
Luigi (similar to Apache Airflow)
• Focus on periodically running ETL jobs
• Disadvantage over Airflow: scheduler is based on

cronjobs not so scalable

Airflow is a workflow management service, that is based on DAGs (direct acyclic graphs). Each DAG describes how the
workflow of a pipeline is run. By that, dependencies are defined and each DAG operation can only be executed when the dependencies are successfully
completed. Operations define the exact command that is run in a DAG’s node. It can be a bash command, a python script, database operations or setup
and execution of commands within a Docker container.

Apache Airflow is a workflow management tool which is widely used for data engineering
pipelines. It was developed by Airbnb in 2014 and given to Apache in 2016. It solves the problem of running
data pipelines on a regular basis with dependencies. Thus, it can be used to automate recurring pipelines for
ETL jobs, as well as training of machine learning models. It works based on jobs described as directed acyclic
graphs. It is mostly used to run recurring fixed jobs. For stream processing, other tools, like the ones described
on the bottom, make more sense.

Apache Airflow 
Automate recurring ETL Pipelines

Hendrik Patzlaff
B. Sc. Student IT-Systems Engineering

Lecture Series on Practical Data Engineering
Hasso Plattner Institute, Potsdam, Germany

hendrik.patzlaff@student.hpi.de

Abstract

How does it work?

Besides the two basic concepts, which enable definition of
complex tasks, Airflow supports data engineers and data
scientists with more features in order to make handling complex
tasks easy. It provides a web interface to visually describe DAG
structure and their states. Error management is provided to retry
failed executions.

For regularly running DAGs, Airflow uses an included scheduler. For each DAG, execution time and frequency can be set like for cronjobs, but they run on
Airflow’s integrated scheduler logic, which makes it independent from system cronjobs.
Airflow is written in Python, and so are the DAG definitions. Defining a DAG can be done as shown below. Dependencies between tasks is done by defining
it in the Python script as node1 >> node2.

Airflow GUI showing all DAGs with schedule information and details on last runs [1]

DAG definition Python script

• Need of flexible scheduling tool for recurring data engineering and data science use cases
• Increasing complexity of data pipelines
• Processing non-real time data on a regular basis
• Need for support of wide variety of usable operators to be called within airflow DAG nodes

DAG visualization [5]

When to use Airflow

• Processing stream data or integration of real time updates of machine learning models and
data pipelines

• Reason: Airflow works scheduler-based and is not made for working with continuous streams

When not to use Airflow

Similar tools in comparison
As discussed above, Airflow is not made for handling data streams. As this use case is getting more
and more relevant in the current times, some solutions for that will be presented below. An direct
alternative to Airflow is described on the bottom left.

Apache Flink
• Distributed real time processing engine
• Support for batch processing and stream

processing
• High level API

Apache Storm
• Real time stream processing application
• Used for real time analysis and processing
• Low level API compared to Flink

Advantage of stream processing over batch processing
As more and more data-driven decisions are taken, constantly analyzing data is crucial to instantly
get information out of those. Differently from Airflow, there are frameworks with the focus on
stream instead of batch processing.

How to define Airflow jobs?

Basic concepts

Sources:
[1] https://airflow.apache.org/
[2] https://flink.apache.org/
[3] https://github.com/spotify/luigi
[4] https://storm.apache.org/
Lecture Series on Practical Data Engineering, Hasso Plattner Institute 2019/20:
- [5] Recommending Tourist Activities - Data Science Challenges and the Needs for Data Pipelines – Maximilian Jenders
- Apache Flink - An Introduction and Outlook into the Future – Arvid Heise

[1]

[3]
[2] [4]


	Apache Airflow �Automate recurring ETL Pipelines

