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o Key Question: What is the memory
hierarchy and how to exploit it?

¢ What to take home

e How computer memory is organized.

e What should be considered when working with
main memory.

e How future computer architectures potentially
look like.
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o What does this
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. What does this
"
T mean?’

e Memory gets slower for the CPU
e Multiple memory channels, stalling latency

e Frequency is stalling, while # transistors
INCreases

e Degree of parallelism increases
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Random., disk 316 values/sec

Sequential, disk 53.2M values/sec

)
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Sequential, SSD 42.2M values/sec
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Random, memory
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* Disk tests were carried out on a freshly booted machine (a Windows 2003 server with 64GB RAM and
eight 15,000RPM SAS disks in RAIDS configuration) to eliminate the effect of operating-system disk caching.
SSD test used a latest generation Intel high-performance SATA SSD.

8 A.Jacobs. The Pathologies of Big Data. Comm. of the ACM, 52(8), Aug. 2009
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== Memory Hierarchy

Core 1 Core 2

Reqister Register

L1 [ [ | L1 [ [ |
Level 1 Cache Level 1 Cache
Level 2 Cache Level 2 Cache

Level 3 Cache

Main Memory

Core 3 Core 4

Register Register

L1 [ [ | L1 [ [ |
Level 1 Cache Level 1 Cache
Level 2 Cache Level 2 Cache

10

Tuesday, June 28, 2011



L Memory Hierarchy

Why not make larger caches?

e SRAM - complicated structure, bigger, more
expensive, very fast

e DRAM - simpler structure, slower, constant
refresh needed. But, can be read in parallel
and exploited by applying sequential access
patterns.

Organize memory in hierarchies where faster
memories are used as caches for slower
memory.
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... Cost of Memory
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' AcCcess

e Each memory access incurs a latency due to the
organization of DRAM.

e The different caches try to hide this latency
e Multi-level data caches
e Instruction caches

e Translation lookaside buffer (TLB) for virtual
address translation

e (Caches resemble features known from database
systems (e.g. buffer pool) but are controlled by
hardware.
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e Caches exploit locality in programs

e Spatial Locality - related data is
often spatially close

e Temporal Locality - programs tend
to re-use data frequently

13
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e Processor caches are supposed to be inherent and
should be completely transparent to user level code.

e Different write policies
e Write-through - direct write to memory

e Write-back - dirty flag per cache line, as soon as
the cache line is evicted, data is written

e Write Combining - combine multiple write
operations per cache line and write then

e Uncacheable - cache line is not stored in cache
before write

|4
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" Writing 11

e For multi-processor systems cache
coherency becomes increasingly complex

e MESI protocol (modified, exclusive,
shared, invalid) - 4 states to implement
write-back with concurrent read-only
aCcCess

e With multiple threads, prefetching and
write-back may saturate the bus very
early

|5
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L% Cache Conscious

Cache Conscious - optimizing the
program’s performance by changing the
organization and layout of its data with
additional knowledge of the cache properties
("Cache-conscious structure definition”,
Chilimbi et al., ACM SIGPLAN 1999).

Cache Oblivious - optimizing the program’s
performance by changing the algorithms to
adopt the underlying hardware properties
without additional knowledge.
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e NUMA - Non Uniform Memory Access

e UMA - Memory is connected using a
single hub (Northbridge) to all computing
resources, even on SMP machines.

e NUMA - Each CPU has its own memory
controller that directly connects to main
memory. However, main memory Iis
shared between all other computing
resources

18
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L % NUMA Architecture

e Each CPU has it's own memory controller

e All CPUs are interconnected using a special point-to-
point protocol - for Intel its QPI, AMD uses
HyperTransport

e Current Intel systems support 8 NUMA nodes without
additional hardware for interconnection ( 8x8=64
core / 8x12=96 core)

e QPI / HyperTransport are built for extensibility and
scaling

e However, adding a new node introduces additional
latency penalty

19
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IO Hub 1 IO Hub 2

CPU 3 CpPU 4 CPU 7 CPU 8

1 hop 2 hop

IO Hub 3 IO Hub 4
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Latency / NUMA
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- Nodes
2 x4c | 2 x 6c |4 x 8| 8 x &
NUMA Node | Xeon Xeon Xeon Xeon
5450 5050 7550 79550
Node 0 0 220 274 294
Node 1 - 304 316 482
Node 2 - - 337 787
Node 3 - - 385 682
Node 4 - - . 932
Node 5 - - . 47
Node 6 - - - 914
Node 7 - - - 919
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= NUMA Questions

e Is my application memory bound?
e Is it possible to observe QPI hotspots?

e Can the access patterns of the
application be identified to allow for
partitioning?

e How should the memory be
partitioned across the application?

22
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= NUMA Awareness

e Per default, the operating system will
allocate the memory randomly on all
nodes to spread the possible latency
penalty!

e Placing the memory on a single node
may create additional bottlenecks in
the core-to-core communication!

23
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How to exploit the
Memory
Hierarchy?




Allocation &&
Loading

Memory allocation can be crucial to program
performance and it is important to understand

its implementation.
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e Avoid cache line splits - Padding

e Avoid memory page splits - Alignment /
Padding

e Heap contention - multiple threads try to
allocate from the same allocator with

exclusive access

ftp://g.oswego.edu/pub/misc/malloc.c
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' Allocation

e Instead of relying on the operating system for
optimal memory partitioning it is possible to
perform NUMA-aware memory allocation using
libnuma

numa_alloc_onnode(size, region)
numa_run_on_node_mask(region_mask)
numa_free(ptr, size)

e In addition it's possible to specify more
complex allocations (multiple nodes), read
neighboring relationships, and move memory
regions

26
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Modify the data structure to match integer
denominators of the size of a cache line.

#include <stdio.h>

typedef struct _bad sizeof(bad) ==
{

unsigned first;
unsigned b;
unsigned c;
char second;

} bad;

int main(int argc, char* argv)

{
printf("%lLd\n", sizeof(bad));
return 0;

¥
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Modify the data structure to match integer
denominators of the size of a cache line.

#include <stdio.h>

typedef struct _bad sizeof(bad) ==
{

unsigned first; /

unsigned b; 13

unsigned c;
char second;
} bad;

int main(int argc, char* argv)

{
printf("%lLd\n", sizeof(bad));
return 0;

¥
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Modify the data structure to match integer
denominators of the size of a cache line.

#include <stdio.h>

typedef struct _bad sizeof(bad) ==
{
unsigned first; / \
unsigned b; 13 | 6

unsigned c;
char second;
} bad;

int main(int argc, char* argv)

{
printf("%lLd\n", sizeof(bad));
return 0;

¥
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Modify the data structure to match integer
denominators of the size of a cache line.

#include <stdio.h>

typedef struct _bad sizeof(bad) ==
{
unsigned first; / \
unsigned b; 13 | 6

unsigned c;

char second; /

} bad;
-fpack-struct=|
int main(int argc, char* argv)
{
printf("%lLd\n", sizeof(bad));
return 0;

¥
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Modify the data structure to match integer
denominators of the size of a cache line.

#include <stdio.h>

typedef struct _bad sizeof(bad) ==

{
unsigned first; / \

unsigned b;
unsigned c; 13 16

char second; / \
} bad;
-fpack-struct=| -fpack-struct=4
int main(int argc, char* argv)
{
printf("%lLd\n", sizeof(bad));
return 0;

¥
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i Prefetching

Prefetching is used to asynchronously
read co-located data (see Locality).

e Load adjacent cache line

e Pattern detection with stride based
loading

28
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5 Virtualized Access

Virtualization of resources becomes more
and more important even for main
memory databases:

e System consolidation,
e Administrative consolidation,

e Better provisioning and better
scaling.

32
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ST Physical Virtualized
Description
System System

LI Miss Latency I O I O

LI Replace Time I 2 I 2

L2 Miss Latency I 97 I 96

L2 Replace Time 3 34 3 3 3

TLB Miss Latency - 23

33
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e Physical Virtualized
Description
System System

LI Miss Latency I O I O

LI Replace Time I 2 I 2

L2 Miss Latency I 97 I 96

L2 Replace Time 3 34

TLB Miss Latency -
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A Physical Virtualized
Description
System System
LI Miss Latency I O I O
LI Replace Time I 2 I 2
L2 Miss Latency I 97 I 96
L2 Replace Time 3 34

TLB Miss Latency

33

%% Virtualized Access

First Conclusion:
Memory Access does
not incur a dedicated
access latency!

Memory page change
requires additional
handling and thus
incurs latency!
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To understand the system’s performance it is necessary to
correctly observe its behavior.

e Identify relevant measures (CPU cycles, cache misses,
resource stalls)

e Collect profiling data using sampling based or “real”
counting

o oprofile - provides sample-based performance
evaluation for time based profiling.

e PAPI - measure program performance based on
hardware counters. Each CPU provides special
registers to count profiling information based on
special hardware events (CPU cycles, cache misses).

34
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=% (PAPI Example)

#1nclude <stdio.h>
#1nclude <papi.h>

o Measure Performance

int main()
{
// PAPI events can be identified by name or const value
char* event = "PAPI_TOT_CYC";
// Events and results are identified
// as array
int events[1];
long long result[1];

PAPI_library_init(PAPI_VER_CURRENT);
PAPI_event_name_to_code((char *) papi, &events[0]);
PAPI_start_counters(events, 1);
long long sum = 0;
// Do something intensive here
for (unsigned 1=0; 1 < 1000; ++1)
sum += 1;
PAPI_stop_counters(result, 1)
printf("%ld\n", result[0]);
return 0;

35 ;
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e "Making B+-Trees Cache Conscious in
Main Memory” SIGMOD 2000, J. Rao
and K. A. RossS

36
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2. Cache Sensitive
T B+ Tree

e B+ Tree - optimized search tree,
typically used for indices, originally
used to persist indexed data on disk!

e Cache Sensitive B+ Trees optimize
cache performance by applying cache
conscious techniques

e Pointer elimination

e Block structures

37
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L e Conclusion

e Observe system’s behavior
e Understand system’s performance

e Apply applicable optimization
techniques.

39
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The Future
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e From single-core to multi-core to
many-core!

e Frequency ~ Power Consumption ~
Moores Law [1]

e Underclocking a single core by 20
percent saves half the power while
sacrificing just 13 percent of the
performance.

41
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http://spectrum.ieee.org/computing/hardware/why-cpu-frequency-stalled
http://spectrum.ieee.org/computing/hardware/why-cpu-frequency-stalled

R Intel SCC

o Experimental research platform for new concepts
to evaluate the evolution from multi-core to
many-core.

e 48 pentium style cores arranged in a two-
dimensional array of 6 x 4 tiles with 2 cores each

e FEach core has 16kB L1, and 256kB L2 cache
private to the core

e All cores are connected to each other using an
on-chip mesh network with 256 GB/s bisectional
bandwidth

42
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Intel SCC

e Real NUMA, measurable latency
between memory access of cores

e Dynamic lookup tables - each core
has a dynamical mapping of main
memory to its visible, no cache
coherency

e Direct Message Passing - new
communication strategy for work
partitioning and coherency protocols

43
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The Angstrom
L ,P' Multi-Core Computing
Project

e 1000 cores by 2014, the core is the logic gate of
the 21st century

e Spatial Problem - huge near-neighbor
nandwidth, low long distance bandwidth. Limited
ner-core on-chip memories, off-chip memory
nandwidth is a big issue. Energy is new constraint.

_ Xphysical .CacheSize
Physical I/0O /\\/T"G[Xp,yp] J-Memory Size
S .Processor Speed
IO[x.y] .DeviceType 13 .OtherTileParameters
.DeviceSpeed 3 B

/l'.'............ }s
A A A A A A A A Y
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= Conclusion and
' Motivation

| Inst.i't‘ut
e For optimal performance it is crucial to
understand the system and observe
its behavior.

e Main memory based applications need
to exploit this:

e Sequential reading

e Block sizes of the different caches

45
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ﬂ attne Recommended Readings

Latency lags bandwitdh - http://portal.acm.org/citation.cfm?id=1022594.1022596

Database architecture optimized for the new bottleneck: Memory access - http://

ece.ut.ac.ir/classpages/f84/advanceddatabase/paper/db_paper/boncz99database.pdf

DSM vs. NSM: CPU performance tradeoffs in block-oriented query processing -
http://portal.acm.org/citation.cfm?id=1457150.1457160

Making B+-Trees Cache Conscious in Main Memory - http://portal.acm.org/
citation.cfm?id=335191.335449

Breaking the memory wall in MonetDB - http://portal.acm.org/beta/citation.cfm?
id=1409360.1409380

Generic database cost models for hierarchical memory systems - http://

portal.acm.org/beta/citation.cfm?
id=1287369.1287387&coll=DL&dI=ACM&CFID=93162465&CFTOKEN=94738359

PAPI Performance counter - http://icl.cs.utk.edu/papi/index.html

Memory system support for irregular applications - http://www.springerlink.com/
index/TQY3BCP1AEL3AQHG6.pdf

The pathologies of big data - http://portal.acm.org/beta/citation.cfm?
id=1536616.1536632&coll=DL&dI=ACM&RCFID=93162465&CFTOKEN=94738359

Intel Tera Scale Research - http://techresearch.intel.com/articles/Tera-Scale/1421.htm
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