
Memory Hierarchy
&

The New Bottleneck
=

Cache Conscious Data Access

Martin Grund

Tuesday, June 28, 2011

Agenda
• Key Question: What is the memory

hierarchy and how to exploit it?

• What to take home
• How computer memory is organized.

• What should be considered when working with
main memory.

• How future computer architectures potentially
look like.

2

Tuesday, June 28, 2011

Frequency +
Bandwidth

3

Year

Sp
ee

d

CPU Speed

Bus Speed

Tuesday, June 28, 2011

Frequency

4
 Jan-99 Jan-02 Mar-03 Mar-05 Apr-07 Jan-08 Nov-08

4000

0

500

1000

1500

2000

2500

3000

3500

Intro Date(s)

C
lo

ck

Tuesday, June 28, 2011

Transistors

5 Jan-99 Jan-02 Mar-03 Mar-05 Apr-07 Jan-08

2000

0

200

400

600

800

1000

1200

1400

1600

1800

Intro Date(s)

T
ra

ns
is

to
rs

 in
 M

Tuesday, June 28, 2011

6

What does this
mean?

Tuesday, June 28, 2011

6

• Memory gets slower for the CPU

• Multiple memory channels, stalling latency

• Frequency is stalling, while # transistors
increases

• Degree of parallelism increases

What does this
mean?

Tuesday, June 28, 2011

Back to Main
Memory

7

Tuesday, June 28, 2011

Memory Access

 A. Jacobs. The Pathologies of Big Data. Comm. of the ACM, 52(8), Aug. 2009

Log Scale!

8

Tuesday, June 28, 2011

Memory Hierarchy

78 COMMUNICATIONS OF THE ACM | DECEMBER 2008 | VOL. 51 | NO. 12

research highlights

has profoundly influenced the database area and indeed our
work on MonetDB.

Another facet is that predictable array-wise processing
models have been strongly favored in a string of recent CPU
architectural innovations. While the rule “make the common
case fast” was exploited time and time again to design and
construct ever more complex CPUs, the difference in perfor-
mance efficiency achieved by optimized code and intended
use (e.g., “multimedia applications”) versus nonoptimized
code and nonintended use (e.g., “legacy database applica-
tions”) has become very significant. A concrete example is
the evolution of CPUs from executing a single instruction
per clock cycle, to multi-issue CPUs that use deeply pipe-
lined execution; sometimes splitting instructions in more
than 30 dependent stages. Program code that has a high
degree of independence and predictability (multimedia or
matrix calculations) fills the pipelines of modern CPUs per-
fectly, while code with many dependencies (e.g., traversing a
hash-table or B-tree) with unpredictable if-then-else checks,
leaves many holes in the CPU pipelines, achieving much
lower throughput.

2.1. The memory hierarchy
The main memory of computers consists of dynamic random
access memory (DRAM) chips. While CPU clock-speeds have
been increasing rapidly, DRAM access latency has hardly
improved in the past 20 years. Reading DRAM memory took
1–2 cycles in the early 1980s, currently it can take more than
300 cycles. Since typically one in three program instructions
is a memory load/store, this “memory wall” can in the worst
case reduce efficiency of modern CPUs by two orders of mag-
nitude. Typical system monitoring tools (top, or Windows
Task manager) do not provide insight in this performance
aspect, a 100% busy CPU could be 95% memory stalled.

To hide the high DRAM latency, the memory hierar-
chy has been extended with cache memories (cf., Figure 1),
typically located on the CPU chip itself. The fundamental

principle of all cache architectures is reference locality, i.e.,
the assumption that at any time the CPU repeatedly accesses
only a limited amount of data that fits in the cache. Only the
first access is “slow,” as the data has to be loaded from main
memory, i.e., a compulsory cache miss. Subsequent accesses
(to the same data or memory addresses) are then “fast” as
the data is then available in the cache. This is called a cache
hit. The fraction of memory accesses that can be fulfilled
from the cache is called cache hit rate.

Cache memories are organized in multiple cascading lev-
els between the main memory and the CPU. They become
faster, but smaller, the closer they are to the CPU. In the
remainder we assume a typical system with two cache levels
(L1 and L2). However, the discussion can easily be general-
ized to an arbitrary number of cascading cache levels in a
straightforward way.

In practice, cache memories keep not only the most
recently accessed data, but also the instructions that are cur-
rently being executed. Therefore, almost all systems nowa-
days implement two separate L1 caches, a read-only one for
instructions and a read-write one for data. The L2 cache,
however, is usually a single “unified” read-write cache used
for both instructions and data.

A number of fundamental characteristics and parameters
of cache memories are relevant for the sequel:
Capacity (C). A cache’s capacity defines its total size in bytes.
Typical cache sizes range from 32KB to 4MB.
Line size (Z). Caches are organized in cache lines, which rep-
resent the smallest unit of transfer between adjacent cache
levels. Whenever a cache miss occurs, a complete cache line
(i.e., multiple consecutive words) is loaded from the next
cache level or from main memory, transferring all bits in the
cache line in parallel over a wide bus. This exploits spatial
locality, increasing the chances of cache hits for future refer-
ences to data that is “close to” the reference that caused a
cache miss. The typical cache-line size is 64 bytes.
Associativity (A). An A-way set associative cache allows load-
ing a line into one of A different positions. If A > 1, some
cache replacement policy chooses one from the A candidates.
Least recently used (LRU) is the most common replacement
algorithm. In case A = 1, the cache is called directly mapped.
This organization causes the least (virtually no) overhead in
determining the cache-line candidate. However, it also offers
the least flexibility and may cause a lot of so-called conflict
misses. The other extreme case is fully associative caches.
Here, each memory address can be loaded to any line in the
cache (A = #). This avoids conflict misses, and only so-called
capacity misses occur as the cache capacity gets exceeded.
However, determining the cache-line candidate in this strat-
egy causes a relatively high overhead that increases with
the cache size. Hence, it is feasible only for smaller caches.
Current PCs and workstations typically implement two- to
eight-way set associative caches.
Latency (l) is the time span from issuing a data access
until the result is available in the CPU. Accessing data that
is already available in the L1 cache causes L1 access latency
(lL1), which is typically rather small (1 or 2 CPU cycles). In
case the requested data is not found in L1, an L1 miss occurs,
additionally delaying the data access by L2 access latency (lL2)

Figure 1: Hierarchical memory architecture.

Phys. Virt.
TLB

swap file
(on disk)

Virtual memory

L1 cache

Main memory

Bus

Memory page

L2 cache

L1 cache-line

Registers

L2 cache-line

CPU

C
P

U
 D

ie

9

Tuesday, June 28, 2011

Memory Hierarchy

10

Core 1
Register

Level 1 Cache

Level 2 Cache

Core 2
Register

Level 1 Cache

Level 2 Cache

Core 3
Register

Level 1 Cache

Level 2 Cache

Core 4
Register

Level 1 Cache

Level 2 Cache

Level 3 Cache

M
ai

n
M

em
or

y
Tuesday, June 28, 2011

Memory Hierarchy
Why not make larger caches?

• SRAM - complicated structure, bigger, more
expensive, very fast

• DRAM - simpler structure, slower, constant
refresh needed. But, can be read in parallel
and exploited by applying sequential access
patterns.

Organize memory in hierarchies where faster
memories are used as caches for slower
memory.

11

Tuesday, June 28, 2011

Cost of Memory
Access

• Each memory access incurs a latency due to the
organization of DRAM.

• The different caches try to hide this latency

• Multi-level data caches

• Instruction caches

• Translation lookaside buffer (TLB) for virtual
address translation

• Caches resemble features known from database
systems (e.g. buffer pool) but are controlled by
hardware.

12

Tuesday, June 28, 2011

Locality of
Reference

• Caches exploit locality in programs

• Spatial Locality - related data is
often spatially close

• Temporal Locality - programs tend
to re-use data frequently

13

Tuesday, June 28, 2011

Writing I
• Processor caches are supposed to be inherent and

should be completely transparent to user level code.

• Different write policies

• Write-through - direct write to memory

• Write-back - dirty flag per cache line, as soon as
the cache line is evicted, data is written

• Write Combining - combine multiple write
operations per cache line and write then

• Uncacheable - cache line is not stored in cache
before write

14

Tuesday, June 28, 2011

Writing II
• For multi-processor systems cache

coherency becomes increasingly complex

• MESI protocol (modified, exclusive,
shared, invalid) - 4 states to implement
write-back with concurrent read-only
access

• With multiple threads, prefetching and
write-back may saturate the bus very
early

15

Tuesday, June 28, 2011

Cache Conscious
Cache Conscious - optimizing the
program’s performance by changing the
organization and layout of its data with
additional knowledge of the cache properties
(“Cache-conscious structure definition”,
Chilimbi et al., ACM SIGPLAN 1999).

Cache Oblivious - optimizing the program’s
performance by changing the algorithms to
adopt the underlying hardware properties
without additional knowledge.

16

Tuesday, June 28, 2011

NUMA

17

Tuesday, June 28, 2011

NUMA

18

• NUMA - Non Uniform Memory Access

• UMA - Memory is connected using a
single hub (Northbridge) to all computing
resources, even on SMP machines.

• NUMA - Each CPU has its own memory
controller that directly connects to main
memory. However, main memory is
shared between all other computing
resources

Tuesday, June 28, 2011

NUMA Architecture
• Each CPU has it’s own memory controller

• All CPUs are interconnected using a special point-to-
point protocol - for Intel its QPI, AMD uses
HyperTransport

• Current Intel systems support 8 NUMA nodes without
additional hardware for interconnection (8x8=64
core / 8x12=96 core)

• QPI / HyperTransport are built for extensibility and
scaling

• However, adding a new node introduces additional
latency penalty

19

Tuesday, June 28, 2011

Example: 4-way
System

20

CPU 1 CPU 2

CPU 3 CPU 4

CPU 5 CPU 6

CPU 7 CPU 8

IO Hub 1

IO Hub 3

IO Hub 2

IO Hub 4

1 hop

2 hop1 hop

Tuesday, June 28, 2011

Latency / NUMA
Nodes

21

193 205

293 904

1003823

2 283 150

923 2031

AMOUNTREFID

Table 1

3

0

POS

2

0

Fld

2

1

0

Fld

POS

904

2031

AMOUNTID

Figure 2: Selection and Projection based on Posi-
tions

intermediate results (e.g. position lists) together with field
definitions to create dynamic views on the input tables. Fig-
ure 2 gives an example for this execution model.

• there exist different access levels to main memory that
have to be considered: same node, near node, far node

• each of the types has different dependencies, the larger
the number of cpus per system gets the bigger the
problem gets. with 8 way machines there are only 3
zones, but

• execution model can be chosen between container at a
time or operator at a time, for the latter case the issue
might be that the random access to multiple containers
will yield a negative performance impact.

• as an extension to the classical allocation model of
HYRISE, the allocation supports that each internal
partition can be allocated on a specified NUMA node.

• the query plan operator can be executed in two ad-
ditional ways, either the operator ignores the affinity
of the given memory region and will be automatically
scheduled to a CPU close to this region, or the opera-
tor can manually specify an affinity to a CPU

• this behavior becomes especially interesting if two par-
titions are located on different cores, e.g. in case of
joins.

Table 1: Last Level Cache Latency for different
NUMA systems

NUMA Node
2 x 4c
Xeon
5450

2 x 6c
Xeon
5650

4 x 8c
Xeon
7550

8 x 8c
Xeon
7550

Node 0 0 220 274 294
Node 1 - 364 316 482
Node 2 - - 337 787
Node 3 - - 385 682
Node 4 - - - 932
Node 5 - - - 847
Node 6 - - - 914
Node 7 - - - 919

• the intermediate results can be allocated locally or dis-
patched on numa nodes as well

• Experiments:

– simpletablescan local

– simpeltablescan remote

– join local vs. join remote vs. join local/remote

– hashing and probing, local vs. remote — the
question is how big is the overhead that is induced
by the dbms? Furthermore it should be discussed
how data can be shipped between processes

• Optimizations: make operators processor affinity aware,
trust in OS level scheduling

• from an OLTP vs OLAP perspective the question is
when is it advisable to perform such complex opera-
tions or when is it just better to live with the existing
“normal” memory distribution.

• what happens with indices

• should replication be mentioned during query execu-
tion

• can we draw an experiment where it is actually

• we need an experiment that shows, that custom place-
ment can achieve better performance than random place-
ment of memory (given a certain space constraint)

5. DATA PLACEMENT

• given the latency penalties of NUMA for highly-parallel
systems, how can we translate those effects for parti-
tioning

• is NUMA-aware partitioning only required for run-
time?

• is NUMA-aware partitioning relevant for workload based
methods?

• how can we extend the existing hyrise layout algorithm
to support NUMA aware partitioning?

• how can we make sure that what we try to optimize is
really relevant?

5.1 Ideas
It is basically possible to model the access to remote mem-

ory regions in different ways. On the one hand we model re-
mote memory as another level of cache. On the other hand
we model the access to remote memory as an orthogonal
problem to the cache hierarchy.

5.1.1 Another layer
The advantage of modeling access to remote memory as

another layer of cache makes it easy to gain fast results since
the existing cost model can easily be extended. The disad-
vantage is that for larger systems we see many different la-
tencies based on the layout of the CPUs per board, plus for
interconnected systems using some kind of node controller
even more latency groups occur that need to be mapped into
the cost model.

Tuesday, June 28, 2011

NUMA Questions

22

• Is my application memory bound?

• Is it possible to observe QPI hotspots?

• Can the access patterns of the
application be identified to allow for
partitioning?

• How should the memory be
partitioned across the application?

Tuesday, June 28, 2011

NUMA Awareness

• Per default, the operating system will
allocate the memory randomly on all
nodes to spread the possible latency
penalty!

• Placing the memory on a single node
may create additional bottlenecks in
the core-to-core communication!

23

Tuesday, June 28, 2011

How to exploit the
Memory

Hierarchy?

24

Tuesday, June 28, 2011

Allocation &&
Loading

Memory allocation can be crucial to program
performance and it is important to understand
its implementation.

• Avoid cache line splits - Padding

• Avoid memory page splits - Alignment /
Padding

• Heap contention - multiple threads try to
allocate from the same allocator with
exclusive access

25
ftp://g.oswego.edu/pub/misc/malloc.c

Tuesday, June 28, 2011

NUMA-aware
Allocation

• Instead of relying on the operating system for
optimal memory partitioning it is possible to
perform NUMA-aware memory allocation using
libnuma

numa_alloc_onnode(size, region)
numa_run_on_node_mask(region_mask)
numa_free(ptr, size)

• In addition it’s possible to specify more
complex allocations (multiple nodes), read
neighboring relationships, and move memory
regions

26

Tuesday, June 28, 2011

Padding
Modify the data structure to match integer
denominators of the size of a cache line.

#include <stdio.h>

typedef struct _bad
{
	 unsigned first;
	 unsigned b;
	 unsigned c;
	 char second;
} bad;

int main(int argc, char* argv)
{
	 printf("%ld\n", sizeof(bad));
	 return 0;
}

sizeof(bad) == ??

27

Tuesday, June 28, 2011

Padding
Modify the data structure to match integer
denominators of the size of a cache line.

#include <stdio.h>

typedef struct _bad
{
	 unsigned first;
	 unsigned b;
	 unsigned c;
	 char second;
} bad;

int main(int argc, char* argv)
{
	 printf("%ld\n", sizeof(bad));
	 return 0;
}

sizeof(bad) == ??

13

27

Tuesday, June 28, 2011

Padding
Modify the data structure to match integer
denominators of the size of a cache line.

#include <stdio.h>

typedef struct _bad
{
	 unsigned first;
	 unsigned b;
	 unsigned c;
	 char second;
} bad;

int main(int argc, char* argv)
{
	 printf("%ld\n", sizeof(bad));
	 return 0;
}

sizeof(bad) == ??

13 16

27

Tuesday, June 28, 2011

Padding
Modify the data structure to match integer
denominators of the size of a cache line.

#include <stdio.h>

typedef struct _bad
{
	 unsigned first;
	 unsigned b;
	 unsigned c;
	 char second;
} bad;

int main(int argc, char* argv)
{
	 printf("%ld\n", sizeof(bad));
	 return 0;
}

sizeof(bad) == ??

13 16

-fpack-struct=1

27

Tuesday, June 28, 2011

Padding
Modify the data structure to match integer
denominators of the size of a cache line.

#include <stdio.h>

typedef struct _bad
{
	 unsigned first;
	 unsigned b;
	 unsigned c;
	 char second;
} bad;

int main(int argc, char* argv)
{
	 printf("%ld\n", sizeof(bad));
	 return 0;
}

sizeof(bad) == ??

13 16

-fpack-struct=1 -fpack-struct=4

27

Tuesday, June 28, 2011

Prefetching

Prefetching is used to asynchronously
read co-located data (see Locality).

• Load adjacent cache line

• Pattern detection with stride based
loading

28

Tuesday, June 28, 2011

29

No Prefetching

2 values per cache line

Tuesday, June 28, 2011

29

No Prefetching

2 values per cache line

Tuesday, June 28, 2011

30

Correct Prefetching

Tuesday, June 28, 2011

30

Correct Prefetching

Tuesday, June 28, 2011

31

Incorrect Prefetching

Tuesday, June 28, 2011

31

Incorrect Prefetching

Tuesday, June 28, 2011

Virtualized Access

Virtualization of resources becomes more
and more important even for main
memory databases:

• System consolidation,

• Administrative consolidation,

• Better provisioning and better
scaling.

32

Tuesday, June 28, 2011

Virtualized Access

33

Description
Physical
System

Virtualized
System

L1 Miss Latency 10 10

L1 Replace Time 12 12

L2 Miss Latency 197 196

L2 Replace Time 334 333

TLB Miss Latency - 23

Tuesday, June 28, 2011

Virtualized Access

33

Description
Physical
System

Virtualized
System

L1 Miss Latency 10 10

L1 Replace Time 12 12

L2 Miss Latency 197 196

L2 Replace Time 334 333

TLB Miss Latency - 23

Tuesday, June 28, 2011

Virtualized Access

33

Description
Physical
System

Virtualized
System

L1 Miss Latency 10 10

L1 Replace Time 12 12

L2 Miss Latency 197 196

L2 Replace Time 334 333

TLB Miss Latency - 23

First Conclusion:
Memory Access does
not incur a dedicated
access latency!

Memory page change
requires additional
handling and thus
incurs latency!

Tuesday, June 28, 2011

Measure
Performance

To understand the system’s performance it is necessary to
correctly observe its behavior.

• Identify relevant measures (CPU cycles, cache misses,
resource stalls)

• Collect profiling data using sampling based or “real”
counting

• oprofile - provides sample-based performance
evaluation for time based profiling.

• PAPI - measure program performance based on
hardware counters. Each CPU provides special
registers to count profiling information based on
special hardware events (CPU cycles, cache misses).

34

Tuesday, June 28, 2011

Measure Performance
(PAPI Example)

35

#include <stdio.h>
#include <papi.h>

int main()
{
 // PAPI events can be identified by name or const value
 char* event = "PAPI_TOT_CYC";
 // Events and results are identified
 // as array
 int events[1];
 long long result[1];

 PAPI_library_init(PAPI_VER_CURRENT);
 PAPI_event_name_to_code((char *) papi, &events[0]);
 PAPI_start_counters(events, 1);
 long long sum = 0;
 // Do something intensive here
 for (unsigned i=0; i < 1000; ++i)
 sum += i;
 PAPI_stop_counters(result, 1)
 printf("%ld\n", result[0]);
 return 0;
}

Tuesday, June 28, 2011

Example

• “Making B+-Trees Cache Conscious in
Main Memory” SIGMOD 2000, J. Rao
and K. A. Ross

36

Tuesday, June 28, 2011

Cache Sensitive
B+ Tree

• B+ Tree - optimized search tree,
typically used for indices, originally
used to persist indexed data on disk!

• Cache Sensitive B+ Trees optimize
cache performance by applying cache
conscious techniques

• Pointer elimination

• Block structures

37

Tuesday, June 28, 2011

Tree Comparison

38

B+ Tree

Tuesday, June 28, 2011

Tree Comparison

38

B+ Tree

incremental updates of B+-Trees. We achieve this
goal by balancing the best features of the two index
structures. Our tree structure, which we call a
CSB+-Tree, is similar to a B+-Tree in the way it
handles updates. However, a CSB+-Tree has fewer
pointers per node than a B+-Tree. By having fewer
pointers per node, we have more room for keys and
hence better cache performance.

We get away with fewer pointers by using a
limited amount of arithmetic on array offsets,
together with the pointers, to identify child nodes.
For simplicity of presentation, we initially present
a version of CSB+-Trees in which a node contains
exactly one pointer. Sometimes we simply use the
term CSB+-Tree to refer to this version when the
context is clear. In Section 3.2 we will describe
variants with more pointers per node. The number
of pointers per node is a parameter that can be
tuned to obtain good performance under particular
workloads. We describe another variant of CSB+-
Trees that further reduces split cost in Section 3.3.

3.1 Cache Sensitive B
+
-Trees with One

Child Pointer

A CSB+-Tree is a balanced multi-way search tree.
Every node in a CSB+-Tree of order d contains
m keys, where d <= m <= 2d. A CSB+-Tree
puts all the child nodes of any given node into a
node group. Nodes within a node group are stored
contiguously and can be accessed using an offset
to the first node in the group.1 Each internal
node in a CSB+-Tree has the following structure:
nKeys :number of keys in the node
firstChild :pointer to the first child node
keyList[2d] :a list of keys.

Each leaf node stores a list of <key, tuple ID> pairs,
the number of these pairs, and two sibling pointers.2

Since a CSB+-Tree node needs to store just one
child pointer explicitly, it can store more keys per
node than a B+-Tree. For example, if the node size
(and cache line size) is 64 bytes and a key and a
child pointer each occupies 4 bytes, then a B+-Tree
can only hold 7 keys per node whereas a CSB+-Tree
can have 14 keys per node. This gives CSB+-Tree
two kinds of benefit: (a) a cache line can satisfy
(almost) one more level of comparisons and thus the
number of cache lines needed for a search is fewer;
(b) the fan out of each node is larger, which means

1[O’N92] also considers grouping nodes together in a disk-

based B+-Tree to improve I/O performance.
2see Section 5 for further discussion of how leaf nodes can

be implemented.

it uses less space. Figure 2 shows a CSB+-Tree of
order 1. Each dashed box represents a node group.
The arrows from the internal nodes represent the
first child pointers. All the nodes within a node
group are physically adjacent to each other. In
this example, a node group can have no more than
three nodes within it. Note that grouping is just a
physical ordering property, and does not have any
associated space overhead.

2 3

25

30

5 7 12 13 16 19 20 22 24 25 27 30 31 33 36 39

3 13 19

22

33

7

Figure 2: A CSB+-Tree of Order 1

3.1.1 Operations on a CSB
+
-Tree

In this section, we consider bulkload, search, insert
and delete operations on CSB+-Trees.

Bulkload. A typical bulkloading algorithm for
B+-Trees is to keep inserting sorted leaf entries into
the rightmost path from the root. However, this
method can be expensive if used for CSB+-Trees
since nodes in the same node group are not created
sequentially. A more efficient bulkloading method
for CSB+-Trees is to build the index structure level
by level. We allocate space for all the leaf entries.
We then calculate how many nodes are needed in
the higher level and then allocate a continuous
chunk of space for all the nodes in this level. We
then fill in the entries of nodes in the higher level
by copying the largest value in each node in the
lower level. We also set the first child pointer in
each higher level node. We repeat the process until
the higher level has only one node and this node is
designated as the root. Since all the nodes in the
same level are contiguous when they are created, we
don’t have to do any additional copying to form a
node group.

Search. Searching a CSB+-Tree is similar to
searching a B+-Tree. Once we have determined
the rightmost key K in the node that is smaller
than the search key, we simply add the offset of K
to the first-child pointer to get the address of the
child node. (For values less than or equal to the
leftmost key, the offset is 0.) So, for example, if

478

CSB+ Tree

Tuesday, June 28, 2011

Tree Comparison

38

B+ Tree

incremental updates of B+-Trees. We achieve this
goal by balancing the best features of the two index
structures. Our tree structure, which we call a
CSB+-Tree, is similar to a B+-Tree in the way it
handles updates. However, a CSB+-Tree has fewer
pointers per node than a B+-Tree. By having fewer
pointers per node, we have more room for keys and
hence better cache performance.

We get away with fewer pointers by using a
limited amount of arithmetic on array offsets,
together with the pointers, to identify child nodes.
For simplicity of presentation, we initially present
a version of CSB+-Trees in which a node contains
exactly one pointer. Sometimes we simply use the
term CSB+-Tree to refer to this version when the
context is clear. In Section 3.2 we will describe
variants with more pointers per node. The number
of pointers per node is a parameter that can be
tuned to obtain good performance under particular
workloads. We describe another variant of CSB+-
Trees that further reduces split cost in Section 3.3.

3.1 Cache Sensitive B
+
-Trees with One

Child Pointer

A CSB+-Tree is a balanced multi-way search tree.
Every node in a CSB+-Tree of order d contains
m keys, where d <= m <= 2d. A CSB+-Tree
puts all the child nodes of any given node into a
node group. Nodes within a node group are stored
contiguously and can be accessed using an offset
to the first node in the group.1 Each internal
node in a CSB+-Tree has the following structure:
nKeys :number of keys in the node
firstChild :pointer to the first child node
keyList[2d] :a list of keys.

Each leaf node stores a list of <key, tuple ID> pairs,
the number of these pairs, and two sibling pointers.2

Since a CSB+-Tree node needs to store just one
child pointer explicitly, it can store more keys per
node than a B+-Tree. For example, if the node size
(and cache line size) is 64 bytes and a key and a
child pointer each occupies 4 bytes, then a B+-Tree
can only hold 7 keys per node whereas a CSB+-Tree
can have 14 keys per node. This gives CSB+-Tree
two kinds of benefit: (a) a cache line can satisfy
(almost) one more level of comparisons and thus the
number of cache lines needed for a search is fewer;
(b) the fan out of each node is larger, which means

1[O’N92] also considers grouping nodes together in a disk-

based B+-Tree to improve I/O performance.
2see Section 5 for further discussion of how leaf nodes can

be implemented.

it uses less space. Figure 2 shows a CSB+-Tree of
order 1. Each dashed box represents a node group.
The arrows from the internal nodes represent the
first child pointers. All the nodes within a node
group are physically adjacent to each other. In
this example, a node group can have no more than
three nodes within it. Note that grouping is just a
physical ordering property, and does not have any
associated space overhead.

2 3

25

30

5 7 12 13 16 19 20 22 24 25 27 30 31 33 36 39

3 13 19

22

33

7

Figure 2: A CSB+-Tree of Order 1

3.1.1 Operations on a CSB
+
-Tree

In this section, we consider bulkload, search, insert
and delete operations on CSB+-Trees.

Bulkload. A typical bulkloading algorithm for
B+-Trees is to keep inserting sorted leaf entries into
the rightmost path from the root. However, this
method can be expensive if used for CSB+-Trees
since nodes in the same node group are not created
sequentially. A more efficient bulkloading method
for CSB+-Trees is to build the index structure level
by level. We allocate space for all the leaf entries.
We then calculate how many nodes are needed in
the higher level and then allocate a continuous
chunk of space for all the nodes in this level. We
then fill in the entries of nodes in the higher level
by copying the largest value in each node in the
lower level. We also set the first child pointer in
each higher level node. We repeat the process until
the higher level has only one node and this node is
designated as the root. Since all the nodes in the
same level are contiguous when they are created, we
don’t have to do any additional copying to form a
node group.

Search. Searching a CSB+-Tree is similar to
searching a B+-Tree. Once we have determined
the rightmost key K in the node that is smaller
than the search key, we simply add the offset of K
to the first-child pointer to get the address of the
child node. (For values less than or equal to the
leftmost key, the offset is 0.) So, for example, if

478

CSB+ Tree

Only 1 pointer

Tuesday, June 28, 2011

Tree Comparison

38

B+ Tree

incremental updates of B+-Trees. We achieve this
goal by balancing the best features of the two index
structures. Our tree structure, which we call a
CSB+-Tree, is similar to a B+-Tree in the way it
handles updates. However, a CSB+-Tree has fewer
pointers per node than a B+-Tree. By having fewer
pointers per node, we have more room for keys and
hence better cache performance.

We get away with fewer pointers by using a
limited amount of arithmetic on array offsets,
together with the pointers, to identify child nodes.
For simplicity of presentation, we initially present
a version of CSB+-Trees in which a node contains
exactly one pointer. Sometimes we simply use the
term CSB+-Tree to refer to this version when the
context is clear. In Section 3.2 we will describe
variants with more pointers per node. The number
of pointers per node is a parameter that can be
tuned to obtain good performance under particular
workloads. We describe another variant of CSB+-
Trees that further reduces split cost in Section 3.3.

3.1 Cache Sensitive B
+
-Trees with One

Child Pointer

A CSB+-Tree is a balanced multi-way search tree.
Every node in a CSB+-Tree of order d contains
m keys, where d <= m <= 2d. A CSB+-Tree
puts all the child nodes of any given node into a
node group. Nodes within a node group are stored
contiguously and can be accessed using an offset
to the first node in the group.1 Each internal
node in a CSB+-Tree has the following structure:
nKeys :number of keys in the node
firstChild :pointer to the first child node
keyList[2d] :a list of keys.

Each leaf node stores a list of <key, tuple ID> pairs,
the number of these pairs, and two sibling pointers.2

Since a CSB+-Tree node needs to store just one
child pointer explicitly, it can store more keys per
node than a B+-Tree. For example, if the node size
(and cache line size) is 64 bytes and a key and a
child pointer each occupies 4 bytes, then a B+-Tree
can only hold 7 keys per node whereas a CSB+-Tree
can have 14 keys per node. This gives CSB+-Tree
two kinds of benefit: (a) a cache line can satisfy
(almost) one more level of comparisons and thus the
number of cache lines needed for a search is fewer;
(b) the fan out of each node is larger, which means

1[O’N92] also considers grouping nodes together in a disk-

based B+-Tree to improve I/O performance.
2see Section 5 for further discussion of how leaf nodes can

be implemented.

it uses less space. Figure 2 shows a CSB+-Tree of
order 1. Each dashed box represents a node group.
The arrows from the internal nodes represent the
first child pointers. All the nodes within a node
group are physically adjacent to each other. In
this example, a node group can have no more than
three nodes within it. Note that grouping is just a
physical ordering property, and does not have any
associated space overhead.

2 3

25

30

5 7 12 13 16 19 20 22 24 25 27 30 31 33 36 39

3 13 19

22

33

7

Figure 2: A CSB+-Tree of Order 1

3.1.1 Operations on a CSB
+
-Tree

In this section, we consider bulkload, search, insert
and delete operations on CSB+-Trees.

Bulkload. A typical bulkloading algorithm for
B+-Trees is to keep inserting sorted leaf entries into
the rightmost path from the root. However, this
method can be expensive if used for CSB+-Trees
since nodes in the same node group are not created
sequentially. A more efficient bulkloading method
for CSB+-Trees is to build the index structure level
by level. We allocate space for all the leaf entries.
We then calculate how many nodes are needed in
the higher level and then allocate a continuous
chunk of space for all the nodes in this level. We
then fill in the entries of nodes in the higher level
by copying the largest value in each node in the
lower level. We also set the first child pointer in
each higher level node. We repeat the process until
the higher level has only one node and this node is
designated as the root. Since all the nodes in the
same level are contiguous when they are created, we
don’t have to do any additional copying to form a
node group.

Search. Searching a CSB+-Tree is similar to
searching a B+-Tree. Once we have determined
the rightmost key K in the node that is smaller
than the search key, we simply add the offset of K
to the first-child pointer to get the address of the
child node. (For values less than or equal to the
leftmost key, the offset is 0.) So, for example, if

478

CSB+ Tree

Only 1 pointer
Direct Offsets

Tuesday, June 28, 2011

Tree Comparison

38

B+ Tree

incremental updates of B+-Trees. We achieve this
goal by balancing the best features of the two index
structures. Our tree structure, which we call a
CSB+-Tree, is similar to a B+-Tree in the way it
handles updates. However, a CSB+-Tree has fewer
pointers per node than a B+-Tree. By having fewer
pointers per node, we have more room for keys and
hence better cache performance.

We get away with fewer pointers by using a
limited amount of arithmetic on array offsets,
together with the pointers, to identify child nodes.
For simplicity of presentation, we initially present
a version of CSB+-Trees in which a node contains
exactly one pointer. Sometimes we simply use the
term CSB+-Tree to refer to this version when the
context is clear. In Section 3.2 we will describe
variants with more pointers per node. The number
of pointers per node is a parameter that can be
tuned to obtain good performance under particular
workloads. We describe another variant of CSB+-
Trees that further reduces split cost in Section 3.3.

3.1 Cache Sensitive B
+
-Trees with One

Child Pointer

A CSB+-Tree is a balanced multi-way search tree.
Every node in a CSB+-Tree of order d contains
m keys, where d <= m <= 2d. A CSB+-Tree
puts all the child nodes of any given node into a
node group. Nodes within a node group are stored
contiguously and can be accessed using an offset
to the first node in the group.1 Each internal
node in a CSB+-Tree has the following structure:
nKeys :number of keys in the node
firstChild :pointer to the first child node
keyList[2d] :a list of keys.

Each leaf node stores a list of <key, tuple ID> pairs,
the number of these pairs, and two sibling pointers.2

Since a CSB+-Tree node needs to store just one
child pointer explicitly, it can store more keys per
node than a B+-Tree. For example, if the node size
(and cache line size) is 64 bytes and a key and a
child pointer each occupies 4 bytes, then a B+-Tree
can only hold 7 keys per node whereas a CSB+-Tree
can have 14 keys per node. This gives CSB+-Tree
two kinds of benefit: (a) a cache line can satisfy
(almost) one more level of comparisons and thus the
number of cache lines needed for a search is fewer;
(b) the fan out of each node is larger, which means

1[O’N92] also considers grouping nodes together in a disk-

based B+-Tree to improve I/O performance.
2see Section 5 for further discussion of how leaf nodes can

be implemented.

it uses less space. Figure 2 shows a CSB+-Tree of
order 1. Each dashed box represents a node group.
The arrows from the internal nodes represent the
first child pointers. All the nodes within a node
group are physically adjacent to each other. In
this example, a node group can have no more than
three nodes within it. Note that grouping is just a
physical ordering property, and does not have any
associated space overhead.

2 3

25

30

5 7 12 13 16 19 20 22 24 25 27 30 31 33 36 39

3 13 19

22

33

7

Figure 2: A CSB+-Tree of Order 1

3.1.1 Operations on a CSB
+
-Tree

In this section, we consider bulkload, search, insert
and delete operations on CSB+-Trees.

Bulkload. A typical bulkloading algorithm for
B+-Trees is to keep inserting sorted leaf entries into
the rightmost path from the root. However, this
method can be expensive if used for CSB+-Trees
since nodes in the same node group are not created
sequentially. A more efficient bulkloading method
for CSB+-Trees is to build the index structure level
by level. We allocate space for all the leaf entries.
We then calculate how many nodes are needed in
the higher level and then allocate a continuous
chunk of space for all the nodes in this level. We
then fill in the entries of nodes in the higher level
by copying the largest value in each node in the
lower level. We also set the first child pointer in
each higher level node. We repeat the process until
the higher level has only one node and this node is
designated as the root. Since all the nodes in the
same level are contiguous when they are created, we
don’t have to do any additional copying to form a
node group.

Search. Searching a CSB+-Tree is similar to
searching a B+-Tree. Once we have determined
the rightmost key K in the node that is smaller
than the search key, we simply add the offset of K
to the first-child pointer to get the address of the
child node. (For values less than or equal to the
leftmost key, the offset is 0.) So, for example, if

478

CSB+ Tree

Only 1 pointer
Direct Offsets

Segmented Structure with pointer traversal

Tuesday, June 28, 2011

Conclusion

• Observe system’s behavior

• Understand system’s performance

• Apply applicable optimization
techniques.

39

Tuesday, June 28, 2011

The Future

40

Tuesday, June 28, 2011

Many-Core
• From single-core to multi-core to

many-core!

• Frequency ~ Power Consumption ~
Moores Law [1]

• Underclocking a single core by 20
percent saves half the power while
sacrificing just 13 percent of the
performance.

41 [1] http://spectrum.ieee.org/computing/hardware/why-cpu-frequency-stalled

Tuesday, June 28, 2011

http://spectrum.ieee.org/computing/hardware/why-cpu-frequency-stalled
http://spectrum.ieee.org/computing/hardware/why-cpu-frequency-stalled

Intel SCC
• Experimental research platform for new concepts

to evaluate the evolution from multi-core to
many-core.

• 48 pentium style cores arranged in a two-
dimensional array of 6 x 4 tiles with 2 cores each

• Each core has 16kB L1, and 256kB L2 cache
private to the core

• All cores are connected to each other using an
on-chip mesh network with 256 GB/s bisectional
bandwidth

42

Tuesday, June 28, 2011

Intel SCC
• Real NUMA, measurable latency

between memory access of cores

• Dynamic lookup tables - each core
has a dynamical mapping of main
memory to its visible, no cache
coherency

• Direct Message Passing - new
communication strategy for work
partitioning and coherency protocols

43

Tuesday, June 28, 2011

The Angstrom
Multi-Core Computing

Project
• 1000 cores by 2014, the core is the logic gate of

the 21st century

• Spatial Problem - huge near-neighbor
bandwidth, low long distance bandwidth. Limited
per-core on-chip memories, off-chip memory
bandwidth is a big issue. Energy is new constraint.

44

Physical I/O
Xphysical

Yp
hy

si
ca

l Tile[xp,yp]

.CacheSize

.Memory Size

.Processor Speed

.OtherTileParameters I/O[x,y] .DeviceType
.DeviceSpeed

Tuesday, June 28, 2011

Conclusion and
Motivation

45

• For optimal performance it is crucial to
understand the system and observe
its behavior.

• Main memory based applications need
to exploit this:

• Sequential reading

• Block sizes of the different caches

Tuesday, June 28, 2011

46

• Latency lags bandwitdh - http://portal.acm.org/citation.cfm?id=1022594.1022596

• Database architecture optimized for the new bottleneck: Memory access - http://
ece.ut.ac.ir/classpages/f84/advanceddatabase/paper/db_paper/boncz99database.pdf

• DSM vs. NSM: CPU performance tradeoffs in block-oriented query processing -
http://portal.acm.org/citation.cfm?id=1457150.1457160

• Making B+-Trees Cache Conscious in Main Memory - http://portal.acm.org/
citation.cfm?id=335191.335449

• Breaking the memory wall in MonetDB - http://portal.acm.org/beta/citation.cfm?
id=1409360.1409380

• Generic database cost models for hierarchical memory systems - http://
portal.acm.org/beta/citation.cfm?
id=1287369.1287387&coll=DL&dl=ACM&CFID=93162465&CFTOKEN=94738359

• PAPI Performance counter - http://icl.cs.utk.edu/papi/index.html

• Memory system support for irregular applications - http://www.springerlink.com/
index/TQY3BCP1AEL3AQH6.pdf

• The pathologies of big data - http://portal.acm.org/beta/citation.cfm?
id=1536616.1536632&coll=DL&dl=ACM&CFID=93162465&CFTOKEN=94738359

• Intel Tera Scale Research - http://techresearch.intel.com/articles/Tera-Scale/1421.htm

Recommended Readings

Tuesday, June 28, 2011

http://portal.acm.org/citation.cfm?id=1022594.1022596
http://portal.acm.org/citation.cfm?id=1022594.1022596
http://ece.ut.ac.ir/classpages/f84/advanceddatabase/paper/db_paper/boncz99database.pdf
http://ece.ut.ac.ir/classpages/f84/advanceddatabase/paper/db_paper/boncz99database.pdf
http://ece.ut.ac.ir/classpages/f84/advanceddatabase/paper/db_paper/boncz99database.pdf
http://ece.ut.ac.ir/classpages/f84/advanceddatabase/paper/db_paper/boncz99database.pdf
http://portal.acm.org/citation.cfm?id=1457150.1457160
http://portal.acm.org/citation.cfm?id=1457150.1457160
http://portal.acm.org/citation.cfm?id=335191.335449
http://portal.acm.org/citation.cfm?id=335191.335449
http://portal.acm.org/citation.cfm?id=335191.335449
http://portal.acm.org/citation.cfm?id=335191.335449
http://portal.acm.org/beta/citation.cfm?id=1409360.1409380
http://portal.acm.org/beta/citation.cfm?id=1409360.1409380
http://portal.acm.org/beta/citation.cfm?id=1409360.1409380
http://portal.acm.org/beta/citation.cfm?id=1409360.1409380
http://portal.acm.org/beta/citation.cfm?id=1287369.1287387&coll=DL&dl=ACM&CFID=93162465&CFTOKEN=94738359
http://portal.acm.org/beta/citation.cfm?id=1287369.1287387&coll=DL&dl=ACM&CFID=93162465&CFTOKEN=94738359
http://portal.acm.org/beta/citation.cfm?id=1287369.1287387&coll=DL&dl=ACM&CFID=93162465&CFTOKEN=94738359
http://portal.acm.org/beta/citation.cfm?id=1287369.1287387&coll=DL&dl=ACM&CFID=93162465&CFTOKEN=94738359
http://portal.acm.org/beta/citation.cfm?id=1287369.1287387&coll=DL&dl=ACM&CFID=93162465&CFTOKEN=94738359
http://portal.acm.org/beta/citation.cfm?id=1287369.1287387&coll=DL&dl=ACM&CFID=93162465&CFTOKEN=94738359
http://icl.cs.utk.edu/papi/index.html
http://icl.cs.utk.edu/papi/index.html
http://www.springerlink.com/index/TQY3BCP1AEL3AQH6.pdf
http://www.springerlink.com/index/TQY3BCP1AEL3AQH6.pdf
http://www.springerlink.com/index/TQY3BCP1AEL3AQH6.pdf
http://www.springerlink.com/index/TQY3BCP1AEL3AQH6.pdf
http://portal.acm.org/beta/citation.cfm?id=1536616.1536632&coll=DL&dl=ACM&CFID=93162465&CFTOKEN=94738359
http://portal.acm.org/beta/citation.cfm?id=1536616.1536632&coll=DL&dl=ACM&CFID=93162465&CFTOKEN=94738359
http://portal.acm.org/beta/citation.cfm?id=1536616.1536632&coll=DL&dl=ACM&CFID=93162465&CFTOKEN=94738359
http://portal.acm.org/beta/citation.cfm?id=1536616.1536632&coll=DL&dl=ACM&CFID=93162465&CFTOKEN=94738359
http://techresearch.intel.com/articles/Tera-Scale/1421.htm
http://techresearch.intel.com/articles/Tera-Scale/1421.htm

