HAVING QTY < FCST

Inter-Operator Parallelism (One Blade)

Select
Q<F
Project {P, L, Q, F}

f

Join {P, L}
Project {Q, F}

K

Group By {P, L} Group By {P, L}
Sum Q Sum F

f

Scan, year = 2010
Sales: P, L, Q

f

Scan, year = 2010
Forecast: P, L, F

Example (Four Blades)

* Table “Sales”
— Columns: Product P, Location L, Quantity Q, Year Y
— Split into two parts: “Sales1” and “Sales 2” based on P and L
— “Sales 1” stored at “nodel”
— “Sales 2” stored at “node3”

* Table “Forecast”
— Columns: Product P, Location L, Forecast F, Year Y
— Split into two parts: “Forecastl” and “Forecast2” based on P and L
— “Forecast1” stored at “node2”
— “Forecast2” stored at “node4”

* Query (remains the same; distribution transparent to the user):
— “Which product at which location had lower than forecasted overall sales in 2010?”

SELECT Sales.P, Sales.L, SUM(Sales.Q) as QTY, SUM(Forecast.F) as FCST
FROM Sales, Forecast

WHERE Sales.P = Forecast.P and Sales.L = Forecast.L and Sales.Y = 2010
GROUP BY Sales.P, Sales.L

HAVING QTY < FCST

Inter-Operator Parallelism (Four Blades)

Merge {P, L}
Project {Q, F}

@Nodel

4/'\

SelectQ < F
Project {P, L, Q, F}
@Nodel

f

Join {P, L}
Project {Q, F}
@Nodel

Group By {P, L}
Sum Q
@Nodel

ﬁ

Select Q. < F
Project {P, L, Q, F}
@Node4

f

Join {P, L}
Project {Q, F}
@Node4

{

Group By {P, L}

Group By {P, L}

ﬁ

Scan, year = 2010
Salesl: P, L, Q
@Nodel

Group By {P, L}
Sum F
@Node4

Sum F Sum Q
@Node2 @Node3
Scan, year = 2010 Scan, year = 2010
Forecastl: P, L, F Sales2: P, L, Q
@Node2 @Node3

{

Scan, year = 2010
Forecast2: P, L, F
@Node4

O

25

Hasso

Plattner

Institut
ring | Universitat Potsdam

IT Systems Engineer

1.) n Aggregation Threads

O 1) each thread fetches a
small part of the input
relation

O 2) aggregate part and
write results into a small
hash-table

O If the entries in a hash-
table exceed a threshold,
the hash-table is moved
into a shared buffer

2.) m Merger Threads

O 3) each merge thread
operates on a partition of
the hash function values
and writes its result into a
private part hash-table

O 4) the final result is
obtained by concatenating
the part hash-tables

Thread 1

Thread 1

f-

Local Hash Table

1

N

Parallel Filter / Aggregation

Table

(=

:> Thread 2

o

£

Cache-sized hash tables

Local Hash Table 2

g H
B
A
Buffer
N '}.,... _ A ' - £ I
N T VR P -
N T 2=
\ /7 ttee., - - B4
Thread 3 \ / e, _ e Thread 4
- e, ‘ R
\ / P T Tt Tt % K
N
P .-..._:::... :.
*:i:l:l Part Hash Table 2

Key Observations

e Algorithm
— 2-stage pipeline (pipeline parallelism)
— Programming Model: shared memory/threads, data parallel

* Synchronization: Every thread writes into its private datastructure
— No synchronization required for that

» Data skew handled by small input work package size (compared to fact table size)
* Cache-awareness due to fixed size of local hash tables

* Main-memory consumption bounded by buffer size

* Number of threads can be adjusted

* Similar algorithm for parallel join computation (see next slide)

Hasso
Plattner

ﬂ Institut

IT Systems Engineering | Universitit Potsdam

O 1.) Prepare Phase:
parallel computation
of part hash-tables
on the smaller input
relation

27

Parallel Filter/Join

Like aggregation, joins can be computed using hash-tables

Intermediate Result A

Phase 1: . Phase 2a:
Prepare A . Prepare B
Table A i Table B
. L0 LA !
Join 1 ' Join
Thread 1 L2 i Thread 1 <]
e |
v .5 LA : y
L8] l
I*%"J. |:> Join | |:> Join
9 A | Thread 2. Thread 2
v 0 el i v
: v l
BufferA — - - - — - --‘-/- ' BufferB - - - —— - -- ___Y_
R S o . et 274 [ATo
153} _6_1.10_; | 11 3! 8.]10_!
4 .7 ! 0_ a
BN 2 5 5] LD 6.
I . 7 i
Merger : R Merger !
Thread 1 : S, 2 : Thread 2 !
o, : |
| Ve . : |
1.7 S 1
/3 AV |
AT 0 5T o A i if join threads for B have finished and
-;’_ 1 .:“_‘_3“_ ‘_“;_ 610! [D |l 218" ! intermediate result of A has been

[

shipped, then probe (next slide ...)

Hasso

Plattner

Institut
IT Sys | Universitat Potsdam

IT Systems Engineering

O

28

2.) Probe Phase:
probing of the larger
input relation against the
part hash tables:

O A buffer of hash maps
is created in parallel

O Local hash maps are
compared with part
hash-maps

3.) Concatenate and
Materialize
(not shown)

[1 List of all matching
rows in tables A and B
Is created

[0 Additional fields for
these rows are

retrieved from tables
A and B

Parallel Filter/Join

Phase 2b: Buffer B
Probe

Virtual Tables i
(only row numbers), :
one per partition

(a) Scalar Add and (b) Parallel Add
(Low-Level Parallel Column Access)

95 63 31

Source Source
T~ ~T T = 8 10
ADD PADD
5 432 3 3 5
Dest " Dest " l
v v
Result —| 15 Result —» | 630 26 11 15

Implemented in NewDB with Intel Streaming SIMD Extensions (SSE)

Further/Advanced Parallelization
Topics in NewDB

 NewDB map/reduce implementation
* Dynamic CalcEngine Split

* Parallelization of further NewDB algorithms:
sort, search, distinct values

Map/Reduce in NewDB

NewDB lends the concepts of map and reduce

— But implementation is different from Google MR and has different
scope

|Idea: User-defined functions map and reduce to parameterize
aggregation algorithm

Recap: Aggregation algorithm does grouping and aggregation
Grouping: map as user-defined group calculation (group by)

— Implemented by row-level function
Aggregation: reduce as user-defined aggregation calculation
(aggregate)
Status

— Map can be specified as L function and passed to parallel aggregation

— Reduce not implemented yet; standard aggregation functions can be
applied (sum, min, max, etc.)

Dynamic CalcEngine Split (Example)

* Table “Sales”
— Columns: Product P, Location L, Quantity Q, Year Y

e Table “Forecast”
— Columns: Product P, Location L, Forecast F, Year Y

* Query:

— “Which product at which location had lower quantity forecasted overall sales in 2010?”

SELECT Sales.P, Sales.L, SUM(Sales.Q) as QTY, SUM(Forecast.F) as FCST

FROM Sales, Forecast
WHERE Sales.P = Forecast.P and Sales.L = Forecast.L and Sales.Y = 2010

GROUP BY Sales.P, Sales.L
HAVING QTY < FCST

* Goal: Introduce dynamic split to parallelize the join computation

Dynamic CalcEngine Split (Example)

Select

Q<F
Project {P, L, Q, F}

f

Merge
(Concatenate)

I 6 6 o

Join {P, L}
Project {Q, F}

4 Parallel Join Operations,
one per partition

Split By {P, L}
Method: Hash
Parts: 4

/1\

Group By {P, L}
Sum Q

+

Group By {P, L}
Sum F

Scan, year =
2010
Sales: P, L, Q

+

Scan, year =
2010
Forecast: P, L, F

Sources

Parallel Hardware: Future SOC talk by C. Mathis

Parallel Programming Models:
https://computing.linl.gov/tutorials/parallel comp/

Map/Reduce: "Map-Reduce Meets Wider Varieties of
Applications"” Shimin Chen, Steven W. Schlosser, Intel
Research 2008. Technical Report IRP-TR-08-05

Parallelism in NewDB: The BOOK and Hassos BTW
Paper

NewDB Map/Reduce: Martin Richtarsky

Dynamic CalcEngine Split: Daniel Baumges and the
Calcies

