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Multi-Tenant Data Management

Shared machine — database process per tenant
— * RightNow (2007) had 3000 tenants in 200 databases
\MLEW H * 3000 vs 200 Amazon VMs cost $2,628,000 vs $175,200 / year
T * Plus the cost to administer the databases!

-4

Shared process — schema per tenant

m * Must support large numbers of tables

o T3 |/ * Must support on-line schema extension and evolution

Shared tables

 Hard for individual tenants to extend the schema

| T1,72,T3 |+ Hard to backup/restore/migrate individual tenants
* Hard to isolate tenants from each other
* Table scans can be very inefficient



Tenant Placement

Qonventlonal Interleaved Layout
Mirrored Layout
T1 T1 T1 T1
T3 T5
T2 T2 12 T4
13 T3 T2 T4
T4 T3
T4 T4 15 T6
If a node fails, all work moves to If a node fails, work moves to
one other node. The system must many other nodes. Allows
be 100% over-provisioned. higher utilization of nodes.




Related Work

Parallel Databases Cloud Databases

Tandem, Teradata, Rock Big Table, Dynamo,
Bubba, Gamma SimpleDB, PNUTS...
Fixed set of servers Dynamically sized cluster Dynamically sized cluster
Fully decluster large relations No large relations Distribute large data sets
Replicate large relations by Replicate large data sets
breaking into fragments BigTable: hidden in GFS
Heuristics for small relations Heuristics for small relations
Balancing but not interleaving Balancing and interleaving
Big bang reorganization Incremental reorganization Incremental reorganization
Minimize response time for a Maximize utilization for

single query multiple queries
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Rock Overview

Based on SAP’s in-memory column database TREX
Adds a clustering infrastructure that supports

— schema-per-tenant multi-tenancy

— replication for scalability and high-availability
Runs on the Amazon cloud

Focused on analytic SaaS applications where the data is
extracted from an external OLTP system

— Example: Salesforce to BOBJ Bl On-demand



Why In-Memory?

* Will ultimately win on performance (disk is tape)

* Avoid Vertica-style “projections” to reassemble row
fragments from columns

— Joins are cheap once the data is in memory
* Supports schema extension and evolution

— Example: The SaaS ERP vendor WorkDay
» Keeps all data in three tables in the database

 When a tenant comes on-line, the data is read into memory
and objects are constructed

e Claim the resulting flexibility is a fundamental advance over
static old-school ERP systems
— On-line data reorganization is a fact of life (and a
requirement for column databases anyway)



Rock Architecture
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Benchmark

A modified version of SSB, which is a modified version of TPC-H
One instance of the SSB schema per tenant

Added periodic batch writes from one source per tenant
Queries grouped into flights which drill down into an issue
Require snapshot isolation within a flight (implemented in TREX)
Added multiple users with think times

CUSTOMER LINEORDER PART
CUSTKEY ORDERKEY PARTKEY
NAME LINENUMBER NAME
ADDRESS CUSTKEY MFGR
CITY PARTKEY CATEGOTY
NATION UPPKEY BRAND1
REGION ORDERDATE COLOR
PHONE ORDPRIORITY TYPE
MKTSEGMENT SHIPPRIORITY SIZE
Size=scalefactor x QUANTITY CONTAINER
30,0000 EXTENDEDPRICE Size=200,000 x
SUPPLIER ORDTOTALPRICE {1 + logz scalefactor
DISCOUNT
SUPPKEY REVENUE DATE
NAME ¥ DATEKEY
PLYCOST
ADDRESS i::: LYCOS DATE
CITY : COMMITDATE DAYOFWEEK
NATION MONTH
- SHIPMODE
REGION - YEAR
- Size=scalefactor x
PHONE YEARMONTHNUM
" 6,000,000
Size=scalefactor x YEARMONTH
2,000 DAYNUMWEEK
.... (9 add" attributes)

Size=365x7



Test Run Configurations

A test run has a fixed set of tenants

Each tenant has

— a given amount of data

— a base factor for number of simultaneous users

The data is distributed across a set of servers according to
a tenant placement algorithm under study

Measure throughput: The number of users per tenant is
scaled up until the response time at the 99th percentile
exceeds one second



Jan’s Thesis

 Ground rules: over time
— tenants join and leave the system
— the amount of data varies for each tenant

— the request rate varies for each tenant (and is hard to quantify)

* Develop a tenant placement algorithm that
— adds and removes tenants on-the-fly
— migrates tenants as resource usage permits
— optimizes both balancing and interleaving
— minimizes the number of servers required

* Simulate execution of the algorithm over a long period of
time and then test the resulting layouts
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Handcrafted Best Case

* Perfect placement

1 1 4 4 7 7 1 4 7 1 2 3

2 2 5 5 8 8 2 5 8 4 5 6

33 6 6 9 9 3 6 9 7 8 9
Mirrored Interleaved

100 tenants on 10 servers with 10 tenants/server

* Perfect balancing: same load on every tenant
— 6M rows (204 MB compressed) of data per tenant

— The same (increasing) number of users per tenant

— No writes :

4218 users 4506 users 7%

Periodic single failures EWPPIFRES 4250 users 88%

Throughput



System Capacity

Fixed amount of data split equally among all tenants
200

[Measu[red
180 - Calculated

160 |
140 |
120 | : Rate * Size’” = 4144
100 |
80 |
60 |
40 |
20

Maximum Requests / second

20 40 60 80 100 120 140 160 180 200 220
More tenants Tenant Size in MB Fewer tenants

Capacity = bytes scanned per second

— A small overhead for processing requests

In-memory databases behave very linearly!



Workload

Tenants generally have different rates and sizes

For a given set T of tenants define

0.95

Workload — E Rate, * Size,
T 4144

When Workload = 1, the system is running at it’s
throughput level; if the level goes higher then response
time goals will be violated



Response Time

e Different amounts of data and assorted tenant sizes

* Vary Workload by scaling the rates for tenants

Response Time @ 99" Percentile (ms)
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Response Time @ 99" Percentile (ms)

2000

1500

1000

500

0

Impact of Writes

I

I

- Wit'hout Writes b
With Writes
Calculated without Writes
i Calculated with Writes * |
0.2 03 04 05 06 07 08 059 1

Workload

1.1



Simple Greedy Heuristic

* Initial study before we characterized capacity

* Bugsin load balancer

Solo =
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Future Work

* Incorporate capacity characterization in tenant placement
algorithm

* Study impact of on-line reorganization
— Migration of tenants
— Schema evolution

— Merge of delta into columns



Seminar Topics

* Build a simulation environment
— Challenges: Balance both overlap and bytes scanned

— Should be able to run both greedy heuristics and fancy
machine learning algorithms

* Build an application on top of the Rock framework
— Pick your favorite scenario
— Do something ,,presentable”

* Build an on-line visualization of the Rock cluster state
— Show active EC2 nodes and tenant layout

— Visualize current query workload, tenant overlap,
failures, migrations, merges, ...



