Zero-Shot Learning

for Databases

Zero-Shot Lea MING in the context of databases is the process of training a model on a certain
number of databases and then using this model on unknown databases. The model will be trained on
runtimes of queries. Zero-Shot learning has the advantage of at least keeping the accuracy of workload-
driven training, while also reducing the cost and being more flexible, because the model isn’t trained for
just one specific database.

For Zero-Shot Learning it is necessary to encode
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queries in a way that can generalize over databases.
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collected by using an approach called data driven
learning, without having to run queries.

SELECT (t.production_year) FROM movie_companies mc, title t
WHERE t.id=mc.movie_1id AND t.production_year>1990 AND
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As shown by the graphics to the
right Zero-Shot Learning has
good performance compared to
existing approaches for database-
independent approaches. It also
compares well with workload-
driven learning which was one of

Generalization experiment: train on 19 real-world DBs. Estimate query runtime on
unseen 20th DB
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