
Data Without Borders:
RDBMSs and Universal Columnar Memory Layouts

Philipp Bode

Master Student IT-Systems-Engineering

Hasso Plattner Institute, Potsdam, Germany

E-Mail: philipp.bode@student.hpi.de

Databases and Data Engineering: Many data pipelines incorporate

relational databases, either as an easily queryable multi-user analytical data store or as
a single source of truth for transactional data. However, mainstay tools for data
preprocessing, domain-specific transformations or advanced analytical calculations (e.g.
hardware-accelerated machine learning algorithms) revolve heavily around external
ecosystems such as Python. Transferring data between these systems brings costly
serialization/deserialization from one data representation to the other [0][1]. This
hinders quick iteration in data exploration phases and wastes power on unnecessary
computation in automated pipelines.

[0] Li, T. (2019). Supporting Hybrid Workloads for In-Memory Database Management Systems via a
Universal Columnar Storage Format. Master Thesis, CMU Database Group, Prof. Andrew Pavlo

[1] Raasveldt, M., & Mühleisen, H. (2017). Don’t hold my data hostage-A case for client protocol
redesign. Proceedings of the VLDB Endowment, 10(10), 1022–1033.

[2] Dreseler, M., Kossmann, J., Boissier, M., Klauck, S., Uflacker, M., & Plattner, H. (2019). Hyrise re-
engineered: An extensible database system for research in relational in-memory data management.
Advances in Database Technology - EDBT, 2019-March, 313–324.

Varying transfer times of a 8GB TPC-H
table into pandas. Borrowed from Li [0].

Cassandra

Parquet

Spark

pandas Drill

Kudu

HBase

Impala

Cassandra

Parquet

Spark

pandas Drill

Kudu

HBase

Impala

Copy & Convert

Apache Arrow provides a standardized,

language-agnostic memory layout for columnar
data, designed for analytic processing on modern
hardware. Applications adhering to the standard
can zero-copy exchange data, eliminating
serialization overhead. Even though it was
designed for analytic read-only processing, recent
work by Li et al. has shown the feasibility of
transaction engines backed by Arrow memory [0].

GPU-VM

ML process

Database-Server

HTAP RDBMS [0][2]

⋮

Chunk #3

reference

reference

materialized

Chunk #n

SELECT *
FROM TableA
WHERE …

Chunk #1

Chunk #2

Complete Match

Partial Match /
Invalidated Entries

TableA

Query Result:
Contiguous

Arrow buffers

GPU Icon made by itim2101 from Flaticon

Shared
Memory

Complete Match

External jobs, e.g.GPU processing

{0}

Access over RDMA

Arrow Flight
Transfer

{3}

{2}

{1}

A Universal DBMS? We propose a wide-spanning

examination of Arrow-backed HTAP systems which allow
zero-copy and/or serialization-less data exchange with
database clients. This work might start with adapting an
open-source database (e.g. [2]) to utilize Arrow and
investigating performance impacts on benchmarks such as
TPC-H. Opening up application-specific memory formats
would allow the direct or indirect integration of various open-
source analytics libraries: Potentially, chunk-wise query
operators could be sped up by GPU-accelerated processing
provided by cuDF {0}. Also, user-defined jobs based on Arrow-
compliant libraries could be executed directly on the results
of analytical queries. This might be achieved through direct
execution on the database host with shared memory
between job process and DBMS {1}. For this scenario, practical
concerns such as security, resource allocation, access control
a and data locking should be investigated. Furthermore,

Mutable
chunks

more efficient data exchange to external clients can be
achieved, either through no-serialization transfer {2} or
RDMA {3} in case corresponding hardware is available.

On the client’s side, the transferred data is
directly useable by libraries utilizing the
standardized format. Overall, these
optimizations could provide substantial
increases in efficiency for various types of
data pipelines.

