

Digital Engineering • Universität Potsdan

Trends and Concepts of Business Application Architecture

Michael Perscheid, Ralf Teusner, Stefan Halfpap, Werner Sinzig Enterprise Platform and Integration Concepts

Hasso-Plattner-Institut

Course Overview

Trends and Concepts of Business Application Architecture

- Digitalization of Business Processes
- Enterprise Resource Planning
 - Sales and Distribution
 - Finance, Accounting, and Controlling
 - Human Resources

• Material Management and Production Planning

- In-Memory Databases for Business Applications
- Customer Relationship Management
- Enterprise Cloud Platforms for Integration and Extensions
- Block Week: Architecture Deep Dives

Digital Engineering • Universität Potsdam

Material Management and Production Planning

- Basic Concepts
- Examples from SAP S/4 HANA Sourcing, Procurement and Supply Chain

Werner Sinzig

June 2022

Agenda

1. Flow of Goods and Values

2. Master Data

Material, Bill of Material, Routing, Product Cost Calculation

3. Procurement

Strategic Purchasing, Operational Purchasing

4. Warehouse

Disposition Types, Consumption Forecast

5. Production

Integrated Production Planning, Manufacturing

Appendix

Flow of Goods and Values Volume Numbers: Goods Traffic in Germany in 2018

Sources: Stat. Bundesamt, Kraftfahrtbundesamt, Umweltbundesamt

Flow of Goods and Values Flow of Values between Economic Sectors ¹⁾

Usage	Input fro	m Production	Sectors	Last Usage		
	Primary	Secundary	Tertiary	Consumption /	Total Usage	
	Sector	Sector	Sector	Investment /		
Source 2)				Export		
Primary Sector 3)	9,5	47,1	3,5	37,3	97,4	
Secundary Sector 4)	11,3	1149,8	254,3	2063,4	3478,8	
Tertiary Sector 5)	14,6	481,5	1179,9	2166,6	3842,6	
Sources / Usage at	35,4	1678,4	1437,7	4267,3	7418,8 —	
Production Cost						

Total value of goods and services

Legend:

- 1) Data from 2019 in Mrd. \in / Source: Statistisches Bundesamt
- 2) Goods from domestic production and imports
- 3) Primary sector: agriculture and forestry, fishing
- 4) Secondary sector: production industry
- 5) Tertiary Sector: private and public services

Flow of Goods and Values Inside an Enterprise

Flow of Goods and Values Inside Production

➤ Flow of Information on Material ----- Flow of Control Information

Agenda

- 1. Flow of Goods and Values
- 2. Master Data

Material, Bill of Material, Routing, Product Cost Calculation

3. Procurement

Strategic Purchasing, Operational Purchasing

4. Warehouse

Disposition Types, Consumption Forecast

5. Production

Integrated Production Planning, Manufacturing

Appendix

Master Data: Material Definition, Synonyms and Generalizations

- - with *part* as synonym
 - with *raw material, semi-finished product* and *finished product* as specialized terms
 - with product as general term for semi-finished and finished product and trade good
 - with good as a general term for raw material and trade goods
- Retail industry ----- article
 - with *consumer good / consumer product* as a synonym for *article*
- Banking, insurance industry ----- product
- Business administration / economics ----- goods

Master Data: Material Identification (1/2)

By industry thousands of materials are purchased, produced, stored and sold. A material may exist in multiple variants. Materials occur in most main processes.

Materials need to be efficiently identified. Various coding methods exist.

- incremental numbering
- descriptive codes ('smart codes')
- descriptive codes combined with suffix for variants
- hierarchical categorization schemes (eg. hierarchical sales groups)

1	Mountain Bike		
	1	Model	
		1	Men
		2	Women
		3	Children
	2	Colour	
		1	Blue metallic
		2	White
		3	Black matt

Product	Sales Group	Model	Sales Group	Colour	ID
1	1	1	2	1	4711
1	1	1	2	3	4712
1	1	3	2	1	4713
1	1	3	2	2	4714

ID 4711	

- → ID MntBike
- → ID MntBike-Children

- Multidimensional categorization schemes (a.k.a. material classes)
 - For a combination of sales groups more than one material may exist. To manage this a material class management system was developed.
 - For all fields of the material master data table classes of allowed entities can be defined.
 - When a new material master record needs to be created existing records are checked with a multidimensional key from all classes.
 - When a new material master record needs to be created a similar one may be used as reference. The identifier is an incremental number.
 - In all business processes material records can be selected by the multidimensional material classes.

Master Data: Bill of Material Definitions

To produce finished goods in most cases several materials are needed. The composition of finished goods is described in the bill of material (BOM) (synonym in chemical industry is recipe). Bills of materials are used in departments like construction, production planning, assembly, standardization, and product cost calculation.

Usually bill of materials are multilevel, that means a finished good consists of materials which themselves consist of other materials. In a multilevel bill of material the upper material is called a module. The material which goes into a module is called a component. Modules and components are identified by their material number.

An edge in a bill of material defines how many units of component are needed to build one unit of the module (BoM coefficient).

The Gozinto Graph is the inverse description of o BoM. It describes for a named material in which modules it is used ("it goes into")

Master Data: Bill of Material Structure, Presentation and Usage (1/2)

E: Finished Good B: Semi-finished Good

K: Raw Material

Form of Presentation and Usage

Multi-level BoM		Singel	-Level BoM
E1	1	E1	1
B1	2	B1	2
K2	2	B3	1
K1	3		
B2	4		
K1	4		
K3	2		
B3	1		
B2	5		
K1	4		
K3	2		
K3	3		
SpareProduct	Parts Catalog t Cost Calcul.	RequiOperation	rements Planning ations Scheduling

Master Data: Bill of Material Structure, Presentation and Usage (2/2)

Form of Presentation and Usage

Overvie	w ВоМ	Parts I	Usage
E1	1	K1	1
B1	2	B1	19
B3	1	B2	4
К2	4	B3	20
K1	58	E1	58
B2	13		
К3	29		
• Total Pa	arts needed	 Impa bottle Impa incre 	act of a material e neck act of a cost ase

A routing (a.k.a. Bill of Operations) describes by so called work processes in which sequence resources (machines and people) are used to produce a specific lot size of a finished good or of a component.

A work process step points to a cost center / activity. Here the planned time needed is stored.

Finished Good E1 Lot Size 20 Pc				
Step Number	Work Process Name	Resource Cost Center / Activity	Time	
1	Set up	4711 / Labour Hours	30 min	
2	Turning	4711 / Machine Hours	120 min	
3	Turning	4711 / Labour Hours	120 min	
4	Milling	4711 / Machine Hours	60 min	
5	Cleaning	4711 / Labour Hours	15 min	
6	Quality Check	4799 / Labour Hours	30 min	

Master Data: Product Cost Calculation Cost Calculation Types (1/2)

Master Data: Product Cost Calculation Calculation Logic

Manufacturing Cost Split				
Material Category 1	Material Category 2	Processing var	Processing fix	
а				
Material Category 1	Material Category 2	Processing var	Processing fix	
a + h			N N	
u i v				
			-	
Material Category 1	Material Category 2	Processing var	Processing fix	
a + b + c		u + x	v + y	

S/4 HANA Material Management Master Data Presentation: Material, Bill of Material, Routing, Product Cost Calculation

https://hc6-715.wdf.sap.corp/ui

19

HPI

Hasso

Plattner

Agenda

- 1. Flow of Goods and Values
- 2. Master Data

Material, Bill of Material, Routing, Product Cost Calculation

3. Procurement

Strategic Purchasing, Operational Purchasing

4. Warehouse

Disposition Types, Consumption Forecast

5. Production

Integrated Production Planning, Manufacturing

Appendix

Flow of Goods and Values Inside Production

Procurement Sourcing Strategy

Dimension	Options		Criteria
Number of Supplier	Single Sourcing	 Multiple Sourcing	 Effort to coordinate Dependency Risk of Loss Purchase Volume Advantage
Complexity of Procurement Objects	Unit Sourcing	 System Sourcing	 Focus on Core Competencies Vertical Integration / Production Control
Place of Procurement	Local Sourcing	 Global Sourcing	 Transportation Costs and Risk Price, Exchange Rate Supplier Relationship Management

https://www.koinnMbmwi.de/fileadmin/user_upload/publikationen/Grundlagen_des_Einkaufs.pdf

Procurement Process (Source to Pay)

Agenda

- 1. Flow of Goods and Values
- 2. Master Data

Material, Bill of Material, Routing, Product Cost Calculation

3. Procurement

Strategic Purchasing, Operational Purchasing

4. Warehouse

Disposition Types, Consumption Forecast

5. Production

Integrated Production Planning, Manufacturing

Appendix

Flow of Goods and Values Inside Production

Warehouse Tasks (1/2)

Which goods need to be stored?	At which locations?
Consumable goods	
 Raw material, aux. material, operating supply 	Close to production site (Plant)
 Semi finished products and finished products 	Close to production site (Plant)
 Work in process 	On production site (Plant)
 Products and trade goods 	Close to the customer (Distribution Center)
 Not-production related material eg. office supply 	Rather at centralized locations
Capital goods	
 Physical capital goods eg. IT equipment 	Rather at centralized locations
 Immaterial capital goods eg. money on accounts, shares, accounts receivables / payables 	./.

Warehouse Tasks (2/2)

Why are goods stored?

- Buffering: Buffering between the stream of receipts and issues of the material.
 Either inflow or outflow happen continually / discontinually.
- Reliability: Protect pre- and post processes from disruptions of inflow or outflow of material.
- Economy: Flexibility to buy material under favorable market conditions for profitability reasons.

Just-in-Time is a logistics method working without warehousing. The benefits from warehousing inventory are sacrificed in favor of minimizing working capital.

Warehouse Material Requirements Planning (MRP), based on previous consumption

Exponential Smoothing

Calculation of forecast values

- Consumption-oriented MRP is based on historical values (time series).
- Forecast values are calculated as weighted averages from historical values.
- Recent values are weighted higher than older ones.
- Weighting factors decrease exponentially by time.

Assumptions

- No trends.
- Statistical independence among the historical data.

HPI

Hasso

Institut

Warehouse Calculation of Purchase Order Quantity

Optimal Purchase Order Quantity

Calculation of optimal Purchase Order Quantity

m = demand of a year

- E = quantity indep. purchase cost / purchase order
- p = interest rate for capital invested
- s = price per case, quantity dependent storage cost
- x = (optimal) purchase order quantity
- K = total cost per year

K = E * m / x + (p / 100) * s * x / 2

==> Optimal purchase order quantity

 $x_{opt} = (2 * m * E)^{1/2}$

Assumptions

- No fluctuate demand
- No discounts, no price jumps
- Material delivery at one point in time

Agenda

- 1. Flow of Goods and Values
- 2. Master Data

Material, Bill of Material, Routing, Product Cost Calculation

3. Procurement

Strategic Purchasing, Operational Purchasing

4. Warehouse

Disposition Types, Consumption Forecast

5. Production

Integrated Production Planning, Manufacturing

Appendix

Flow of Goods and Values Inside Production

35

Production Types of Organization

- Types of production
 - Engineer-to-order production: one single item
 - Repetitive production: numerous items (lot)
 - Mass production: unlimited number of items
 - Batch manufacturing: numerous, not-identifiable items
 - Joint-product production: split production
- Types of production organization
 - Order-related production: centralized by types of machines
 - Line production: centralized by groups of products
- Reference to customer order
 - Make-to-stock production
 - Make-to-order production

Different requirements regarding data model and functionality

Produktion Material Requirements Planning (MRP), based on sales program (1/4)

Calculation of forecast values

- Starts with sales demand
- Uses coefficients from overview type of bill of material to calculate demands for production und procurement

Assumptions

- No material on stock
- No time lag between sales, production and procurement
- No bottlenecks

Produktion Material Requirements Planning (MRP), based on sales program (2/4)

Calculation of forecast values

- Now with material on stock
 - Like in slide (1/4) plus
 - Subtract material on stock
 Gross calculation → net calculation
- Now with time lag function
 - Shift volume according to lead time
 - Period related forecast
- 1 bottleneck
 - Without alternative assignments:
 - Assign products to bootleneck resource
 - Calculate volume proportionally backwards
 - With alternative assignments: see slide (3/4)
- Several bottlenecks: see slide (4/4)

Produktion Material Requirements Planning (MRP), based on sales program (3/4)

Calculation of forecast values

- 1 Bottleneck
 - Now with alternative assignments:
 - Optimal assignment of bottleneck resource according to target measure (eg. CM per time unit)

Sales volume, procurement volume

Product	Produc- tion Demnad B2 for	Bottleneck usage B2 for	CM/cs	CM/time unit of bottleneck B2 for	Assign- ment B2 for	Production B2 for
B1	4 cs	1 h/cs	10 €/cs	10 € / 4h = 2,5 €/h	40 h	40 cs
B3	5 cs	1 h/cs	10 €/cs	10 € / 5h = 2,0 €/h	80 h	80 cs
B2					120 h	120 cs
CM: Contribution Margin Several bottlenecks: see slide (4/4)						

Production Material Requirements Planning (MRP), based on sales program (4/4)

Calculation of forecast values

- Now with several bottlenecks and with alternative assignments:
 - Design and solve Simplex-Tableau
 - Calculate sales and procurement volume

```
P: Profit Fix Costs: 4.000 €
```

 $X_{B1} = 10 \text{ cs}$ $X_{B3} = 9 \text{ cs}$ P = -3.810 € unused: M1 35 h M2 0 h A1 0 Stk A2 11 Stk

Simplex Tableau <u>https://www.matopt.de/werkzeuge/lineare-optimierung/simplexalgorithmus.html</u>

Production Material Requirements Planning (MRP) – Plan Production Orders

40

Plan Production Order

In a MRP run an optimized plan production program is determined and stored as plan production orders. Based on primary demand (sales demand and independent demand), expected availability of inventory (inventory on hand, open reservations, expected receipts), procurement requirements are calculated. Dependent on the procurement method these are purchase requirements or production requirements.

- Based on the production requirements and the applicable bills of materials ('BOM'), requirements for the BOM components are calculated, recursively through all production levels.
- Likewise, based on routings requirements for machine time and other ressources production work are calculated and allocated to the production work centers.
- Based on production requirements, routings and machine capacity an optimized production program is determined.
- The production program is recorded as plan production orders for the required materials and calendar-related times on machines.

Flow of Goods and Values Inside Production

Production Production process

Production Systems

Production Systems, Datamodel

Production Systems, Datamodel, Flow of Data

	Sav	N	
Time	Noise	Temperature	
8:09.05	90,2	30,02	
8:09.06	90,4		
8:09.07	90,6	30,05	
8:09.08	90,8		
8:09.09	90,9	30,04	
8:09.10	91,2		
8:09.11	91,3	30,04	
8:09.12	91,1		

Production Ord Plant Date	ler 1234 North 12.01.20	Product Cylinder Planned 15 PC 22 Actual 15 PC			
Material / Activity	Plan Quantity	Actual Quantity	Start	End	
Steel Bar	1 PC	1PC			
Bolts	60 PC	60 PC			
Saw	5 min	5 min	8:09	8:14	
NC Machine	12 min	13 min	8:20	8:33	
Automatic Assembly	3 min	4 min	8:50	8:54	

Financial Document Company Posting Date			9876 Pumpen GmbH 12.01.2022				
Pos #	Pos # D/C G/L Account		Production Order	Cost Center	Amount		
001	D	Machine hour	1234		100€		
002	С	Machine hour		ABC	100€		

Digital Engineering • Universität Potsdam

Appendix

Werner Sinzig

Produktion Planauftrag - vereinfacht

Header	Plan Production Order # Calendar Period Material Quantity							
Positions	Item #	Туре	Material	Quantity	AVO	Machine	Start Time	Duration
 Position type <i>Material</i> Position type AVO (<i>Workprocess, Activity</i>) 								

HPI Hasso Plattner Institut

Horizontal Integration in Detail

Vertical Integration in Detail

IT Systeme im Unternehmen Typen

