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What to take home from this talk? 

Answers to four questions: 

□  How do “in-memory” and “cloud computing” fit together? 

□  Does virtualization have a negative impact on in-memory databases? 

□  How to predict response times of an in-memory column database? 

□  Why should data in the cluster be replicated and how to do it? 



First question 

How do “in-memory” and  
“cloud computing” fit together? 



Numbers everyone should know 

■  L1 cache reference    0.5 ns 

■  Branch mispredict    5 ns 

■  L2 cache reference    7 ns 

■  Mutex lock/unlock    25 ns 

■  Main memory reference   100 ns (in 2008) 

■  Compress 1K bytes with Zippy   3,000 ns 

■  Send 2K bytes over 1 Gbps network  20,000 ns 

■  Read 1 MB sequentially from memory  250,000 ns 

■  Round trip within same datacenter  500,000 ns (in 2008) 

■  Disk seek     10,000,000 ns 

■  Read 1 MB sequentially from network  10,000,000 ns 

■  Read 1 MB sequentially from disk  20,000,000 ns 

■  Send packet CA  Netherlands  CA  150,000,000 ns 

Source: Jeff Dean 



Some more recent numbers…  

Hard Disk 100-120 MB/s 

SSD 250 MB/s 

Serial ATA II 600 MB/s 

10 GB Ethernet 1204 MB/s 

InfiniBand 1250 MB/s (4 channels) 

PCIe Flash Storage 1400 MB/s 

PCIe 3.0 32 GB/s 

DDR3-1600 25.6 GB/s (dual channel) 

	  	   Type	   Device	  /	  Medium	   Latency	   Throughput	  

Sa
m
e	  

co
re
	   Storage	   L1	  cache	  read	  (local)	   1.3	  ns	   364.8	  Gbps	  

Storage	   L2	  cache	  read	  (local)	   3.4	  ns	   248.8	  Gbps	  
Storage	   L3	  cache	  read	  (local)	   13	  ns	   209.6	  Gbps	  

Sa
m
e	  

di
e	  

Storage	   L1	  cache	  read	  (remote,	  same	  die)	   13	  -‐	  28.3	  ns	   75.2	  -‐	  154.4	  Gbps	  
Storage	   L2	  cache	  read	  (remote,	  same	  die)	   13	  -‐	  25.5	  ns	   105.6	  -‐	  157.6	  Gbps	  
Storage	   L3	  cache	  read	  (remote,	  same	  die)	   13	  -‐	  22.2	  ns	   157.6	  -‐	  209.6	  Gbps	  

Sa
m
e	  
bo

ar
d	   Storage	   L1	  cache	  read	  (remote,	  via	  QPI)	   58	  -‐	  109	  ns	   44.8	  -‐	  72	  Gbps	  

Storage	   L2	  cache	  read	  (remote,	  via	  QPI)	   58	  -‐	  109	  ns	   44.8	  -‐	  73.6	  Gbps	  
Storage	   L3	  cache	  read	  (remote,	  via	  QPI)	   58	  -‐	  109	  ns	   44.8	  -‐	  73.6	  Gbps	  
Storage	   DRAM	  (Nehalem)	   65	  -‐	  106	  ns	   160	  –	  204.8	  Gbps	  /	  socket	  

Sa
m
e	  
m
ac
hi
ne

	  

Interconnect	   SATA	  3.0	   at	  least	  1	  µs	   6	  Gbps	  
Interconnect	   Serial	  ATached	  SCSI	   at	  least	  1	  µs	   6	  Gbps	  
Interconnect	   PCI	  Express	   3.8	  -‐	  5	  µs	   4	  Gbps	  x	  number	  of	  lanes	  

Storage	   MagneYcal	  disk	  read	  /	  write	   3.2	  -‐	  13	  ms	   0.96	  -‐	  1.12	  Gbps	  
Storage	   Solid	  State	  Disk	  read	   65	  µs	   1.9	  Gbps	  

N
et
w
or
k	  

Interconnect	   RDMA	  over	  InfiniBand	   1	  -‐	  3	  µs	   2.5	  -‐	  10	  Gbps	  x	  number	  of	  channels	  
Interconnect	   RDMA	  over	  iWARP	   6	  µs	   10	  Gbps	  /	  link	  
Interconnect	   10Gb	  Ethernet	   20	  µs	   10	  Gbps	  /	  link	  
Interconnect	   Fibre	  channel	   3	  -‐	  10	  µs	  	  

(add	  1	  ms	  
	  per	  100	  km)	  

8	  Gbps	  /	  channel	  



Main memory should be the  
system of record 

■  Bandwidth: 

□  Disk:    120 MB/s/controller 

□  DRAM (x86 + FSB):  10.4 GB/s/board 

□  DRAM (Nehalem):  25.6 GB/s/socket 

■  Latency: 

□  Disk:    3.2 - 13 milliseconds 

□  InfiniBand:   1 - 3 microseconds 

□  DRAM:    65 - 105 nanoseconds 

■  Claim: Two machines + network is better than one machine + disk 

□  Log to disk on a single node:  
> 3,200 µs  (best case) 

□  Transactions only in memory but on two nodes: 
< 25 µs  (worst case using 10Gbit Ethernet) 



Rock cluster architecture 
(active / active configuration) 

Forward writes to 
other replicas 

Load balance 
between replicas 

Multiple tenants run 
the same application 

Cluster membership, 
load monitoring, 
tenant placement, 
tenant migration, 
rolling upgrades, 
delta merges, 
cluster sizing 

Application Batch importer

RouterCluster leader

Server 1

Instance manager

TREX

Server 2

Instance manager

TREX

Server n

Instance manager

TREX

! ! !

Batch writers

read

write

t3t1 t2 t1 t2t3



■  Multi-master replication 

□  Two copies of the data 

□  Load balancing both reads and (monotonic) writes 

□  Eventual consistency via simple write propagation  
and MVCC (nodes might lag behind slightly) 

■  High-end hardware 

□  Nehalem for high memory bandwidth (more tenants per node) 

□  Fast interconnects to minimize write lag 

■  Virtualization 

□  Ease of deployment / administration 

□  Consolidation / multi-tenancy 

Design choices for a  
cloud analytics database 



Second question 

Does virtualization have a negative impact 
on in-memory databases? 



■  In-memory column databases are ideal for processing  
mixed OLTP and OLAP workloads 

■  But: In a SaaS environment it seems costly to give  
every tenant their private database server 

■  How much consolidation is possible? 

□  3 years worth of sales records from a Fortune 500 retail 
company: 360 million records and less than 3 GB in memory 

□  Typical SaaS customer is an order of magnitude smaller 

□  Next door we have a machine with 2TB of main memory 

Why virtualization? 



Impact of virtualization 

■  Run multi-tenant OLAP benchmark on either: 

□  one TREX instance directly on the physical host vs. 

□  one TREX instance inside VM on the physical host 

■  Overhead is approximately 7% (both in response time and throughput) 
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Impact of virtualization (contd.) 

■  Virtualization is often used to get “better” system utilization 

□  What happens when a physical machine is split into multiple VMs? 

□  Burning CPU cycles does not hurt  memory bandwidth is the 
limiting factor 
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Third question 

How to predict response times  
of an in-memory column database? 



Challenges for the provider 

■  Aim for high amount of consolidation (multi-tenancy) 

■  In a SaaS environment, the question is “how do I guarantee 
a fixed (low) response time as cheap as possible?” 

□  Look at throughput 

□  Look at quartiles (e.g. 99th percentile) 

■  Formulation of desired performance guarantee:  

□  Response time goal “1 second in the 99th percentile” 

□  Average response time around 200 ms 

□  Less than 1% of all queries exceed 1,000 ms 

□  Results in a maximum number of concurrent x queries before  
response time goal is violated 



■  Given a cluster of in-memory column databases: 

□  How many tenants at what request rates can individual servers 
handle without violation the response time goal? 

□  How to estimate the combined load incurred by  
multiple tenants on a server? 

□  How do cluster management operations affect this estimation? 

 

■  How to obtain such load estimations? 

□  Analytical model 

□  Empirical model 

Problem statement 

!" !"

Query Threads Processing Units 

Queries 



Rock cluster architecture 
(active / active configuration) 

Forward writes to 
other replicas 

Load balance 
between replicas 

Multiple tenants run 
the same application 

Cluster membership, 
load monitoring, 
tenant placement, 
tenant migration, 
rolling upgrades, 
delta merges, 
cluster sizing 

Application Batch importer

RouterCluster leader

Server 1

Instance manager

TREX

Server 2

Instance manager

TREX

Server n

Instance manager

TREX

! ! !

Batch writers

read

write
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Multi-tenant OLAP benchmark  
■  Based on SSB1, a modified version of TPC-H 
■  One instance of the SSB tables per tenant (private tables) 

■  Added parallel user threads 
and think time 

■  Added writes 

■  Queries grouped  
into flights 

■  Snapshot isolation 

■  Focus on throughput, not 
response time  
□  scale # of users 
□  stay within fixed  

response time goal 

[1]  P.E. O'Neil, E.J. O'Neil, X. Chen, S. Revilak. The Star Schema Benchmark and Augmented Fact 
      Table Indexing. In: Performance Evaluation and Benchmarking, TPCTC 2009, p. 237-252, 2009.  



Experimental setup 

■  TREX nodes packaged as EC2 m1.large instances 
□  7.5 GB RAM 
□  2 virtual cores 

■  Routers and cluster leader packaged as EC2 c1.xlarge instances 
□  7 GB RAM, 8 virtual cores 
□  High I/O performance 

■  Benchmarking only a single node 
□  Filling up 40% of the available memory with tenants 
□  In each run, all tenants have the same size 
□  Tenant size    is varied across runs 
□  Fixed response time goal independent of  

(across whole server) 
□  All tenants have same base request rate 
□  Request rate is increased until server violates SLO EC2 m1.large

Instance manager

TREXtr

ts

ts
ts

t ! T
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f (ts ) = p1 ! ts
p2

...after log-log transformation: 
log f (ts ) = log p1 + p2 ! log ts



Calculating bandwidth  
consumed by a tenant 

■  Using linear regression we obtained a function for computing the 
maximum no. of requests per server without SLO violation, given: 

□  all tenants have the same size 

□  request rate is equally distributed 

■  Hypothesis: SLO violations on a server can also be predicted for sets of 
tenants of arbitrary sizes and request rates 

■  We need a metric for quantifying bandwidth consumption per tenant 

□  Idea: use function for maximum request rate 

□  Make    an independent variable 

□  Monotonically increasing for increasing  

□    

■  Typically a server has tenants of different sizes and request rates 

tr

b(ts, tr )! [0..1]

all tenants consume same 
fraction of bandwidth 

ts, tr



■  Validate our hypothesis that SLO violation can be predicted with  
differently sized tenants and request rate 
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predicting response time based 

on bandwidth consumption! 



Prediction accuracy 

■  Split experimental results in training data and test data 
■  Root mean squared error for predicting values < 1000 ms is 31.21 ms 
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Extending the model with migrations 

■  Migration: packing, network transfer, unpacking, preloading into DRAM 

■  Source node: 
□  Capacity degrades to 85%  
□  RMSE is 67.31 ms 

■  Destination node: 
□  Capacity degrades to 82%  
□  RMSE is 77.63 ms 

Migration cost is 
independent of tenant size  

Tenant size only impacts 
duration of migration 



Extending the model with batch writes 

■  Writes are handled by delta buffer 
■  Increasing delta size leads to higher response times 
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Extending the model with writes 

■  Batch writes decrease a server’s request processing capacity to 84% 
■  Root mean squared error for predicting values < 1000 ms is 62.36 ms 
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Automatic tenant migration algorithm 

■  Cluster leader continuously monitors workload on all servers and makes 
incremental changes to the tenant placement 

■  Handling overloaded server: 

□  Server is considered overloaded at b≥0.85 (maximum for migrating 
tenants away from server without SLO violation) 

□  Identify set of tenants to move away (select small tenants first) 

□  Sort move set by bandwidth consumption (higher values first) 

□  Identify target server for each tenant in set 

□ Online bin packing algorithm (Johnson’s first-fit decreasing) 

□ Constraint: b≤0.82 on target server (including new tenant) 

□ If no server is found then start new server (in this case a couple 
of large tenants are pro-actively migrated to the new server) 

■  Handling under-utilized server: 
□  Server considered under-utilized at 

b≤0.3 (lower values result in too  
many migrations) 

□  All tenants on server are in move set 
□  If not possible to clear server then 

treat as a new server in overload case 



■  Workload increases up to b=0.85, algorithm is triggered  
■  Four tenants are migrated away and 99th percentile value decreases 

New server 
(destination) 

Handling an overloaded server 
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Fourth question 

Why should data in the cluster be 
replicated and how to do it? 



Why is it good to have multiple  
copies of the data? 

■  Scalability beyond a certain number of concurrently active users 

■  High availability during normal operations  

■  Alternating execution of resource-intensive operations (e.g. merge) 

■  Rolling upgrades without downtime 

■  Data migration without downtime 

■  Reminder: Two in-memory copies allow faster writes and are more 
predictable than one in-memory copy plus disk 

 

■  Downsides:  

□  Response time goal might be violated during recovery 

□  You need to plan for twice the capacity 

 



Tenant placement 

Conventional  
Mirrored Layout 
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If a node fails, all work moves to 
one other node. The system must 

be 100% over-provisioned. 
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many other nodes. Allows 
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Interleaved 
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■  Perfect placement: 

□  100 tenants 

□  2 copies/tenant 

□  All tenants have same size 

□  10 tenants/server 

□  Perfect balancing (same load on all tenants): 

□  6M rows (204 MB compressed) of data per tenant 

□  The same (increasing) number of users per tenant 

□  No writes 
Mirrored Interleaved Improvement 

No failures 4218 users 4506 users 7% 

Periodic single 
failures 

2265 users 4250 users 88% 

Interleaved tenant placement 

Throughput before violating 
response time goal 
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“Worst” server workload during failure 

■  Same tenant mix and request rates in mirrored vs. interleaved setup 
■  Multiple servers assume role of worst server due to round-robin failures 
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Requirements for placement algorithm 

■  An optimal placement algorithm needs to cope with  
multiple (conflicting) goals: 

□  Balance load (b) across servers 

□  Achieve good interleaving 

■  Use migrations consciously for online layout improvements 
(no big bang cluster re-organization) 

■  Take usage patterns into account 

□  Request rates double during last week before end of quarter 

□  Time-zones, Christmas, etc. 

 



Conclusion 

■  Answers to four questions: 

□  How do “in-memory” and “cloud computing” fit together? 

□  Does virtualization have a negative impact on in-memory databases? 

□  How to predict response times of an in-memory column database? 

□  Why should data in the cluster be replicated and how to do it? 

 

■  Questions? 



Thank you! 

We have student jobs available: 
 

jan.schaffner@hpi.uni-potsdam.de 


