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Agenda
• Key Question: What is the memory 

hierarchy and how to exploit it?

• What to take home
• How computer memory is organized.

• What should be considered when working with 
main memory.

• How future computer architectures potentially 
look like.
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What does this 
mean?
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• Memory gets slower for the CPU

• Multiple memory channels, stalling latency

• Frequency is stalling, while # transistors 
increases

• Degree of parallelism increases

What does this 
mean?
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Back to Main 
Memory
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Memory Access

 A. Jacobs. The Pathologies of Big Data. Comm. of the ACM, 52(8), Aug. 2009

Log Scale!
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Memory Hierarchy
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has profoundly influenced the database area and indeed our 
work on MonetDB.

Another facet is that predictable array-wise processing 
models have been strongly favored in a string of recent CPU 
architectural innovations. While the rule “make the common 
case fast” was exploited time and time again to design and 
construct ever more complex CPUs, the difference in perfor-
mance efficiency achieved by optimized code and intended 
use (e.g., “multimedia applications”) versus nonoptimized 
code and nonintended use (e.g., “legacy database applica-
tions”) has become very significant. A concrete example is 
the evolution of CPUs from executing a single instruction 
per clock cycle, to multi-issue CPUs that use deeply pipe-
lined execution; sometimes splitting instructions in more 
than 30 dependent stages. Program code that has a high 
degree of independence and predictability (multimedia or 
matrix calculations) fills the pipelines of modern CPUs per-
fectly, while code with many dependencies (e.g., traversing a 
hash-table or B-tree) with unpredictable if-then-else checks, 
leaves many holes in the CPU pipelines, achieving much 
lower throughput.

2.1. The memory hierarchy
The main memory of computers consists of dynamic random 
access memory (DRAM) chips. While CPU clock-speeds have 
been increasing rapidly, DRAM access latency has hardly 
improved in the past 20 years. Reading DRAM memory took 
1–2 cycles in the early 1980s, currently it can take more than 
300 cycles. Since typically one in three program instructions 
is a memory load/store, this “memory wall” can in the worst 
case reduce efficiency of modern CPUs by two orders of mag-
nitude. Typical system monitoring tools (top, or Windows 
Task manager) do not provide insight in this performance 
aspect, a 100% busy CPU could be 95% memory stalled.

To hide the high DRAM latency, the memory hierar-
chy has been extended with cache memories (cf., Figure 1), 
typically located on the CPU chip itself. The fundamental 

principle of all cache architectures is reference locality, i.e., 
the assumption that at any time the CPU repeatedly accesses 
only a limited amount of data that fits in the cache. Only the 
first access is “slow,” as the data has to be loaded from main 
memory, i.e., a compulsory cache miss. Subsequent accesses 
(to the same data or memory addresses) are then “fast” as 
the data is then available in the cache. This is called a cache 
hit. The fraction of memory accesses that can be fulfilled 
from the cache is called cache hit rate.

Cache memories are organized in multiple cascading lev-
els between the main memory and the CPU. They become 
faster, but smaller, the closer they are to the CPU. In the 
remainder we assume a typical system with two cache levels 
(L1 and L2). However, the discussion can easily be general-
ized to an arbitrary number of cascading cache levels in a 
straightforward way.

In practice, cache memories keep not only the most 
recently accessed data, but also the instructions that are cur-
rently being executed. Therefore, almost all systems nowa-
days implement two separate L1 caches, a read-only one for 
instructions and a read-write one for data. The L2 cache, 
however, is usually a single “unified” read-write cache used 
for both instructions and data.

A number of fundamental characteristics and parameters 
of cache memories are relevant for the sequel:
Capacity (C). A cache’s capacity defines its total size in bytes. 
Typical cache sizes range from 32KB to 4MB.
Line size (Z). Caches are organized in cache lines, which rep-
resent the smallest unit of transfer between adjacent cache 
levels. Whenever a cache miss occurs, a complete cache line 
(i.e., multiple consecutive words) is loaded from the next 
cache level or from main memory, transferring all bits in the 
cache line in parallel over a wide bus. This exploits spatial 
locality, increasing the chances of cache hits for future refer-
ences to data that is “close to” the reference that caused a 
cache miss. The typical cache-line size is 64 bytes.
Associativity (A). An A-way set associative cache allows load-
ing a line into one of A different positions. If A > 1, some 
cache replacement policy chooses one from the A candidates. 
Least recently used (LRU) is the most common replacement 
algorithm. In case A = 1, the cache is called directly mapped. 
This organization causes the least (virtually no) overhead in 
determining the cache-line candidate. However, it also offers 
the least flexibility and may cause a lot of so-called conflict 
misses. The other extreme case is fully associative caches. 
Here, each memory address can be loaded to any line in the 
cache (A = #). This avoids conflict misses, and only so-called 
capacity misses occur as the cache capacity gets exceeded. 
However, determining the cache-line candidate in this strat-
egy causes a relatively high overhead that increases with 
the cache size. Hence, it is feasible only for smaller caches. 
Current PCs and workstations typically implement two- to 
eight-way set associative caches.
Latency (l) is the time span from issuing a data access 
until the result is available in the CPU. Accessing data that 
is already available in the L1 cache causes L1 access latency 
(lL1), which is typically rather small (1 or 2 CPU cycles). In 
case the requested data is not found in L1, an L1 miss occurs, 
additionally delaying the data access by L2 access latency (lL2) 

Figure 1: Hierarchical memory architecture.
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Memory Hierarchy
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Memory Hierarchy
Why not make larger caches?

• SRAM - complicated structure, bigger, more 
expensive, very fast

• DRAM - simpler structure, slower, constant 
refresh needed. But, can be read in parallel 
and exploited by applying sequential access 
patterns.

Organize memory in hierarchies where faster 
memories are used as caches for slower 
memory.

11
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Cost of Memory 
Access

• Each memory access incurs a latency due to the 
organization of DRAM.

• The different caches try to hide this latency

• Multi-level data caches

• Instruction caches

• Translation lookaside buffer (TLB) for virtual 
address translation

• Caches resemble features known from database 
systems (e.g. buffer pool) but are controlled by 
hardware.

12
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Locality of 
Reference

• Caches exploit locality in programs

• Spatial Locality - related data is 
often spatially close

• Temporal Locality - programs tend 
to re-use data frequently

13
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Writing I
• Processor caches are supposed to be inherent and 

should be completely transparent to user level code.

• Different write policies

• Write-through - direct write to memory

• Write-back - dirty flag per cache line, as soon as 
the cache line is evicted, data is written

• Write Combining - combine multiple write 
operations per cache line and write then

• Uncacheable - cache line is not stored in cache 
before write

14
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Writing II
• For multi-processor systems cache 

coherency becomes increasingly complex

• MESI protocol (modified, exclusive, 
shared, invalid) - 4 states to implement 
write-back with concurrent read-only 
access

• With multiple threads, prefetching and 
write-back may saturate the bus very 
early

15
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Cache Conscious
Cache Conscious - optimizing the 
program’s performance by changing the 
organization and layout of its data with 
additional knowledge of the cache properties 
(“Cache-conscious structure definition”, 
Chilimbi et al., ACM SIGPLAN 1999).

Cache Oblivious - optimizing the program’s 
performance by changing the algorithms to 
adopt the underlying hardware properties 
without additional knowledge.

16
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NUMA
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NUMA
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• NUMA - Non Uniform Memory Access

• UMA - Memory is connected using a 
single hub (Northbridge) to all computing 
resources, even on SMP machines.

• NUMA - Each CPU has its own memory 
controller that directly connects to main 
memory. However, main memory is 
shared between all other computing 
resources

Tuesday, June 28, 2011



NUMA Architecture
• Each CPU has it’s own memory controller

• All CPUs are interconnected using a special point-to-
point protocol - for Intel its QPI, AMD uses 
HyperTransport

• Current Intel systems support 8 NUMA nodes without 
additional hardware for interconnection ( 8x8=64 
core / 8x12=96 core)

• QPI / HyperTransport are built for extensibility  and 
scaling

• However, adding a new node introduces additional 
latency penalty

19
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Example: 4-way 
System
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Latency / NUMA 
Nodes
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Figure 2: Selection and Projection based on Posi-
tions

intermediate results (e.g. position lists) together with field
definitions to create dynamic views on the input tables. Fig-
ure 2 gives an example for this execution model.

• there exist different access levels to main memory that
have to be considered: same node, near node, far node

• each of the types has different dependencies, the larger
the number of cpus per system gets the bigger the
problem gets. with 8 way machines there are only 3
zones, but

• execution model can be chosen between container at a
time or operator at a time, for the latter case the issue
might be that the random access to multiple containers
will yield a negative performance impact.

• as an extension to the classical allocation model of
HYRISE, the allocation supports that each internal
partition can be allocated on a specified NUMA node.

• the query plan operator can be executed in two ad-
ditional ways, either the operator ignores the affinity
of the given memory region and will be automatically
scheduled to a CPU close to this region, or the opera-
tor can manually specify an affinity to a CPU

• this behavior becomes especially interesting if two par-
titions are located on different cores, e.g. in case of
joins.

Table 1: Last Level Cache Latency for different
NUMA systems

NUMA Node
2 x 4c
Xeon
5450

2 x 6c
Xeon
5650

4 x 8c
Xeon
7550

8 x 8c
Xeon
7550

Node 0 0 220 274 294
Node 1 - 364 316 482
Node 2 - - 337 787
Node 3 - - 385 682
Node 4 - - - 932
Node 5 - - - 847
Node 6 - - - 914
Node 7 - - - 919

• the intermediate results can be allocated locally or dis-
patched on numa nodes as well

• Experiments:

– simpletablescan local

– simpeltablescan remote

– join local vs. join remote vs. join local/remote

– hashing and probing, local vs. remote — the
question is how big is the overhead that is induced
by the dbms? Furthermore it should be discussed
how data can be shipped between processes

• Optimizations: make operators processor affinity aware,
trust in OS level scheduling

• from an OLTP vs OLAP perspective the question is
when is it advisable to perform such complex opera-
tions or when is it just better to live with the existing
“normal” memory distribution.

• what happens with indices

• should replication be mentioned during query execu-
tion

• can we draw an experiment where it is actually

• we need an experiment that shows, that custom place-
ment can achieve better performance than random place-
ment of memory ( given a certain space constraint )

5. DATA PLACEMENT

• given the latency penalties of NUMA for highly-parallel
systems, how can we translate those effects for parti-
tioning

• is NUMA-aware partitioning only required for run-
time?

• is NUMA-aware partitioning relevant for workload based
methods?

• how can we extend the existing hyrise layout algorithm
to support NUMA aware partitioning?

• how can we make sure that what we try to optimize is
really relevant?

5.1 Ideas
It is basically possible to model the access to remote mem-

ory regions in different ways. On the one hand we model re-
mote memory as another level of cache. On the other hand
we model the access to remote memory as an orthogonal
problem to the cache hierarchy.

5.1.1 Another layer
The advantage of modeling access to remote memory as

another layer of cache makes it easy to gain fast results since
the existing cost model can easily be extended. The disad-
vantage is that for larger systems we see many different la-
tencies based on the layout of the CPUs per board, plus for
interconnected systems using some kind of node controller
even more latency groups occur that need to be mapped into
the cost model.
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NUMA Questions

22

• Is my application memory bound?

• Is it possible to observe QPI hotspots?

• Can the access patterns of the 
application be identified to allow for 
partitioning?

• How should the memory be 
partitioned across the application?
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NUMA Awareness

• Per default, the operating system will 
allocate the memory randomly on all 
nodes to spread the possible latency 
penalty!

• Placing the memory on a single node 
may create additional bottlenecks in 
the core-to-core communication!

23
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How to exploit the 
Memory 

Hierarchy?
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Allocation && 
Loading

Memory allocation can be crucial to program 
performance and it is important to understand 
its implementation. 

• Avoid cache line splits - Padding

• Avoid memory page splits - Alignment / 
Padding

• Heap contention - multiple threads try to 
allocate from the same allocator with 
exclusive access

25
ftp://g.oswego.edu/pub/misc/malloc.c
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NUMA-aware 
Allocation

• Instead of relying on the operating system for 
optimal memory partitioning it is possible to 
perform NUMA-aware memory allocation using 
libnuma

numa_alloc_onnode(size, region)
numa_run_on_node_mask(region_mask)
numa_free(ptr, size)

• In addition it’s possible to specify more 
complex allocations (multiple nodes), read 
neighboring relationships, and move memory 
regions 

26
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Padding
Modify the data structure to match integer 
denominators of the size of a cache line.

#include <stdio.h>

typedef struct _bad
{
	 unsigned first;
	 unsigned b;
	 unsigned c;
	 char second;
} bad;

int main(int argc, char* argv)
{
	 printf("%ld\n", sizeof(bad));
	 return 0;
}

sizeof(bad) == ??

27
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Padding
Modify the data structure to match integer 
denominators of the size of a cache line.

#include <stdio.h>

typedef struct _bad
{
	 unsigned first;
	 unsigned b;
	 unsigned c;
	 char second;
} bad;

int main(int argc, char* argv)
{
	 printf("%ld\n", sizeof(bad));
	 return 0;
}

sizeof(bad) == ??

13 16

27

Tuesday, June 28, 2011



Padding
Modify the data structure to match integer 
denominators of the size of a cache line.

#include <stdio.h>

typedef struct _bad
{
	 unsigned first;
	 unsigned b;
	 unsigned c;
	 char second;
} bad;

int main(int argc, char* argv)
{
	 printf("%ld\n", sizeof(bad));
	 return 0;
}

sizeof(bad) == ??

13 16

-fpack-struct=1
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Padding
Modify the data structure to match integer 
denominators of the size of a cache line.

#include <stdio.h>

typedef struct _bad
{
	 unsigned first;
	 unsigned b;
	 unsigned c;
	 char second;
} bad;

int main(int argc, char* argv)
{
	 printf("%ld\n", sizeof(bad));
	 return 0;
}

sizeof(bad) == ??

13 16

-fpack-struct=1 -fpack-struct=4
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Prefetching

Prefetching is used to asynchronously 
read co-located data (see Locality).

• Load adjacent cache line

• Pattern detection with stride based 
loading

28
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No Prefetching

2 values per cache line
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No Prefetching

2 values per cache line
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Correct Prefetching
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Correct Prefetching
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Incorrect Prefetching
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Incorrect Prefetching
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Virtualized Access

Virtualization of resources becomes more 
and more important even for main 
memory databases:

• System consolidation,

• Administrative consolidation,

• Better provisioning and better 
scaling.

32
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Virtualized Access

33

Description
Physical 
System

Virtualized 
System

L1 Miss Latency 10 10

L1 Replace Time 12 12

L2 Miss Latency 197 196

L2 Replace Time 334 333

TLB Miss Latency - 23
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Virtualized Access
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Description
Physical 
System

Virtualized 
System

L1 Miss Latency 10 10

L1 Replace Time 12 12

L2 Miss Latency 197 196

L2 Replace Time 334 333

TLB Miss Latency - 23
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Virtualized Access

33

Description
Physical 
System

Virtualized 
System

L1 Miss Latency 10 10

L1 Replace Time 12 12

L2 Miss Latency 197 196

L2 Replace Time 334 333

TLB Miss Latency - 23

First Conclusion: 
Memory Access does 
not incur a dedicated 
access latency!

Memory page change 
requires additional 
handling and thus 
incurs latency!
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Measure 
Performance

To understand the system’s performance it is necessary to 
correctly observe its behavior.

• Identify relevant measures (CPU cycles, cache misses, 
resource stalls)

• Collect profiling data using sampling based or “real” 
counting

• oprofile - provides sample-based performance 
evaluation for time based profiling.

• PAPI - measure program performance based on 
hardware counters. Each CPU provides special 
registers to count profiling information based on 
special hardware events (CPU cycles, cache misses).

34
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Measure Performance
(PAPI Example)

35

#include <stdio.h>
#include <papi.h>  

int main()
{
  // PAPI events can be identified by name or const value
  char* event = "PAPI_TOT_CYC";
  // Events and results are identified 
  // as array
  int events[1];
  long long result[1];

  PAPI_library_init(PAPI_VER_CURRENT);
  PAPI_event_name_to_code((char *) papi, &events[0]);
  PAPI_start_counters(events, 1);
  long long sum = 0;
  // Do something intensive here
  for (unsigned i=0; i < 1000; ++i)
     sum += i;
  PAPI_stop_counters(result, 1)
  printf("%ld\n", result[0]);
  return 0;
}
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Example

• “Making B+-Trees Cache Conscious in 
Main Memory”  SIGMOD 2000,  J. Rao 
and  K. A. Ross

36
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Cache Sensitive 
B+ Tree

• B+ Tree - optimized search tree, 
typically used for indices, originally 
used to persist indexed data on disk!

• Cache Sensitive B+ Trees optimize 
cache performance by applying cache 
conscious techniques

• Pointer elimination

• Block structures

37
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B+ Tree
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Tree Comparison
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B+ Tree

incremental updates of B+-Trees. We achieve this
goal by balancing the best features of the two index
structures. Our tree structure, which we call a
CSB+-Tree, is similar to a B+-Tree in the way it
handles updates. However, a CSB+-Tree has fewer
pointers per node than a B+-Tree. By having fewer
pointers per node, we have more room for keys and
hence better cache performance.

We get away with fewer pointers by using a
limited amount of arithmetic on array offsets,
together with the pointers, to identify child nodes.
For simplicity of presentation, we initially present
a version of CSB+-Trees in which a node contains
exactly one pointer. Sometimes we simply use the
term CSB+-Tree to refer to this version when the
context is clear. In Section 3.2 we will describe
variants with more pointers per node. The number
of pointers per node is a parameter that can be
tuned to obtain good performance under particular
workloads. We describe another variant of CSB+-
Trees that further reduces split cost in Section 3.3.

3.1 Cache Sensitive B
+
-Trees with One

Child Pointer

A CSB+-Tree is a balanced multi-way search tree.
Every node in a CSB+-Tree of order d contains
m keys, where d <= m <= 2d. A CSB+-Tree
puts all the child nodes of any given node into a
node group. Nodes within a node group are stored
contiguously and can be accessed using an offset
to the first node in the group.1 Each internal
node in a CSB+-Tree has the following structure:
nKeys :number of keys in the node
firstChild :pointer to the first child node
keyList[2d] :a list of keys.

Each leaf node stores a list of <key, tuple ID> pairs,
the number of these pairs, and two sibling pointers.2

Since a CSB+-Tree node needs to store just one
child pointer explicitly, it can store more keys per
node than a B+-Tree. For example, if the node size
(and cache line size) is 64 bytes and a key and a
child pointer each occupies 4 bytes, then a B+-Tree
can only hold 7 keys per node whereas a CSB+-Tree
can have 14 keys per node. This gives CSB+-Tree
two kinds of benefit: (a) a cache line can satisfy
(almost) one more level of comparisons and thus the
number of cache lines needed for a search is fewer;
(b) the fan out of each node is larger, which means

1[O’N92] also considers grouping nodes together in a disk-

based B+-Tree to improve I/O performance.
2see Section 5 for further discussion of how leaf nodes can

be implemented.

it uses less space. Figure 2 shows a CSB+-Tree of
order 1. Each dashed box represents a node group.
The arrows from the internal nodes represent the
first child pointers. All the nodes within a node
group are physically adjacent to each other. In
this example, a node group can have no more than
three nodes within it. Note that grouping is just a
physical ordering property, and does not have any
associated space overhead.

2     3

25   

30

5     7 12   13 16   19 20   22 24   25 27   30 31   33 36   39

3     13   19

22

33

7     

Figure 2: A CSB+-Tree of Order 1

3.1.1 Operations on a CSB
+
-Tree

In this section, we consider bulkload, search, insert
and delete operations on CSB+-Trees.

Bulkload. A typical bulkloading algorithm for
B+-Trees is to keep inserting sorted leaf entries into
the rightmost path from the root. However, this
method can be expensive if used for CSB+-Trees
since nodes in the same node group are not created
sequentially. A more efficient bulkloading method
for CSB+-Trees is to build the index structure level
by level. We allocate space for all the leaf entries.
We then calculate how many nodes are needed in
the higher level and then allocate a continuous
chunk of space for all the nodes in this level. We
then fill in the entries of nodes in the higher level
by copying the largest value in each node in the
lower level. We also set the first child pointer in
each higher level node. We repeat the process until
the higher level has only one node and this node is
designated as the root. Since all the nodes in the
same level are contiguous when they are created, we
don’t have to do any additional copying to form a
node group.

Search. Searching a CSB+-Tree is similar to
searching a B+-Tree. Once we have determined
the rightmost key K in the node that is smaller
than the search key, we simply add the offset of K
to the first-child pointer to get the address of the
child node. (For values less than or equal to the
leftmost key, the offset is 0.) So, for example, if

478

CSB+ Tree
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incremental updates of B+-Trees. We achieve this
goal by balancing the best features of the two index
structures. Our tree structure, which we call a
CSB+-Tree, is similar to a B+-Tree in the way it
handles updates. However, a CSB+-Tree has fewer
pointers per node than a B+-Tree. By having fewer
pointers per node, we have more room for keys and
hence better cache performance.

We get away with fewer pointers by using a
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Trees that further reduces split cost in Section 3.3.
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puts all the child nodes of any given node into a
node group. Nodes within a node group are stored
contiguously and can be accessed using an offset
to the first node in the group.1 Each internal
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Each leaf node stores a list of <key, tuple ID> pairs,
the number of these pairs, and two sibling pointers.2

Since a CSB+-Tree node needs to store just one
child pointer explicitly, it can store more keys per
node than a B+-Tree. For example, if the node size
(and cache line size) is 64 bytes and a key and a
child pointer each occupies 4 bytes, then a B+-Tree
can only hold 7 keys per node whereas a CSB+-Tree
can have 14 keys per node. This gives CSB+-Tree
two kinds of benefit: (a) a cache line can satisfy
(almost) one more level of comparisons and thus the
number of cache lines needed for a search is fewer;
(b) the fan out of each node is larger, which means

1[O’N92] also considers grouping nodes together in a disk-

based B+-Tree to improve I/O performance.
2see Section 5 for further discussion of how leaf nodes can

be implemented.
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order 1. Each dashed box represents a node group.
The arrows from the internal nodes represent the
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3.1.1 Operations on a CSB
+
-Tree

In this section, we consider bulkload, search, insert
and delete operations on CSB+-Trees.

Bulkload. A typical bulkloading algorithm for
B+-Trees is to keep inserting sorted leaf entries into
the rightmost path from the root. However, this
method can be expensive if used for CSB+-Trees
since nodes in the same node group are not created
sequentially. A more efficient bulkloading method
for CSB+-Trees is to build the index structure level
by level. We allocate space for all the leaf entries.
We then calculate how many nodes are needed in
the higher level and then allocate a continuous
chunk of space for all the nodes in this level. We
then fill in the entries of nodes in the higher level
by copying the largest value in each node in the
lower level. We also set the first child pointer in
each higher level node. We repeat the process until
the higher level has only one node and this node is
designated as the root. Since all the nodes in the
same level are contiguous when they are created, we
don’t have to do any additional copying to form a
node group.

Search. Searching a CSB+-Tree is similar to
searching a B+-Tree. Once we have determined
the rightmost key K in the node that is smaller
than the search key, we simply add the offset of K
to the first-child pointer to get the address of the
child node. (For values less than or equal to the
leftmost key, the offset is 0.) So, for example, if
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incremental updates of B+-Trees. We achieve this
goal by balancing the best features of the two index
structures. Our tree structure, which we call a
CSB+-Tree, is similar to a B+-Tree in the way it
handles updates. However, a CSB+-Tree has fewer
pointers per node than a B+-Tree. By having fewer
pointers per node, we have more room for keys and
hence better cache performance.

We get away with fewer pointers by using a
limited amount of arithmetic on array offsets,
together with the pointers, to identify child nodes.
For simplicity of presentation, we initially present
a version of CSB+-Trees in which a node contains
exactly one pointer. Sometimes we simply use the
term CSB+-Tree to refer to this version when the
context is clear. In Section 3.2 we will describe
variants with more pointers per node. The number
of pointers per node is a parameter that can be
tuned to obtain good performance under particular
workloads. We describe another variant of CSB+-
Trees that further reduces split cost in Section 3.3.

3.1 Cache Sensitive B
+
-Trees with One

Child Pointer

A CSB+-Tree is a balanced multi-way search tree.
Every node in a CSB+-Tree of order d contains
m keys, where d <= m <= 2d. A CSB+-Tree
puts all the child nodes of any given node into a
node group. Nodes within a node group are stored
contiguously and can be accessed using an offset
to the first node in the group.1 Each internal
node in a CSB+-Tree has the following structure:
nKeys :number of keys in the node
firstChild :pointer to the first child node
keyList[2d] :a list of keys.

Each leaf node stores a list of <key, tuple ID> pairs,
the number of these pairs, and two sibling pointers.2

Since a CSB+-Tree node needs to store just one
child pointer explicitly, it can store more keys per
node than a B+-Tree. For example, if the node size
(and cache line size) is 64 bytes and a key and a
child pointer each occupies 4 bytes, then a B+-Tree
can only hold 7 keys per node whereas a CSB+-Tree
can have 14 keys per node. This gives CSB+-Tree
two kinds of benefit: (a) a cache line can satisfy
(almost) one more level of comparisons and thus the
number of cache lines needed for a search is fewer;
(b) the fan out of each node is larger, which means

1[O’N92] also considers grouping nodes together in a disk-

based B+-Tree to improve I/O performance.
2see Section 5 for further discussion of how leaf nodes can

be implemented.
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In this section, we consider bulkload, search, insert
and delete operations on CSB+-Trees.

Bulkload. A typical bulkloading algorithm for
B+-Trees is to keep inserting sorted leaf entries into
the rightmost path from the root. However, this
method can be expensive if used for CSB+-Trees
since nodes in the same node group are not created
sequentially. A more efficient bulkloading method
for CSB+-Trees is to build the index structure level
by level. We allocate space for all the leaf entries.
We then calculate how many nodes are needed in
the higher level and then allocate a continuous
chunk of space for all the nodes in this level. We
then fill in the entries of nodes in the higher level
by copying the largest value in each node in the
lower level. We also set the first child pointer in
each higher level node. We repeat the process until
the higher level has only one node and this node is
designated as the root. Since all the nodes in the
same level are contiguous when they are created, we
don’t have to do any additional copying to form a
node group.

Search. Searching a CSB+-Tree is similar to
searching a B+-Tree. Once we have determined
the rightmost key K in the node that is smaller
than the search key, we simply add the offset of K
to the first-child pointer to get the address of the
child node. (For values less than or equal to the
leftmost key, the offset is 0.) So, for example, if
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incremental updates of B+-Trees. We achieve this
goal by balancing the best features of the two index
structures. Our tree structure, which we call a
CSB+-Tree, is similar to a B+-Tree in the way it
handles updates. However, a CSB+-Tree has fewer
pointers per node than a B+-Tree. By having fewer
pointers per node, we have more room for keys and
hence better cache performance.

We get away with fewer pointers by using a
limited amount of arithmetic on array offsets,
together with the pointers, to identify child nodes.
For simplicity of presentation, we initially present
a version of CSB+-Trees in which a node contains
exactly one pointer. Sometimes we simply use the
term CSB+-Tree to refer to this version when the
context is clear. In Section 3.2 we will describe
variants with more pointers per node. The number
of pointers per node is a parameter that can be
tuned to obtain good performance under particular
workloads. We describe another variant of CSB+-
Trees that further reduces split cost in Section 3.3.

3.1 Cache Sensitive B
+
-Trees with One

Child Pointer

A CSB+-Tree is a balanced multi-way search tree.
Every node in a CSB+-Tree of order d contains
m keys, where d <= m <= 2d. A CSB+-Tree
puts all the child nodes of any given node into a
node group. Nodes within a node group are stored
contiguously and can be accessed using an offset
to the first node in the group.1 Each internal
node in a CSB+-Tree has the following structure:
nKeys :number of keys in the node
firstChild :pointer to the first child node
keyList[2d] :a list of keys.

Each leaf node stores a list of <key, tuple ID> pairs,
the number of these pairs, and two sibling pointers.2

Since a CSB+-Tree node needs to store just one
child pointer explicitly, it can store more keys per
node than a B+-Tree. For example, if the node size
(and cache line size) is 64 bytes and a key and a
child pointer each occupies 4 bytes, then a B+-Tree
can only hold 7 keys per node whereas a CSB+-Tree
can have 14 keys per node. This gives CSB+-Tree
two kinds of benefit: (a) a cache line can satisfy
(almost) one more level of comparisons and thus the
number of cache lines needed for a search is fewer;
(b) the fan out of each node is larger, which means

1[O’N92] also considers grouping nodes together in a disk-

based B+-Tree to improve I/O performance.
2see Section 5 for further discussion of how leaf nodes can

be implemented.

it uses less space. Figure 2 shows a CSB+-Tree of
order 1. Each dashed box represents a node group.
The arrows from the internal nodes represent the
first child pointers. All the nodes within a node
group are physically adjacent to each other. In
this example, a node group can have no more than
three nodes within it. Note that grouping is just a
physical ordering property, and does not have any
associated space overhead.

2     3

25   

30

5     7 12   13 16   19 20   22 24   25 27   30 31   33 36   39

3     13   19

22

33

7     

Figure 2: A CSB+-Tree of Order 1

3.1.1 Operations on a CSB
+
-Tree

In this section, we consider bulkload, search, insert
and delete operations on CSB+-Trees.

Bulkload. A typical bulkloading algorithm for
B+-Trees is to keep inserting sorted leaf entries into
the rightmost path from the root. However, this
method can be expensive if used for CSB+-Trees
since nodes in the same node group are not created
sequentially. A more efficient bulkloading method
for CSB+-Trees is to build the index structure level
by level. We allocate space for all the leaf entries.
We then calculate how many nodes are needed in
the higher level and then allocate a continuous
chunk of space for all the nodes in this level. We
then fill in the entries of nodes in the higher level
by copying the largest value in each node in the
lower level. We also set the first child pointer in
each higher level node. We repeat the process until
the higher level has only one node and this node is
designated as the root. Since all the nodes in the
same level are contiguous when they are created, we
don’t have to do any additional copying to form a
node group.

Search. Searching a CSB+-Tree is similar to
searching a B+-Tree. Once we have determined
the rightmost key K in the node that is smaller
than the search key, we simply add the offset of K
to the first-child pointer to get the address of the
child node. (For values less than or equal to the
leftmost key, the offset is 0.) So, for example, if
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Conclusion

• Observe system’s behavior

• Understand system’s performance

• Apply applicable optimization 
techniques.
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Many-Core
• From single-core to multi-core to 

many-core!

• Frequency ~ Power Consumption ~ 
Moores Law [1]

• Underclocking a single core by 20 
percent saves half the power while 
sacrificing just 13 percent of the 
performance.

41 [1] http://spectrum.ieee.org/computing/hardware/why-cpu-frequency-stalled
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Intel SCC
• Experimental research platform for new concepts 

to evaluate the evolution from multi-core to 
many-core.

• 48 pentium style cores arranged in a two-
dimensional array of 6 x 4 tiles with 2 cores each

• Each core has 16kB L1, and 256kB L2 cache 
private to the core

• All cores are connected to each other using an 
on-chip mesh network with 256 GB/s bisectional 
bandwidth

42
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Intel SCC
• Real NUMA, measurable latency 

between memory access of cores

• Dynamic lookup tables - each core 
has a dynamical mapping of main 
memory to its visible, no cache 
coherency

• Direct Message Passing - new 
communication strategy for work 
partitioning and coherency protocols

43
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The Angstrom 
Multi-Core Computing 

Project
• 1000 cores by 2014, the core is the logic gate of 

the 21st century

• Spatial Problem - huge near-neighbor 
bandwidth, low long distance bandwidth. Limited 
per-core on-chip memories, off-chip memory 
bandwidth is a big issue. Energy is new constraint.
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Physical I/O 
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Conclusion and 
Motivation
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• For optimal performance it is crucial to 
understand the system and observe 
its behavior.

• Main memory based applications need 
to exploit this: 

• Sequential reading

• Block sizes of the different caches
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• Latency lags bandwitdh - http://portal.acm.org/citation.cfm?id=1022594.1022596

• Database architecture optimized for the new bottleneck: Memory access - http://
ece.ut.ac.ir/classpages/f84/advanceddatabase/paper/db_paper/boncz99database.pdf

• DSM vs. NSM: CPU performance tradeoffs in block-oriented query processing - 
http://portal.acm.org/citation.cfm?id=1457150.1457160

• Making B+-Trees Cache Conscious in Main Memory - http://portal.acm.org/
citation.cfm?id=335191.335449

• Breaking the memory wall in MonetDB - http://portal.acm.org/beta/citation.cfm?
id=1409360.1409380

• Generic database cost models for hierarchical memory systems - http://
portal.acm.org/beta/citation.cfm?
id=1287369.1287387&coll=DL&dl=ACM&CFID=93162465&CFTOKEN=94738359

• PAPI Performance counter - http://icl.cs.utk.edu/papi/index.html

• Memory system support for irregular applications - http://www.springerlink.com/
index/TQY3BCP1AEL3AQH6.pdf

• The pathologies of big data - http://portal.acm.org/beta/citation.cfm?
id=1536616.1536632&coll=DL&dl=ACM&CFID=93162465&CFTOKEN=94738359

• Intel Tera Scale Research - http://techresearch.intel.com/articles/Tera-Scale/1421.htm

Recommended Readings
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