
Running In-Memory Databases
in the Cloud

Predicting Response Times and Automating
Cluster Management Tasks

Jan Schaffner

What to take home from this talk?

Answers to four questions:

□  How do “in-memory” and “cloud computing” fit together?

□  Does virtualization have a negative impact on in-memory databases?

□  How to predict response times of an in-memory column database?

□  Why should data in the cluster be replicated and how to do it?

First question

How do “in-memory” and
“cloud computing” fit together?

Numbers everyone should know

■  L1 cache reference 0.5 ns

■  Branch mispredict 5 ns

■  L2 cache reference 7 ns

■  Mutex lock/unlock 25 ns

■  Main memory reference 100 ns (in 2008)

■  Compress 1K bytes with Zippy 3,000 ns

■  Send 2K bytes over 1 Gbps network 20,000 ns

■  Read 1 MB sequentially from memory 250,000 ns

■  Round trip within same datacenter 500,000 ns (in 2008)

■  Disk seek 10,000,000 ns

■  Read 1 MB sequentially from network 10,000,000 ns

■  Read 1 MB sequentially from disk 20,000,000 ns

■  Send packet CA Netherlands CA 150,000,000 ns

Source: Jeff Dean

Some more recent numbers…

Hard Disk 100-120 MB/s

SSD 250 MB/s

Serial ATA II 600 MB/s

10 GB Ethernet 1204 MB/s

InfiniBand 1250 MB/s (4 channels)

PCIe Flash Storage 1400 MB/s

PCIe 3.0 32 GB/s

DDR3-1600 25.6 GB/s (dual channel)

	 	 Type	 Device	 /	 Medium	 Latency	 Throughput	

Sa
m
e	

co
re
	 Storage	 L1	 cache	 read	 (local)	 1.3	 ns	 364.8	 Gbps	

Storage	 L2	 cache	 read	 (local)	 3.4	 ns	 248.8	 Gbps	
Storage	 L3	 cache	 read	 (local)	 13	 ns	 209.6	 Gbps	

Sa
m
e	

di
e	

Storage	 L1	 cache	 read	 (remote,	 same	 die)	 13	 -‐	 28.3	 ns	 75.2	 -‐	 154.4	 Gbps	
Storage	 L2	 cache	 read	 (remote,	 same	 die)	 13	 -‐	 25.5	 ns	 105.6	 -‐	 157.6	 Gbps	
Storage	 L3	 cache	 read	 (remote,	 same	 die)	 13	 -‐	 22.2	 ns	 157.6	 -‐	 209.6	 Gbps	

Sa
m
e	
bo

ar
d	 Storage	 L1	 cache	 read	 (remote,	 via	 QPI)	 58	 -‐	 109	 ns	 44.8	 -‐	 72	 Gbps	

Storage	 L2	 cache	 read	 (remote,	 via	 QPI)	 58	 -‐	 109	 ns	 44.8	 -‐	 73.6	 Gbps	
Storage	 L3	 cache	 read	 (remote,	 via	 QPI)	 58	 -‐	 109	 ns	 44.8	 -‐	 73.6	 Gbps	
Storage	 DRAM	 (Nehalem)	 65	 -‐	 106	 ns	 160	 –	 204.8	 Gbps	 /	 socket	

Sa
m
e	
m
ac
hi
ne

	

Interconnect	 SATA	 3.0	 at	 least	 1	 µs	 6	 Gbps	
Interconnect	 Serial	 ATached	 SCSI	 at	 least	 1	 µs	 6	 Gbps	
Interconnect	 PCI	 Express	 3.8	 -‐	 5	 µs	 4	 Gbps	 x	 number	 of	 lanes	

Storage	 MagneYcal	 disk	 read	 /	 write	 3.2	 -‐	 13	 ms	 0.96	 -‐	 1.12	 Gbps	
Storage	 Solid	 State	 Disk	 read	 65	 µs	 1.9	 Gbps	

N
et
w
or
k	

Interconnect	 RDMA	 over	 InfiniBand	 1	 -‐	 3	 µs	 2.5	 -‐	 10	 Gbps	 x	 number	 of	 channels	
Interconnect	 RDMA	 over	 iWARP	 6	 µs	 10	 Gbps	 /	 link	
Interconnect	 10Gb	 Ethernet	 20	 µs	 10	 Gbps	 /	 link	
Interconnect	 Fibre	 channel	 3	 -‐	 10	 µs	 	

(add	 1	 ms	
	 per	 100	 km)	

8	 Gbps	 /	 channel	

Main memory should be the
system of record

■  Bandwidth:

□  Disk: 120 MB/s/controller

□  DRAM (x86 + FSB): 10.4 GB/s/board

□  DRAM (Nehalem): 25.6 GB/s/socket

■  Latency:

□  Disk: 3.2 - 13 milliseconds

□  InfiniBand: 1 - 3 microseconds

□  DRAM: 65 - 105 nanoseconds

■  Claim: Two machines + network is better than one machine + disk

□  Log to disk on a single node:
> 3,200 µs (best case)

□  Transactions only in memory but on two nodes:
< 25 µs (worst case using 10Gbit Ethernet)

Rock cluster architecture
(active / active configuration)

Forward writes to
other replicas

Load balance
between replicas

Multiple tenants run
the same application

Cluster membership,
load monitoring,
tenant placement,
tenant migration,
rolling upgrades,
delta merges,
cluster sizing

Application Batch importer

RouterCluster leader

Server 1

Instance manager

TREX

Server 2

Instance manager

TREX

Server n

Instance manager

TREX

! ! !

Batch writers

read

write

t3t1 t2 t1 t2t3

■  Multi-master replication

□  Two copies of the data

□  Load balancing both reads and (monotonic) writes

□  Eventual consistency via simple write propagation
and MVCC (nodes might lag behind slightly)

■  High-end hardware

□  Nehalem for high memory bandwidth (more tenants per node)

□  Fast interconnects to minimize write lag

■  Virtualization

□  Ease of deployment / administration

□  Consolidation / multi-tenancy

Design choices for a
cloud analytics database

Second question

Does virtualization have a negative impact
on in-memory databases?

■  In-memory column databases are ideal for processing
mixed OLTP and OLAP workloads

■  But: In a SaaS environment it seems costly to give
every tenant their private database server

■  How much consolidation is possible?

□  3 years worth of sales records from a Fortune 500 retail
company: 360 million records and less than 3 GB in memory

□  Typical SaaS customer is an order of magnitude smaller

□  Next door we have a machine with 2TB of main memory

Why virtualization?

Impact of virtualization

■  Run multi-tenant OLAP benchmark on either:

□  one TREX instance directly on the physical host vs.

□  one TREX instance inside VM on the physical host

■  Overhead is approximately 7% (both in response time and throughput)

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 2 4 6 8 10 12

Q
ue
ri
es
pe
r
S
ec
on
d

Client Threads

Virtual Execution Native Execution

Impact of virtualization (contd.)

■  Virtualization is often used to get “better” system utilization

□  What happens when a physical machine is split into multiple VMs?

□  Burning CPU cycles does not hurt memory bandwidth is the
limiting factor

80 %

90 %

100 %

110 %

120 %

130 %

140 %

150 %

160 %

1 2 3 4

R
es
po
ns
e
Ti
m
e
as
a
Pe
rc
en
ta
ge
of

R
es
po
ns
e
Ti
m
e
w
it
h
1
A
ct
iv
e
S
lo
t

Concurrently Active VM Slots

Xeon E5450
Xeon X5650

Third question

How to predict response times
of an in-memory column database?

Challenges for the provider

■  Aim for high amount of consolidation (multi-tenancy)

■  In a SaaS environment, the question is “how do I guarantee
a fixed (low) response time as cheap as possible?”

□  Look at throughput

□  Look at quartiles (e.g. 99th percentile)

■  Formulation of desired performance guarantee:

□  Response time goal “1 second in the 99th percentile”

□  Average response time around 200 ms

□  Less than 1% of all queries exceed 1,000 ms

□  Results in a maximum number of concurrent x queries before
response time goal is violated

■  Given a cluster of in-memory column databases:

□  How many tenants at what request rates can individual servers
handle without violation the response time goal?

□  How to estimate the combined load incurred by
multiple tenants on a server?

□  How do cluster management operations affect this estimation?

■  How to obtain such load estimations?

□  Analytical model

□  Empirical model

Problem statement

!" !"

Query Threads Processing Units

Queries

Rock cluster architecture
(active / active configuration)

Forward writes to
other replicas

Load balance
between replicas

Multiple tenants run
the same application

Cluster membership,
load monitoring,
tenant placement,
tenant migration,
rolling upgrades,
delta merges,
cluster sizing

Application Batch importer

RouterCluster leader

Server 1

Instance manager

TREX

Server 2

Instance manager

TREX

Server n

Instance manager

TREX

! ! !

Batch writers

read

write

t3t1 t2 t1 t2t3

Multi-tenant OLAP benchmark
■  Based on SSB1, a modified version of TPC-H
■  One instance of the SSB tables per tenant (private tables)

■  Added parallel user threads
and think time

■  Added writes

■  Queries grouped
into flights

■  Snapshot isolation

■  Focus on throughput, not
response time
□  scale # of users
□  stay within fixed

response time goal

[1] P.E. O'Neil, E.J. O'Neil, X. Chen, S. Revilak. The Star Schema Benchmark and Augmented Fact
 Table Indexing. In: Performance Evaluation and Benchmarking, TPCTC 2009, p. 237-252, 2009.

Experimental setup

■  TREX nodes packaged as EC2 m1.large instances
□  7.5 GB RAM
□  2 virtual cores

■  Routers and cluster leader packaged as EC2 c1.xlarge instances
□  7 GB RAM, 8 virtual cores
□  High I/O performance

■  Benchmarking only a single node
□  Filling up 40% of the available memory with tenants
□  In each run, all tenants have the same size
□  Tenant size is varied across runs
□  Fixed response time goal independent of

(across whole server)
□  All tenants have same base request rate
□  Request rate is increased until server violates SLO EC2 m1.large

Instance manager

TREXtr

ts

ts
ts

t ! T

0

50

100

150

200

250

50 100 150 200

M
ax
im
um
no
.
of
qu
er
ie
s
pe
r
se
co
nd

on
se
rv
er
be
fo
re
vi
ol
at
io
n
of
S
LO
(t
R
)

Size of individual tenants in MB (ts)More tenants
on server

Fewer tenants
on server

Experimental results

Maximum Request Rate
without violation of SLO

Request rates equally
distributed among tenants

tri
i=1

|T |

! = tR, tri = trj " (1±!)

Bandwidth consumption
not linear () ! ts " tr

0

50

100

150

200

250

50 100 150 200
10

100

1000
100

M
ax
im
um
no
.
of
qu
er
ie
s
pe
r
se
co
nd

on
se
rv
er
be
fo
re
vi
ol
at
io
n
of
S
LO
(t
R
)

lo
g 1
0(
t R
)

Size of individual tenants in MB (ts)

log10(ts)

More tenants
on server

Fewer tenants
on server

Experimental results
Experimental results (log10 scale)

Maximum Request Rate
without violation of SLO

0

50

100

150

200

250

50 100 150 200
10

100

1000
100

M
ax
im
um
no
.
of
qu
er
ie
s
pe
r
se
co
nd

on
se
rv
er
be
fo
re
vi
ol
at
io
n
of
S
LO
(t
R
)

lo
g 1
0(
t R
)

Size of individual tenants in MB (ts)

log10(ts)

More tenants
on server

Fewer tenants
on server

Experimental results
Experimental results (log10 scale)

Linear Regression

0

50

100

150

200

250

50 100 150 200
10

100

1000
100

M
ax
im
um
no
.
of
qu
er
ie
s
pe
r
se
co
nd

on
se
rv
er
be
fo
re
vi
ol
at
io
n
of
S
LO
(t
R
)

lo
g 1
0(
t R
)

Size of individual tenants in MB (ts)

log10(ts)

More tenants
on server

Fewer tenants
on server

Experimental results
Experimental results (log10 scale)

Linear Regression
Linear Regression (Back-Transformed Vars)

Suggests function of general
form

f (ts) = p1 ! ts
p2

...after log-log transformation:
log f (ts) = log p1 + p2 ! log ts

Calculating bandwidth
consumed by a tenant

■  Using linear regression we obtained a function for computing the
maximum no. of requests per server without SLO violation, given:

□  all tenants have the same size

□  request rate is equally distributed

■  Hypothesis: SLO violations on a server can also be predicted for sets of
tenants of arbitrary sizes and request rates

■  We need a metric for quantifying bandwidth consumption per tenant

□  Idea: use function for maximum request rate

□  Make an independent variable

□  Monotonically increasing for increasing

□ 

■  Typically a server has tenants of different sizes and request rates

tr

b(ts, tr)! [0..1]

all tenants consume same
fraction of bandwidth

ts, tr

■  Validate our hypothesis that SLO violation can be predicted with
differently sized tenants and request rate

0

200

400

600

800

1000

1200

1400

1600

0 0.2 0.4 0.6 0.8 1

99
th
Pe
rc
en
ti
le
V
al
ue
in
m
s

Aggregate Bandwidth Consumption Across All Tenants on Server

Configuration 1 (1.5 GB Total)

0

200

400

600

800

1000

1200

1400

1600

0 0.2 0.4 0.6 0.8 1

99
th
Pe
rc
en
ti
le
V
al
ue
in
m
s

Aggregate Bandwidth Consumption Across All Tenants on Server

Configuration 1 (1.5 GB Total)
Configuration 2 (2.0 GB Total)

0

200

400

600

800

1000

1200

1400

1600

0 0.2 0.4 0.6 0.8 1

99
th
Pe
rc
en
ti
le
V
al
ue
in
m
s

Aggregate Bandwidth Consumption Across All Tenants on Server

Configuration 1 (1.5 GB Total)
Configuration 2 (2.0 GB Total)
Configuration 3 (2.6 GB Total)

0

200

400

600

800

1000

1200

1400

1600

0 0.2 0.4 0.6 0.8 1

99
th
Pe
rc
en
ti
le
V
al
ue
in
m
s

Aggregate Bandwidth Consumption Across All Tenants on Server

Configuration 1 (1.5 GB Total)
Configuration 2 (2.0 GB Total)
Configuration 3 (2.6 GB Total)
Configuration 4 (3.2 GB Total)

Relation of aggregate bandwidth
and 99-th percentile value

0

200

400

600

800

1000

1200

1400

1600

0 0.2 0.4 0.6 0.8 1

99
th
Pe
rc
en
ti
le
V
al
ue
in
m
s

Aggregate Bandwidth Consumption Across All Tenants on Server

Configuration 1 (1.5 GB Total)
Configuration 2 (2.0 GB Total)
Configuration 3 (2.6 GB Total)
Configuration 4 (3.2 GB Total)

Non-linear Regression

Hypothesis verified!

We now have a function for
predicting response time based

on bandwidth consumption!

Prediction accuracy

■  Split experimental results in training data and test data
■  Root mean squared error for predicting values < 1000 ms is 31.21 ms

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600

M
ea
su
re
d
99
th
Pe
rc
en
ti
le
V
al
ue
in
m
s

Predicted 99th Percentile Value in ms

Training Data
Verification Data
Perfect Prediction

0

200

400

600

800

1000

1200

1400

1600

0.2 0.4 0.6 0.8 1

99
th
Pe
rc
en
ti
le
V
al
ue
in
m
s

Bandwidth Consumption

Migrating tenant size: 45 MB
Migrating tenant size: 84 MB
Migrating tenant size: 124 MB
Migrating tenant size: 165 MB
Migrating tenant size: 205 MB

Fit including migrations
Fit without migrations

0

200

400

600

800

1000

1200

1400

1600

0.2 0.4 0.6 0.8 1

99
th
Pe
rc
en
ti
le
V
al
ue
in
m
s

Bandwidth Consumption

Migrating tenant size: 45 MB
Migrating tenant size: 84 MB
Migrating tenant size: 124 MB
Migrating tenant size: 165 MB
Migrating tenant size: 205 MB

Fit including migrations
Fit without migrations

Extending the model with migrations

■  Migration: packing, network transfer, unpacking, preloading into DRAM

■  Source node:
□  Capacity degrades to 85%
□  RMSE is 67.31 ms

■  Destination node:
□  Capacity degrades to 82%
□  RMSE is 77.63 ms

Migration cost is
independent of tenant size

Tenant size only impacts
duration of migration

Extending the model with batch writes

■  Writes are handled by delta buffer
■  Increasing delta size leads to higher response times

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600

A
ve
ra
ge
re
sp
on
se
ti
m
e
(m
s)

Benchmark runtime (seconds)
ts1=25 MBts2=44 MBts3=63 MBts4=83 MB

ts5=103 MBts6=123 MBts7=144 MBts8=164 MB

ts9=185 MBts10=204 MB

Extending the model with writes

■  Batch writes decrease a server’s request processing capacity to 84%
■  Root mean squared error for predicting values < 1000 ms is 62.36 ms

0

500

1000

1500

2000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

99
th
Pe
rc
en
ti
le
V
al
ue
in
m
s

Bandwidth Consumption

Runs without writes
Runs including writes

Prediction without writes
Prediction including writes

Automatic tenant migration algorithm

■  Cluster leader continuously monitors workload on all servers and makes
incremental changes to the tenant placement

■  Handling overloaded server:

□  Server is considered overloaded at b≥0.85 (maximum for migrating
tenants away from server without SLO violation)

□  Identify set of tenants to move away (select small tenants first)

□  Sort move set by bandwidth consumption (higher values first)

□  Identify target server for each tenant in set

□ Online bin packing algorithm (Johnson’s first-fit decreasing)

□ Constraint: b≤0.82 on target server (including new tenant)

□ If no server is found then start new server (in this case a couple
of large tenants are pro-actively migrated to the new server)

■  Handling under-utilized server:
□  Server considered under-utilized at

b≤0.3 (lower values result in too
many migrations)

□  All tenants on server are in move set
□  If not possible to clear server then

treat as a new server in overload case

■  Workload increases up to b=0.85, algorithm is triggered
■  Four tenants are migrated away and 99th percentile value decreases

New server
(destination)

Handling an overloaded server

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600
0

200

400

600

800

1000

B
an
dw
id
th
C
on
su
m
pt
io
n

99
th
Pe
rc
en
ti
le
V
al
ue
in
m
s

Benchmark runtime in seconds

Observed Bandwidth Consumption
99th Percentile Measured
99th Percentile Predicted

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600
0

200

400

600

800

1000

B
an
dw
id
th
C
on
su
m
pt
io
n

99
th
Pe
rc
en
ti
le
V
al
ue
in
m
s

Benchmark runtime in seconds

Observed Bandwidth Consumption
99th Percentile Measured
99th Percentile Predicted

Fourth question

Why should data in the cluster be
replicated and how to do it?

Why is it good to have multiple
copies of the data?

■  Scalability beyond a certain number of concurrently active users

■  High availability during normal operations

■  Alternating execution of resource-intensive operations (e.g. merge)

■  Rolling upgrades without downtime

■  Data migration without downtime

■  Reminder: Two in-memory copies allow faster writes and are more
predictable than one in-memory copy plus disk

■  Downsides:

□  Response time goal might be violated during recovery

□  You need to plan for twice the capacity

Tenant placement

Conventional
Mirrored Layout

T1

T2

T1

T2

T3

T4

T3

T4

If a node fails, all work moves to
one other node. The system must

be 100% over-provisioned.

T1

T2
T3

T1

T4
T5

T2

T5
T6

T4

T6
T3

If a node fails, work moves to
many other nodes. Allows

higher utilization of nodes.

Interleaved
Layout

■  Perfect placement:

□  100 tenants

□  2 copies/tenant

□  All tenants have same size

□  10 tenants/server

□  Perfect balancing (same load on all tenants):

□  6M rows (204 MB compressed) of data per tenant

□  The same (increasing) number of users per tenant

□  No writes
Mirrored Interleaved Improvement

No failures 4218 users 4506 users 7%

Periodic single
failures

2265 users 4250 users 88%

Interleaved tenant placement

Throughput before violating
response time goal

1
2
3

1
2
3

4
5
6

4
5
6

7
8
9

7
8
9

Mirrored

1
2
3

4
5
6

7
8
9

1
4
7

2
5
8

3
6
9

Interleaved

“Worst” server workload during failure

■  Same tenant mix and request rates in mirrored vs. interleaved setup
■  Multiple servers assume role of worst server due to round-robin failures

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600

B
an
dw
id
th
C
on
su
m
pt
io
n

Benchmark Runtime (s)

Mirrored (observed)
Interleaved (observed)
Mirrored (prediction)

Interleaved (prediction)

Requirements for placement algorithm

■  An optimal placement algorithm needs to cope with
multiple (conflicting) goals:

□  Balance load (b) across servers

□  Achieve good interleaving

■  Use migrations consciously for online layout improvements
(no big bang cluster re-organization)

■  Take usage patterns into account

□  Request rates double during last week before end of quarter

□  Time-zones, Christmas, etc.

Conclusion

■  Answers to four questions:

□  How do “in-memory” and “cloud computing” fit together?

□  Does virtualization have a negative impact on in-memory databases?

□  How to predict response times of an in-memory column database?

□  Why should data in the cluster be replicated and how to do it?

■  Questions?

Thank you!

We have student jobs available:

jan.schaffner@hpi.uni-potsdam.de

