Basic Text Search Functionalities

Text search

find matching documents

Document ranking

calculate importance of a document according to the query
Did you mean

calculate more important query terms than the specified one
Highlighting

Highlight the relevant query terms in the document/summary
Automatic summarizations

Create a summary of a document for getting an overview

Feature extraction:
extract characteristic keywords from a document

Fuzzy Search

search similar terms or phrases
Natural Language Search
answer natural language queries

AdvancedText Search Functionalities

"See Also"” search:
get more documents like this

Feature extraction:
find characteristic keywords

Entity extraction
extract entities like proper names/company names

Document classification:
assignh a document to predefined categories

Term search:
find better search terms; discover interesting
relationships

Document clustering:
discover sets of related documents

Sentiment Analysis
discover the sentiments of a document about a topic

Document Analysis I

Crawling / document input

get documents from web or any other source
Document filtering

convert a document from any format to plain text/html/xml

Tokenization

determine word, clause and sentence boundaries

Normalization

upper/lowercase; spelling variants; umlauts

Tagg.ing

determine word category (noun, verb, adjective, adverb, etc.)

Stemmin

singular/plura?case inflections

Document Analysis IT

Entity extraction

extract entities like company names, proper names and facts
based on dictionaries and rules

Term Identification

based on word category and stopword list

Phrase Generation (noun phrases)

combine adjacent words of particular categories (NN, AN,
NPN, ...)

Term Selection after processing a

document collection
for text mining : delete low - and high-frequency terms;
delete redundant phrases

Term Generation Example

"But Lieberman's criticism of Clinton's behavior may have
been more of a personal move than a political one.”

Lieberman; Lieberman's criticism; Lieberman's criticism of Clinton;
Lieberman's criticism of Clinton's behavior

criticism; criticism of Clinton; criticism of Clinton's behavior

Clinton; Clinton‘s behavior

behavior

personal move

move

Vector space retrieval model

Term, Term, Attr, Attr,
Doc,

oht of
bute value ¢
document d

0 for single
ed attributes)

Ranking : Page Rank

=Developed by Lawrence Page and Sergey Brin

=Based on relations between websites not on the content itself
*General concept: Random surfer model

*Weight of a page : PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C
Tn

E Iz)R(A) is the PageRank of page A

PR(Ti) is the PageRank of Ti, which links to page A

C(Ti) is the number of links of page Ti
d is a damping factor with 0 <=d <=1

Example :

PR(A) = 0.5 + 0.5 PR(C) A
I |)
PR(A) = 14/13 = 1.07692308 o

PR(B) = 10/13 = 0.76923077
PR(C) = 15/13 = 1.15384615

Iteration

10

11

12

Ranking : PAGE Rank

PR(A)

1

1

1.0625
1.07421875
1.07641602
1.07682800
1.07690525
1.07691973
1.07692245
1.07692296
1.07692305
1.07692307

1.07692308

PR(B)

1

0.75
0.765625
0.76855469
0.76910400
0.76920700
0.76922631
0.76922993
0.76923061
0.76923074
0.76923076
0.76923077

0.76923077

PR(C)

1

1.125
1.1484375
1.15283203
1.15365601
1.15381050
1.15383947
1.15384490
1.15384592
1.15384611
1.15384615
1.15384615

1.15384615

Ranking : BM25 / OKAPT distance

* Concept

Document weight is based on f * IDF

 Formulas

bm25(q.d) = éq]DFx(k”Ll)f (d.0)

K+ f(d,t)

IDF =log

N-f(#)+0.5
7(©)+0.5]

f(d,t) is the term frequency of term t in document d,

N is the number of documents

f(t) is the document frequency of term t

K, k1 are constants

be, or not
hether “tis nobl
The slings and a
Or to take arms
nd by opposin

—

Indexing Process

] to

Preprocessing be

or

(term, doc ID, <pos>) not

to
[] 011,46
Dictionary 111,57
2 (1,9
J’ 311,23

74

be

not

or

to

the

O |l (W |PH]|N

(term ID, doc ID, <pos>)

N
b

Inverted Index

[
\

Inverted Index

Query:
hello AND world

1 hello

2 world

VN

35 51 75 | 103
22 | 75 | 99
18 | 105 | 117 | 132 | 151

Two-Level Inverted List

MSBs are stored
implicitly

46=0101110
oooo111 |°©
0001111
00 0 0011000
on| a4 __—_—__-‘~\‘\5s‘ 0011111
w| 8 0101000 | 4
1| 12 0101010) <{ Sequential]
0101110 ¥ scan
0111101
Bucket o
offsets 1000100
1001011
1010100
1011011

Inverted List Intersection

1 m 1 n
39 | 41| 46 | 68 | 72 n 7 | 15| 24| 31|40 | 42| 46| 61| 68| 75| 84|91
0000111
0001111
0100111 S 0011000
0101001 T, — 0011111
0101110 0| 8 0101000
1000100 _/“ 12 0101010
0101110 —\
1001000 — 26 | 68
1000100 _/7
1001011
1010100
Expected time Up to 100x 1011011
O(m+min{n,Bm}) faster!

|

Query:
,hello world“

]

Phrase Search

51

75

103

g

1 hello

2 world

12

32

99

13

Two-Word Phrase Index

|

Cost estimation:
min{|al,|b]|}

|

N

,Berlin

is

[\)

beautiful| city."

[\, —

NG

T~
S

/

Inverted Index

_

Querying the Phrase Index

° (11 o K€ ° °
is a ,a s ,beautiful city’

(1

beautiful 1|4

20

isa |24 17 {} city 4 |9 | 15

Phrase Index: Speed-Up

‘Difficult’ queries with
large result sets

Speedup

Size

Suffix Arrays

Suffix array of
,thisis a“

a o (11

is a nIS d
a /
his is a

alphabetically is a /

sorted ..
is is a
S a
S is a _ _
\L this is a Open Spurce |mplementahops at
http://pizzachili.dcc.uchile.cl

time [ms]

Phrase Search

Inverted Index vs. Suffix Arrays

C | | | | | T .
1 Inverted Index —+ -
' af, fm ¢
i RLFM .
L f SAs suffer from] sada_csa, __
v — large result sets
_________ X.... -
X)(............. X
}\I—//'-\‘;\:-
:_ Comparison without
Phrase Index!
| 1 I | I 1
2 3 4 5 6 7 8 9 10

query length

Text Analysis: Entity Extraction

“I saw Ricky Lake while visiting New York.”

} \ Dictionary
‘(‘!!‘ IOOkup]
Given Proper
Name Noun

e
- Rule
L (Finite State Machine)

[Person]

Indexing Unstructured Data

#

key blob X y
0 4.3 0

1 23.4 1

2 3.4 1
\3‘ 1.5 0
4 0.5 1

5 1.7 0

|

Document

Inverted |<

Q table

VN

3. async.

Rules

l

[Linguistic Analysis,

]

fk state . '
4 INDEXING Entity Extraction
5 WAIT

—)\

4.

Entity table i

key persion city company
0 Steve Berlin
2 Hugo Berlin
3 Potsdam SAP
5 IBM

Entity tables

Entity/value pairs

J

Multi-values
key name city company
Berlin
0 Steve Potsdam
Hugo .

2 Peter Berlin

3 Potsdam SAP
IBM

> Intel

Dynamic

columns

key entity value
0 name Steve
0 city Berlin
0 city Potsdam
2 name Hugo
2 name Peter
2 city Berlin
city Potsdam
company SAP
5 company IBM
5 company Intel

Analytical View combining
Structured and Unstructured Data

Facts Data analysis tools for
structured data
l Entitie:]

Property Table

= Infinite number of fields

= Multi value support

* Included into relational model

= Field creation is a DML operation

= Internal optimization for efficient
processing

= Support of range fields
= Validity support

Document Classification

« KNN Classifier

— compute the k most similar
documents to query document

— compute class weights according to
classes assigned to those k nearest
neighbours

« Simple Centroid Classifier

— compute centroid (average) vector
for each class

— compute similarity between query
vector and centroids

« Weighted Centroid Classifier

— Compute a weight for each
document based on how well it
distinguishes between classes

— compute the weighted centroids

— compute similarity between query
vector and centroids

= Kernel method
— support vector machine

linear trennbar hicht linear trennbar

