
In-Memory Databases

Jens Krueger

Recap

Recap: Workload Characteristics

OLTP OLAP/DSS

Full row operations Retrieve small number of columns

Simple Queries Complex Queries

Detail Row Retrieval Aggregation and Group By

Inserts/Updates/Selects Mainly Selects

Short Transactions Long Transactions

Small Found Sets Large Found Sets

Pre-determined Queries Adhoc Queries

Real Time Updates Batch Updates

„Source of Truth“ Alternative representation

3

- Clark D. French, „Teaching an OLTP Database Kernel Advanced Datawarehousing Techniques” ICDE 97

4
  Multi-Core Technology

  Moore’s Law:
“…number of transistors …
doubling approximately
every 18 month”

  CPU frequency hit limit
in 2002, but Moore’s
law holds today

  Main-Memory
Technology
  Increased size: up to 1TB of

main-memory on one main board
in 2010

  Constantly dropping costs

  RAM vs. disk access time:
100 ns vs. 10.000.000 ns

Recap: Hardware Trends

Recap: Trends in Enterprise Apps

5

Today's Enterprise Applications

■  Complex processes

■  Increased data set (but real-world events driven)

■  Separated into OLTP and OLAP

Enterprise data management

■  Wide schemas

■  Sparse data with limited domain

■  Workload consists of complex, analytic-style queries

■  Workload is mostly:

■  Set processing

■  Read access

■  Insert instead of updates

Memory Access

Data Processing

7

In DBMS, on disk as well as in memory,
 data processing is often:
■ Not CPU bound
■ But bandwidth bound
■ Gets even worse with multi-cores

 CPU can process data faster than it can read it

Memory Access:
■ Not truly random (in the sense of constant latency)
■ Data is read in blocks/cache lines
■ Even if only parts of a block are requested

Potential waste of bandwidth 1 3 2 4

Capacity vs. Speed (latency)

Memory hierarchy:
■  Capacity restricted by price/performance
■  SRAM vs. DRAM (refreshing needed every 64ms)

■  SRAM is very fast but very expensive

 Memory is organized in hierarchies
□  Fast but small memory on the top
□  Slow but lots of memory at the bottom

CPU

L1 Cache

L2 Cache

Main Memory

SRAM

SRAM

DRAM

8

~ 1 ns

< 10 ns

< 1 ns

100 ns

SRAM

latency technology

KB

MB

bytes

GB

size

Memory Basics II

■ Cache
 Small but fast memory, which keeps data from

main memory for fast access.

 Cache performance is crucial

■  Similar to disk cache (e.g. buffer pool)

But: Caches are controlled by hardware.

■ Cache hit
 Data was found in the cache.
 Fastest data access since no lower level is involved.

■ Cache miss
 Data was not found in the cache. CPU has to load

 data from main memory into cache (miss penalty).

CPU

Cache

Main
Memory

9

Memory Basics III

■ Cache lines
 The cache is partitioned into lines.

■  Data is read or written as whole line
■  Size: 4-64 bytes

 Due to unnecessary data in cache lines
the cache gets polluted.

1 2 3 4 5 6

C
ac

h
e

lin
e

Cache

10

Locality is King!

To improve cache behavior
■  Increase cache capacity

■  Exploit locality

□  Spatial: related data is close (nearby references are likely)

□  Temporal: Re-use of data (repeat reference is likely)

To improve locality

■  Non random access (e.g. scan, index traversal):

□  Leverage sequential access patterns

□  Clustering data to a cache lines

□  Partition to avoid cache line pollution
(e.g. vertical decomposition)

□  Squeeze more operations into a cache line

■  Random access (hash join):

□  Partition to fit in cache

11

Cache line replacement

Eviction of cache lines is needed

■  Strategies for replacement (hardware driven)

■  Least recently used
■  Least accessed line is replaced
■  Assumption: least likely to access accessed
■  Expensive maintenance

■  Random
■  Random line eviction

■  Easy to implement

12

Write data

13 Reads dominate cache access but what about writes?

Write through
■  Data is written to cache and main memory at the same time

■  Maintains memory consistency

■  As slow as low-level memory access

Write back

■  Write back to cache only

■  Dirty flag is used

■  While evicted dirty blocks/lines are written back to main memory

■  Consistency issues

Example

for (r = 0; r < rows; r++) !
 for (c = 0; c < cols; c++) !

" read[c] = table[r * cols + c];

14
A1 B1 C1 A2 B2 C2 A3 B3 C3 A4 B4 C4

1 2 3 4
….

Simulates sequential access

■  All data in a cache line is read

■  Prefetching and Pipelining further improve performance

Example

for (c = 0; c < cols; c++) !
 for (r = 0; r < rows; r++) !

" read[r] = table[c * cols + r];

15
A1 B1 C1 A2 B2 C2 A3 B3 C3 A4 B4 C4

1

….
2

Simulates traversal sequential access

■  Fixed stride (access offset) leads to cache misses

■  Varying stride allows to measure cache size

3

Evaluation

16

 1

 10

 100

 1000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

CP
U

 C
yc

le
s p

er
 v

al
ue

Stride in Bytes

XEON

L1 Hit L1 Miss L2 Miss

In-Memory Database I

In a In-Memory Database (IMDB)

■  Data resides permanently in main memory

■  Main Memory is the primary “persistence”

■  Still: logging to disk/recovery from disk

■  Main Memory is the new bottleneck

■  Cache-conscious algorithms/data structures are crucial

Differences from disk-based systems

■  Volatile

■  Direct access

■  Access time

■  Access cost

17

In-Memory Databases II

Can an entire database fits in main memory?

■  Yes:

□  Limited DB size, i.e. enterprise applications

□  Due to data compression (factor 10 feasible)

□  Redundant-free data schemas

■  No:

□  Data could be partitioned over nodes

□  Data aging strategies for extended memory hierarchies
(e.g. SSD/disks for non-active data)

18

More Main Memory
for Disk-based DBMS?

What is the difference between a IMDB
and a disk-based DB with a large cache?

■  Different optimizations for data structures, e.g.

□  Page layout

□  No access through a buffer manager

□  Index structures

□  Cache-aware data organization

□  Random access capabilities, e.g. for locking

■  As disk-based DB’s can have in-memory optimization,
they still would have to maintain different data structures.

19

IMDB: Relations and Cache Lines

20

a1 a2 a3 a4 a5
r0

r3

r2

r1
Cache Line

Tuple

The physical data layout with regards to the workload has a
significant influence on the cache behavior of the IMDB.

■  Tuples are spanned over cache lines

■  Wrong layout can lead to lots of (expensive) cache misses

■  Row- or column-oriented can reduce cache misses
if matching workload is applied

Row-oriented storage

21

A1 B1 C1

A2 B2 C2

A3 B3 C3

A4 B4 C4

Row-oriented storage

22
A1 B1 C1

A2 B2 C2

A3 B3 C3

A4 B4 C4

Row-oriented storage

23
A1 B1 C1 A2 B2 C2

A3 B3 C3

A4 B4 C4

Row-oriented storage

24
A1 B1 C1 A2 B2 C2 A3 B3 C3

A4 B4 C4

Row-oriented storage

25
A1 B1 C1 A2 B2 C2 A3 B3 C3 A4 B4 C4

Column-oriented storage

26

A1 B1 C1

A2 B2 C2

A3 B3 C3

A4 B4 C4

Column-oriented storage

27

B1 C1

B2 C2

B3 C3

B4 C4

A1 A2 A3 A4

Column-oriented storage

28
A1 B1

C1

A2 B2

C2

A3 B3

C3

A4 B4

C4

Column-oriented storage

29
A1 B1 C1 A2 B2 C2 A3 B3 C3 A4 B4 C4

Column-oriented Storage

 Pure vertical partitioning

■  Table is decomposed into n arrays (n #of attributes)

■  Arrays keep track of relations by position or separate ID

Dictionary Compression

■  Variable length fields to fixed length via dictionary compression

■  Strides can be reduced and cache line utilization improved

A1 B1 C1

A2 B2 C2

A3 B3 C3

A4 B4 C4

Table

1

2

Dictionary

1

2

Dictionary

1

2

Dictionary

30

Example: OLAP-Style Query

31

struct Tuple {!
int a,b,c;!
};!

Tuple data[4];!
fill(data);!

int sum = 0;!

for(int i = 0;i<4;i++)!

sum += data[i].a;!

A1 B1 C1

A2 B2 C2

A3 B3 C3

A4 B4 C4

Example: OLAP-Style Query

32

struct Tuple {!
int a,b,c;!
};!

Tuple data[4];!
fill(data);!

int sum = 0;!

for(int i = 0;i<4;i++)!

sum += data[i].a;!

A1 B1 C1

A2 B2 C2

A3 B3 C3

A4 B4 C4

Column Oriented Storage

Row Oriented Storage

Cache line

Example: OLTP-Style Query

33

struct Tuple {!
int a,b,c;!
};!

Tuple data[4];!
fill(data);!

Tuple third = data[3];!

A1 B1 C1

A2 B2 C2

A3 B3 C3

A4 B4 C4

Example: OLTP-Style Query

34

struct Tuple {!
int a,b,c;!
};!

Tuple data[4];!
fill(data);!

Tuple third = data[3];!

A1 B1 C1

A2 B2 C2

A3 B3 C3

A4 B4 C4

Row Oriented Storage

Column Oriented Storage

Cache line

Questions?

