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Recap: Workload Characteristics 

OLTP OLAP/DSS 

Full row operations Retrieve small number of columns 

Simple Queries Complex Queries 

Detail Row Retrieval Aggregation and Group By 

Inserts/Updates/Selects Mainly Selects 

Short Transactions Long Transactions 

Small Found Sets Large Found Sets 

Pre-determined Queries  Adhoc Queries 

Real Time Updates Batch Updates 

„Source of Truth“ Alternative representation  
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- Clark D. French, „Teaching an OLTP Database Kernel Advanced Datawarehousing Techniques”  ICDE 97 
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  Multi-Core Technology 

  Moore’s Law:   
“…number of transistors …  
doubling approximately  
every 18 month” 

  CPU frequency hit limit 
in 2002, but Moore’s  
law holds today 

  Main-Memory 
Technology 
  Increased size: up to 1TB of 

main-memory on one main board 
in 2010 

  Constantly dropping costs 

  RAM vs. disk access time: 
100 ns vs. 10.000.000 ns 

Recap: Hardware Trends 



Recap: Trends in Enterprise Apps 
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Today's Enterprise Applications 

■  Complex processes 

■  Increased data set (but real-world events driven) 

■  Separated into OLTP and OLAP 

Enterprise data management 

■  Wide schemas 

■  Sparse data with limited domain 

■  Workload consists of complex, analytic-style queries 

■  Workload is mostly:  

■  Set processing 

■  Read access 

■  Insert instead of updates 



Memory Access 



Data Processing 

7 

In DBMS, on disk as well as in memory, 
 data processing is often: 
■ Not CPU bound 
■ But bandwidth bound 
■ Gets even worse with multi-cores 

 CPU can process data faster than it can read it 

Memory Access: 
■ Not truly random (in the sense of constant latency) 
■ Data is read in blocks/cache lines 
■ Even if only parts of a block are requested 

Potential waste of bandwidth  1 3 2 4 



Capacity vs. Speed (latency) 

Memory hierarchy: 
■  Capacity restricted by price/performance 
■  SRAM vs. DRAM (refreshing needed every 64ms) 

■  SRAM is very fast but very expensive 

 Memory is organized in hierarchies 
□  Fast but small memory on the top 
□  Slow but lots of memory at the bottom 

CPU 

L1 Cache 

L2 Cache 

Main Memory 

SRAM 

SRAM 

DRAM 
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< 10 ns 

< 1 ns 

100 ns 

SRAM 

latency technology 
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Memory Basics II 

■ Cache 
 Small but fast memory, which keeps data from 

main memory for fast access. 

 Cache performance is crucial 

■  Similar to disk cache (e.g. buffer pool) 

But: Caches are controlled by hardware. 

■ Cache hit 
 Data was found in the cache.  
 Fastest data access since no lower level is involved. 

■ Cache miss 
 Data was not found in the cache. CPU has to load 

 data from main memory into cache (miss penalty). 

CPU 

Cache 

Main 
Memory 
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Memory Basics III 

■ Cache lines 
 The cache is partitioned into lines. 

■  Data is read or written as whole line 
■  Size: 4-64 bytes 

 Due to unnecessary data in cache lines  
the cache gets polluted. 
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Locality is King! 

To improve cache behavior 
■  Increase cache capacity 

■  Exploit locality 

□  Spatial: related data is close (nearby references are likely) 

□  Temporal: Re-use of data (repeat reference is likely) 

To improve locality 

■  Non random access (e.g. scan, index traversal): 

□  Leverage sequential access patterns 

□  Clustering data to a cache lines 

□  Partition to avoid cache line pollution  
(e.g. vertical decomposition) 

□  Squeeze more operations into a cache line  

■  Random access (hash join): 

□  Partition to fit in cache 
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Cache line replacement 

Eviction of cache lines is needed 

■  Strategies for replacement (hardware driven) 

■  Least recently used 
■  Least accessed line is replaced 
■  Assumption: least likely to access accessed 
■  Expensive maintenance 

■  Random 
■  Random line eviction 

■  Easy to implement 
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Write data 

13 Reads dominate cache access but what about writes? 

Write through 
■  Data is written to cache and main memory at the same time 

■  Maintains memory consistency 

■  As slow as low-level memory access 

Write back 

■  Write back to cache only 

■  Dirty flag is used 

■  While evicted dirty blocks/lines are written back to main memory 

■  Consistency issues 



Example 

for (r = 0; r < rows; r++) !
   for (c = 0; c < cols; c++) !

"   read[c] = table[r * cols + c]; 
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A1 B1 C1 A2 B2 C2 A3 B3 C3 A4 B4 C4 

1 2 3 4 
…. 

Simulates sequential access 

■  All data in a cache line is read 

■  Prefetching and Pipelining further improve performance 



Example 

for (c = 0; c < cols; c++) !
   for (r = 0; r < rows; r++) !

"   read[r] = table[c * cols + r]; 
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A1 B1 C1 A2 B2 C2 A3 B3 C3 A4 B4 C4 

1 

…. 
2 

Simulates traversal sequential access 

■  Fixed stride (access offset) leads to cache misses 

■  Varying stride allows to measure cache size 
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Evaluation 
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In-Memory Database I 

In a In-Memory Database (IMDB) 

■  Data resides permanently in main memory 

■  Main Memory is the primary “persistence” 

■  Still: logging to disk/recovery from disk 

■  Main Memory is the new bottleneck 

■  Cache-conscious algorithms/data structures are crucial  

Differences from disk-based systems 

■  Volatile  

■  Direct access 

■  Access time 

■  Access cost 
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In-Memory Databases II 

Can an entire database fits in main memory? 

■  Yes:  

□  Limited DB size, i.e. enterprise applications 

□  Due to data compression (factor 10 feasible) 

□  Redundant-free data schemas 

■  No:  

□  Data could be partitioned over nodes 

□  Data aging strategies for extended memory hierarchies 
(e.g. SSD/disks for non-active data) 
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More Main Memory  
for Disk-based DBMS?  

What is the difference between a IMDB  
and a disk-based DB with a large cache? 

■  Different optimizations for data structures, e.g.  

□  Page layout 

□  No access through a buffer manager 

□  Index structures 

□  Cache-aware data organization 

□  Random access capabilities, e.g. for locking 

■  As disk-based DB’s can have in-memory optimization,  
they still would have to maintain different data structures. 
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IMDB: Relations and Cache Lines 
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a1 a2 a3 a4 a5
r0

r3

r2

r1
Cache Line

Tuple

The physical data layout with regards to the workload has a 
significant influence on the cache behavior of the IMDB. 

■  Tuples are spanned over cache lines  

■  Wrong layout can lead to lots of (expensive) cache misses 

■  Row- or column-oriented can reduce cache misses  
if matching workload is applied   



Row-oriented storage 
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A1 B1 C1 

A2 B2 C2 

A3 B3 C3 

A4 B4 C4 



Row-oriented storage 
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A1 B1 C1 

A2 B2 C2 

A3 B3 C3 

A4 B4 C4 



Row-oriented storage 
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A1 B1 C1 A2 B2 C2 

A3 B3 C3 

A4 B4 C4 



Row-oriented storage 
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A1 B1 C1 A2 B2 C2 A3 B3 C3 

A4 B4 C4 



Row-oriented storage 
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A1 B1 C1 A2 B2 C2 A3 B3 C3 A4 B4 C4 



Column-oriented storage 
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A1 B1 C1 

A2 B2 C2 

A3 B3 C3 

A4 B4 C4 



Column-oriented storage 
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B1 C1 

B2 C2 

B3 C3 

B4 C4 

A1 A2 A3 A4 



Column-oriented storage 

28 
A1 B1 

C1 

A2 B2 
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A3 B3 
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Column-oriented storage 
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A1 B1 C1 A2 B2 C2 A3 B3 C3 A4 B4 C4 



Column-oriented Storage  

  Pure vertical partitioning 

■  Table is decomposed into n arrays (n #of attributes) 

■  Arrays keep track of relations by position or separate ID 

Dictionary Compression 

■  Variable length fields to fixed length via dictionary compression 

■  Strides can be reduced and cache line utilization improved 

A1 B1 C1 

A2 B2 C2 

A3 B3 C3 

A4 B4 C4 

Table 

1 

2 

Dictionary 

1 

2 

Dictionary 

1 

2 

Dictionary 
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Example: OLAP-Style Query 
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struct Tuple {!
int a,b,c;!
};!

Tuple data[4];!
fill(data);!

int sum = 0;!

for(int i = 0;i<4;i++)!

sum += data[i].a;!

A1 B1 C1 

A2 B2 C2 

A3 B3 C3 

A4 B4 C4 



Example: OLAP-Style Query 
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struct Tuple {!
int a,b,c;!
};!

Tuple data[4];!
fill(data);!

int sum = 0;!

for(int i = 0;i<4;i++)!

sum += data[i].a;!

A1 B1 C1 

A2 B2 C2 

A3 B3 C3 

A4 B4 C4 

Column Oriented Storage 

Row Oriented Storage 

Cache line 



Example: OLTP-Style Query 
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struct Tuple {!
int a,b,c;!
};!

Tuple data[4];!
fill(data);!

Tuple third = data[3];!

A1 B1 C1 

A2 B2 C2 

A3 B3 C3 

A4 B4 C4 



Example: OLTP-Style Query 
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struct Tuple {!
int a,b,c;!
};!

Tuple data[4];!
fill(data);!

Tuple third = data[3];!

A1 B1 C1 

A2 B2 C2 

A3 B3 C3 

A4 B4 C4 

Row Oriented Storage 

Column Oriented Storage 

Cache line 



Questions? 


