
Abstract

In contemporary software development, the selection

of programming languages and paradigms is influenced

by factors such as popularity, task suitability, unique

features (Rust's borrow checker for safety or Erlang's

BEAM for concurrency), performance, execution speed,

and most recently energy efficiency [1]. However,

despite an acknowledgment of the importance of

cognitive load—evidenced by Python's emphasis on

readability and Go's simplicity—there remains a

significant gap in empirical research and metrics to

evaluate how cognitive load impacts software

development. Current methods primarily rely on

subjective user feedback and evaluations of technique

efficacy.

This research proposes an evaluation to assess

cognitive load in programming languages using

wearable devices , which will aid companies in making

informed decisions when cognitive load is a concern. By

leveraging cognitive load theory, which describes

cognitive load as the total amount of information that

the working memory can handle at one time, and

measureing them, this study aims to illuminate the

effects of different programming languages on cognitive

efficiency and overall developer performance. This

comprehensive approach seeks to establish clearer

correlations and provide actionable insights that can

influence future language and tool adoption.

Cognitive Load Assessment

In Programming Languages and Paradigms

Problem

The discussion around how cognitive load in
programming languages affects software development
often hinges on key debates, yet it suffers from a lack
of empirical research and specific metrics for
measurement. These debates include:

1. Dynamic vs. Static Typing: Advocates for static
typing argue that it reduces cognitive load by providing

more explicit information to the developer, enhancing

features like autocomplete and autosuggest. In
contrast, proponents of dynamic typing suggest it

simplifies coding and accelerates task completion by
reducing upfront complexity.

2. Compiled vs. Interpreted Languages: Compiled
languages handle errors during compilation, which

might decrease cognitive load by catching errors early
and reducing the need for runtime debugging. Besides ,

interpreted languages require developers to maintain

awareness of issues typically managed by a compiler,
thus increasing the cognitive burden as developers act

as "human compilers."

3. Programming Paradigms: The impact of

programming paradigms varies; imperative languages

(e.g., C, Go, Rust) with composition, object-oriented

languages (e.g., Java, C++, Python) focus on

structuring programs around objects and inheritance,

and finally, functional languages like Haskell or Erlang,

which may reduce the need to track system states or

side effects, potentially lowers cognitive overhead,

allowing developers to change code confidently.

4. Languages Complexity: Languages such as C++

and Rust are known for their extensive features and

powerful abstractions, which can potentially reduce

cognitive load by providing sophisticated tools to

address complex problems effectively. However, the

complexity of their syntax and advanced features like

borrow checking and lifetimes can conversely increase

cognitive load. C++ and Haskell are notable for offering

multiple ways to accomplish tasks, including various

methods to initialize variables and create objects, which

can overwhelm developers with choices and increase

cognitive effort. In contrast, simpler languages like

Python or Go, while easier to write and understand, can

become verbose in expressing complex abstractions,

leading to a different kind of cognitive load as

developers manage larger codebases.

Despite numerous discussions on the topic, most

current opinions about the cognitive load associated

with programming languages are based on theories,
personal feelings, or self-assessments rather than

empirical research. Additionally, various language
features and paradigms may alleviate certain types of

cognitive load, such as intrinsic and extraneous loads,

but could exacerbate others, such as germane load.
This variability makes it challenging to definitively

assess the overall impact of programming languages on
cognitive load, underscoring the need for more

structured and scientific studies to gain a clearer

understanding.

Goal

The primary objective of this research is to develop and

refine metrics that accurately measure the cognitive

load imposed by various programming languages and

paradigms, using wearable devices for data collection.

The aim is to deepen our understanding of how

programming languages influence cognitive load and to

assess how this impacts productivity, learning, reading

efficiency, and overall usability. Additionally, this

research will investigate the broader implications of

cognitive load on usability costs, comparing it with

other critical factors like performance and energy

efficiency. By leveraging wearable technology to

monitor physiological and behavioral responses, this

study hopes to offer actionable insights that could lead

to more efficient and user-friendly programming

environments.

Solution

The research will focus on developing metrics to

quantify cognitive load in programming, primarily using

wearable devices for data collection:

• Review of Existing Work: We will examine current
theoretical and empirical research on cognitive load

in programming to establish a solid base for our

study.

• Metric Formulation: We'll develop indicators for
assessing cognitive load, drawing on productivity

measures and physiological data captured by

wearable sensors, as outlined in Fabian's paper [2].

• Data Collection: Real-time physiological and
behavioral data will be gathered from participants

as they use various programming languages,

employing wearable technology for accurate
monitoring.

• Analysis of Data: We will analyze the data to find

correlations between physiological responses,

behavioral actions, and the perceived complexity of
tasks to validate our metrics.

• Drawing Conclusions and Making

Recommendations: The findings will be synthesized

to offer practical recommendations for selecting
programming languages based on their cognitive

load impact, aiming to enhance the efficiency of
software development processes.

This thorough evaluation is designed to develop

validated metrics for measuring cognitive load in

programming languages. It will offer insights into how

various language features and paradigms influence

cognitive load and developer productivity. By taking

cognitive load into account when choosing

programming languages, companies can improve their

development processes and enhance the quality of their

software. The analysis will consider results at various

levels of detail, utilizing previous studies on cognitive

load and physiology to ensure a comprehensive

understanding of the effects.

Assessing Cognitive Load in
Software Development with

Wearable Sensors
Fabian Stolp

Hasso-Plattner-Institut | Digital Engineering | Universität Potsdam | Prof.-Dr.-Helmert-Str. 2–3 | D-14482 Potsdam | www.hpi.de

References:

[1] Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J.P., & Saraiva, J.D. (2017). Energy efficiency across programming languages: how do energy, time, and memory relate? Proceedings of the
10th ACM SIGPLAN International Conference on Software Language Engineering.
[2] F. Stolp, "Assessing Cognitive Load in Software Development with Wearable Sensors," 2023 IEEE/ACM 45th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion),
Melbourne, Australia, 2023, pp. 227-229, doi: 10.1109/ICSE-Companion58688.2023.00062.

Dinh Trung Hieu Le, M.Sc. Software System Engineering

Hasso Plattner Institute, Potsdam, Germany

E-Mail: dinhtrunghieu.le@student.hpi.de

Lecture Series on HPI Research

Lecture in Focus:

Connected Healthcare, Prof. Bert Arnrich

mailto:dinhtrunghieu.le@student.hpi.de

	Slide 1: Cognitive Load Assessment

