
In-Memory Data Processing and
Management

Summer Term 2010

 Dr. Alexander Zeier,
 Jan Schaffner, Anja Bog,
 Jens Krüger, Oleksandr Panchenko

In-Memory Data Processing and Management | Seminar Topics | 2010

2

Seminar topics

Topics by Jens Krüger

3

■ Data structures for In-Memory Databases (IMDB)

□  F1: Databases organizes data either row- or column-wise

□  F2: With regards to the workload, the one or the other is
advantageous.

□  Q: What is the optimal structure? Where is the tipping point?

■  Variants of in-memory column stores.

□  F1: Column stores can be implemented either by using a tuple ID
or the direct array offset.

□  F2: TupleID’s introduce an overhead but enable sorting of columns
independently.

□  Q: What is the best implementation in a mixed workload
environment?

In-Memory Data Processing and Management | Seminar Topics | 2010

In-Memory Data Processing and Management | Seminar Topics | 2010

4 ■ Build a simulation environment
□  Challenges: Balance both overlap and bytes scanned

□  Should be able to run both greedy heuristics and fancy machine
learning algorithms

■ Build an application on top of the Rock framework
□  Pick your favorite scenario

□  Do something „presentable“

■ Build an on-line visualization of the Rock cluster state
□  Show active EC2 nodes and tenant layout

□  Visualize current query workload, tenant overlap, failures,
migrations, merges, …

Topics by Jan Schaffner

Topics by Jens Krüger

5

■  Leveraging compression in In-Memory Databases (IMDB)

□  F1: The challenge of IMDB’s: The main memory is the new
bottleneck!

□  F2: Compression reduces the data amount and can be used for
improving query execution (late materialization).

□  Q: To what extend can compression improve a IMDB?

■ Data organization in Write-optimized Stores (WOS)

□  F1: Even if kept completely in main memory logging to disk is still
necessary

□  F2: Due to data compression the IMDB is separated into a
compressed read-optimized store and a write-optimized buffer

□  Q: What is the optimal physical data representation of this buffer?
Rows vs. Columns & compressed vs lightweight compression.

In-Memory Data Processing and Management | Seminar Topics | 2010

In-Memory Data Processing and Management | Seminar Topics | 2010

6 ■ Data Model Evolution in OLTP and OLAP
■  Historical development of specific data models

□  Classification of scenarios to apply different data models
□  Explore and compare the data models employed

■  State-of-the-art data schemes for OLTP and OLAP
□  Argumentation behind today’s specialized models
□  Normalization vs. denormalization
□  Materialized aggregates

■ Database Self-Tuning Capabilities

■  Explore mechanisms behind self-tuning of databases
□  Analyze issues and find a fitting solution
□  Mechanisms how and when to adapt the database

■  Focus on physical database structures, i.e. dynamic creation
and deletion of e.g. Indexes, Views, Partitions, etc.

Topics by Anja Bog

Topics by Jens Krüger

7 ■ Optimizing the compaction process

□  F1: Due to data compression at a certain point in time the buffer
has to be merged with the already compressed data.

□  F2: There are several strategies to execute this process

□  Q: What is the optimal strategy under certain workloads?

■  Indices for IMDB’s

□  F1: Indices can improve certain types of queries

□  F2: But: maintaining index structures introduces an overhead.

□  Q: Which cache-aware index variant is optimal for certain queries?

■ Order-preserving data dictionaries

□  F1: Order-preserving dictionaries can be used for late
materialization during query execution

□  Q: Is the overhead of maintaining the sort order justified?

In-Memory Data Processing and Management | Seminar Topics | 2010

8

Topics by Oleksandr Panchenko

■  Execution of SQL queries with a great number of WHERE-
conditions
□  Some scenarios require a great number of WHERE-conditions.

□  Current database query optimizers disregard properties of conditions, such
as, distribution, influence of each condition on the result set, relations
between conditions.

□  The goal is elaborating a technique which analyses the properties of
conditions for constructing query trees. Of course, for one selected
scenario.

■ XPath interface for querying traces stored in SQlite

□  Some scenarios require other structural languages than SQL (e.g., XPath
for XML documents / trees).

□  The goal is an exemplary implementation of an XPath interface to
structural data which is stored in a relational table.

In-Memory Data Processing and Management | Seminar Topics | 2010

