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■ Tonight 5pm:
Maximilian Jenders (GetYourGuide)
Recommending Tourist Activities - Data Science Challenges And The Needs for Data 
Pipelines

■ Access to Moodle:
□ Non-HPI students, who do not have an account yet: write me an email
□ Learn how to write professional emails: https://medium.com/@lportwoodstacer/how-

to-email-your-professor-without-being-annoying-af-cf64ae0e4087

■ Quiz will be online soon!

Chart 2

Announcements

https://medium.com/@lportwoodstacer/how-to-email-your-professor-without-being-annoying-af-cf64ae0e4087
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Tentative Timeline

Chart 3

Date Tuesday Thursday
15./17.10. Introduction No class
22./24.10. DBS Recap DBS Recap II
29.10/31.10. 20 Years HPI Holiday
5./7.11. Big Data Stack Solution Quiz I
12./14.11. Benchmarking & Measurement Cloud/Container
19./21.11. Facebook Chief Scientist File Systems (starts 20 min late)
26. /28.11. Map/Reduce Solution Quiz II
3./5.12. KV-Stores Consistency
10./12.12. Stream Processing Windows
17./19.12. Tables and State Solution Quiz III
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Tentative Timeline cont‘d

Chart 4

Date Tuesday Thursday
7./9.1. Stream Optimizations Solution Quiz IV
14./16.1. ML Systems ML Exec Strategies
21./23.1. ML Lifecycle Graph Processing
28./30.1. Graph Processing II Solution Quiz V
4./6.2. Q&A Final Exam
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1. Review of Relational Database Management
■ Relational Model
■ Operators
■ Algebra
■ SQL

2. Review of Relational Database Systems
■ Storage and Data Representation
■ Hashing & B-Trees
■ Query Execution
■ Query Compilation / Optimization

This Lecture

Chart 5
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■ Relational database management system (RDBMS)
□ Server based software
□ One RDBMS – many relational databases  (RDBs)
□ Responsibilities of these servers

– Management of main storage and secondary storage
– Transaction management
– Query processing and optimization
– Backup and recovery
– Data consistency
– User management

□ Systems
– Oracle, DB2 (Informix), Sybase, NCR Teradata, SQL Server
– PostgreSQL, InterBase, Berkeley DB, db4o, MySQL, Ingres, SAP DB, MonetDB, ...

Relational Databases

Chart 6
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Client-Server

Other database

Native (SQL*Plus, 
OCI)Native (SQL*Plus, 

OCI)Native (SQL*Plus, 
OCI)

JAVA (JDBC)JAVA (JDBC)JAVA (JDBC)

Secondary 
storage

Listener

DBMS2-
Server

Consistency
Parallelization
Recovery
Load Balancing
Authentication
Authorization
....

Secondary 
storage

DBMS1-
Server
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■ Conceptual level
□ Relations, Tuple
□ Values of attributes

■ Logical level
□ Files
□ Records
□ Fields

■ Physical level
□ Drives
□ Blocks
□ Cylinders and Sectors

Chart 8

Three Levels of Data Representation

Relational Model
(first part)

RDBMS Internals
(second part)
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■ Representation of all data 
(e.g., Entity-Types and Relationship-Types of the ER-Model)
through Relations
□ Relation Name
□ Attributes
□ (Data types)

Chart 9

Relational Data Model

P_ID Given Name Last Name Age Adress

1 Peter Müller 32 10101 Berlin

2 Stefanie Meier 34 11202 Berlin

5 Petra Weger 28 80223 München

7 Andreas Zwickel 44 80443 München

... ... ... ... ...

Rows/
Tuples

Columns/AttributesEmployee
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■ Relational data model has „limited semantics“
■ Modeling with tables is not very expressive/intuitive
■ Modeling languages: ER, EER, UML, ...
■ Entity-Relationship Model

Chart 10

ER-Modeling

Employee Project

Given Name

emp_id

Last Name

proj_id

start

customer
works for
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University ER Schema

Student

Assistant

MatrNr

PersNr

Semester

Name

Name

Departement

Grade

attends

examines

works for
Professor

Lecture

gives

SWS

LectNr

Title

Room

Position

PersNr

SuccessorPredecessor

Name

1

N

1

1

N N

N

M

M

MN
Is this
correct?

requires



(c) 2019 - Data Engineering Systems Group

■ 1:N Relationship Type
Initial Schema

Lecture : {LectNr, Title, SWS}
Professor : {PersNr, Name, Position, Room}
Gives: {LectNr, PersNr}

Chart 12

Developing the Relational Schema

Professor Lecturegives
1 N
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1:N-Relationship Type
■ Initial schema

Lecture : {LectNr, Title, SWS}
Professor : {PersNr, Name, Position, Room}
Gives: {LectNr, PersNr}

■ Refinement through combination
Lecture : {LectNr, Title, SWS, GivenBy}
Professor : {PersNr, Name, Position, Room}

Rule
■ Relations with the same key can be combined.
■ But only these and no others!
■ Beware of weak entity types and semantics!

Chart 13

Refinement of the Relational Schema
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ER Model, Relational Schema, and Instance

Professor
PersNr Name Position Room
2125 Sokrates C4 226
2126 Russel C4 232
2127 Kopernikus C3 310
2133 Popper C3 52
2134 Augustinus C3 309
2136 Curie C4 36
2137 Kant C4 7

Lecture
LectNr Title SWS GivenBy
5001 Grundzüge 4 2137
5041 Ethik 4 2125
5043 Erkenntnistheorie 3 2126
5049 Mäeutik 2 2125
4052 Logik 4 2125
5052 Wissenschaftstheorie 3 2126
5216 Bioethik 2 2126
5259 Der Wiener Kreis 2 2133
5022 Glaube und Wissen 2 2134
4630 Die 3 Kritiken 4 2137

Professor Lecturegives
1 N
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This Does NOT Work

Professor
PersNr Name Position Room Gives
2125 Sokrates C4 226 5041
2125 Sokrates C4 226 5049
2125 Sokrates C4 226 4052

... ... ... ... ...
2134 Augustinus C3 309 5022
2136 Curie C4 36 ??

Lecture
LectNr Title SWS
5001 Grundzüge 4
5041 Ethik 4
5043 Erkenntnistheorie 3
5049 Mäeutik 2
4052 Logik 4
5052 Wissenschaftstheorie 3
5216 Bioethik 2
5259 Der Wiener Kreis 2
5022 Glaube und Wissen 2
4630 Die 3 Kritiken 4

Professor Lecturegives
1 N
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■ What, if we want to insert Lawrence as a new Employee?

Chart 16

Insert Anomaly

EmpProj
EmpID Name Room ProjID ProjName
1234 Tilmann 103 111 BBDC
4560 Durgesh 754 111 BBDC
3456 Yue 723 111 BBDC
5468 Sebastian 798 121 BIFOLD
8748 Hendrik 101 121 BIFOLD
8733 Nina 789 121 BIFOLD
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■ What, if we rename BBDC into BBDC2?

Chart 17

Update Anomaly

EmpProj
EmpID Name Room ProjID ProjName
1234 Tilmann 103 111 BBDC
4560 Durgesh 754 111 BBDC
3456 Yue 723 111 BBDC
5468 Sebastian 798 121 BIFOLD
8748 Hendrik 101 121 BIFOLD
8733 Nina 789 121 BIFOLD
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■ What, if project BIFOLD is cancelled?

Chart 18

Delete Anomaly

EmpProj
EmpID Name Room ProjID ProjName
1234 Tilmann 103 111 BBDC
4560 Durgesh 754 111 BBDC
3456 Yue 723 111 BBDC
5468 Sebastian 798 121 BIFOLD
8748 Hendrik 101 121 BIFOLD
8733 Nina 789 121 BIFOLD
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■ M:N Relationship
■ „Bridge table“ with two foreign keys

Chart 19

Relationship-Type „attends“

Student Lecture

attends

......11

......10

...namev_id

lecture

......2

......1

...names_id

student

112
111
102
101
v_ids_id

attends

M N
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■ attends : Professor x Student -> Seminar topic
■ attends: Seminar topic x Student -> Professor

Chart 20

Relationship-Type „attends“

Student attends

Grade

Seminar topic

Professor

1

1
N
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■ Students may only attend one seminar topic by one professor
■ Students may work on the same topic only once – they may not have worked on the 

same topic with another professor

■ However, the following should be possible:
□ Professors can re-use a seminar topic (i.e., can assign the same topic to multiple 

students)
□ The same topic may be mentored by multiple professors (for different students!)

Chart 21

Representing Integrity Constraints
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■ attends{ student, professor, topic, grade}
■ unique(student, professor)

□ each student works only on one topic with a professor
■ unique(student, topic)

□ each student works on a topic only once

Chart 22

Relational Schema for the Constraints

Student attends

Grade

Seminar topic

Professor

1

1
N
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Instance of the Relation attends

Professor

Seminar
topic

p1

p2

p3

p4

t1

t2

t3

t4

s1

s2

s3

s4

b1

b2

b3

b4

b5

b6

Student

Dashed lines marking illegal
relationships



(c) 2019 - Data Engineering Systems Group

Attributes are functionally dependent
■ Key  List of Values
■ Examples:  

□ pers_id  name, first_name, age ...
□ proj_id  customer, status, ...

■ Candidate Key
□ Minimal set of attributes that functionally determines all the other attributes in a table 
(= minimal superkey)

■ Decompose after functional dependencies
□ Done during schema design
□ Goal: No redundancy, no anomalies
□ Caveat: Normalization often hurts performance, tuning may involve de-normalization

Chart 24

Normal Forms
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■ Relational Schema R, Candidate Keys P

■ First Normal Form (1NF)
□ All attributes in R are atomic (example: address)
□ No automatic verification, depends usually on the format in which the application expects the data 

types

■ Second Normal Form (2NF)
□ R is in 1NF
□ No attribute A, which is not part of a key, depends on a subkey
□ Violating example: teaches (prof_id, student_id, date, stud_name)

■ Third Normal Form (3NF)
□ R in 2NF
□ No attribute A depends on a non-key attribute A’
□ Violating Example: residence(pers_id, zip, city)

Chart 25

Normal Forms
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Relational Operations

worker

projects

first_name

pers_id

last_name

proj_id

kickoff

participates

share
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■ Selection
□ Get tuples of worker, satisfying age>40 and last_name=“Anderson”

■ Projection
□ Get only the worker -columns first_name,  last_name

■ Cartesian Product
□ Combine all tuples from the table worker with all tuples from the table participates

■ Composition/Nesting of Operators
□ Project columns last_name and proj_id in all tuples of the  Cartesian Product of worker 

and participates, having worker.pers_id=participates.pers_id and share > 10%

Chart 27

Basic Operations on Tables
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■ σ Selection
■ π Projection
■ x Cartesian Product
■ ⋈ Join
■ ρ Renaming
■ − Set Difference
■ ÷ Division

■ ∪ Union
■ ∩ Intersection
■ ⋉ Left Semijoin
■ ⋊ Right Semijoin
■ ⟕ Left Outer Join
■ ⟖Right Outer Join
■ ⟗Full Outer Join

Chart 28

Relational Algebra
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Given two sets:
■ R = {t1, ..., tm, tm+1, ..., tn}
■ S = {tm+1,..., tn, tn+1, ..., tk}

Chart 29

Set Operations

R ⋃ S
R − S R ∩ S S − R

t1 t2 ... tm tm+1 tm+2 ... tn tn+1 tn+2 ... tk
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■ Natural-Join / Equi-Join

■ L ⋈ R = ΠL.A, L.B, L.C, R.D, R.E (σL.C=R.C (L x R))

Chart 30

Natural Join

L
A B C

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

a5 b5 c5

⋈ =
R

C D E

c1 dA eA

c1 dB eB

c4 dC eC

c6 dD eD

Result
A B C D E

a1 b1 c1 dA eA

a1 b1 c1 dB eB

a4 b4 c4 dC eC
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■ Left Outer Join

■ Left Semi Join

Chart 31

Other Join Types

L
A B C

a1 b1 c1

a2 b2 c2

⟕ =
R

C D E

c1 d1 e1

c3 d2 e2

Result
A B C D E

a1 b1 c1 d1 e1

a2 b2 c2 - -

L
A B C

a1 b1 c1

a2 b2 c2

R
C D E

c1 d1 e1

c3 d2 e2

⋉ =
Result

A B C

a1 b1 c1
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■ ANSI-SQL, SQL-92, SQL-99, SQL-3
■ Declarative: What to execute, not how to execute!
■ Four basic commands (CRUD): Insert, Update, Delete, Select
■ DDL defines schema, DML works on the data
■ Other languages:

□ Tuple-Calculus, Relational Algebra, Query By Example
■ Most common: Select Query:

Chart 32

Structured Query Language (SQL)

SELECT <columns, renaming, (aggr.) functions)
FROM <tables, table expressions, joins>
WHERE  <predicates>
GROUP BY <grouping columns>
HAVING <predicates on groups/aggregates>
ORDER BY <order columns, ascending/descending)



(c) 2019 - Data Engineering Systems Group

■ Inserting of values into a table

Chart 33

INSERT

INSERT INTO worker VALUES
(1, “John“, “Smith“, 38, “95112 San José“);

INSERT INTO projects (proj_id, name, customer) VALUES
(1, “BMW World“, “BMW“);

INSERT INTO worker SELECT * FROM worker_backup;

INSERT INTO … WHEN … INTO … WHEN …;
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■ Edit values in a table
■ Set semantics: Edit multiple values

■ Typical pattern

■ Extensions

Chart 34

UPDATE

UPDATE projects 
SET status = “cancelled“
WHERE customer=“Lehman Brothers“

UPDATE table 
SET ... = (SELECT ... FROM ... WHERE)
WHERE id in (SELECT ... FROM ... WHERE)

UPSERT, MERGE
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■ Remove tuples from a table

■ Typical use case

■ Deletion alternatives for performance reasons

Chart 35

DELETE

DELETE FROM projects
WHERE status = “finished“ 

DELETE FROM projects
WHERE proj_id in (SELECT ... FROM ... WHERE)

DELETE, DROP TABLE, TRUNCATE
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■ Query values across tables

■ Result again a table
■ Physical execution up to RDBMS

Chart 36

SELECT

SELECT w.last_name, pt.share
FROM worker w, participates pt
WHERE  w.pers_id = pt.pers_id AND

pt.share > 0.1

SELECT w.last_name, p.name, pt.share
FROM worker w, projects p, participates pt
WHERE  w.pers_id = pt.pers_id AND

pt.proj_id = p.proj_id

SELECT w.last_name
FROM worker w, participates pt
WHERE  w.pers_id = pt.pers_id
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■ Subqueries
□ Correlated / Uncorrelated
□ Does Uncorrelated form exist?

■ Self-Join

■ Nested Table Expressions
□ SQL in FROM clause

Chart 37

Additional Concepts

SELECT first_name, last_name
FROM worker w
WHERE EXISTS (

SELECT pt.pers_id
FROM   participates pt

WHERE  pt.pers_id = w.pers_id ) 

SELECT p1.name, p2.name
FROM   projects p1, projects p2
WHERE  p1.predecessor=p2.proj_id AND

p2.status=“closed“ 

SELECT X.last_name, X.status
FROM   (

SELECT w.last_name, p.status
FROM worker w, projects p, participates pt
WHERE w.pers_id = pt.pers_id AND 

pt.proj_id = p.proj_id
) X

WHERE  X.status=“acquisition“
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■ Often possible to transform correlated subqueries to uncorrelated ones

Chart 38

Correlation in Subqueries

SELECT s.*
FROM students s
WHERE s.dob < 

(SELECT max(p.dob)
FROM professors p);

SELECT s.*

FROM students s

WHERE EXISTS
(SELECT p.*

FROM professors p

WHERE p.dob > s.dob);
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■ Aggregation und GROUP BY

■ ORDER BY

Chart 39

Aggregating and Sorting

SELECT proj_id, COUNT(*), SUM(age)/COUNT(*) 
FROM   worker w, participates pt, projects p
WHERE  w.pers_id = pt.pers_id AND

pt.proj_id = p.proj_id
GROUP BY p.proj_id

SELECT p.name, w.last_name
FROM   worker w, participates pt, projects p
WHERE  w.pers_id = pt.pers_id AND

pt.proj_id = p.proj_id
ORDER BY p.name, w.last_name
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■ Abstraction layer through “named queries”

■ Save common parts in queries

■ Can be used for tuple-wise access control
■ During query execution, views are syntactically expanded
■ Additional concepts

□ Materialized Views (MQTs), Indexes on Views
□ Statistical Views

Chart 40

Views

SELECT proj_id, COUNT(*), SUM(age)/COUNT(*) 
FROM   proj_pers
GROUP BY proj_id;

CREATE VIEW proj_pers AS
SELECT p.proj_id, p.name, 

w.pers_id, w.last_name, w.age,  
FROM   worker w, participates pt, projects p
WHERE  w.pers_id = pt.pers_id AND

pt.proj_id = p.proj_id;
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■ DML: Data Manipulation Language
■ DDL: Data Definition Language
■ Definition of

□ Tables, Indexes, Views, ...
□ Administration: Tablespaces, Segments, Roles
□ Access Control: User, Groups, Privileges, ...

Chart 41

DDL vs. DML

CREATE TABLE worker (
pers_id NUMBER,
first_name VARCHAR2(100),
last_name VARCHAR2(100),
age NUMBER(2) CHECK (age > 0 AND age < 150),
address VARCHAR2(1000)

);
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■ Semantically consistent state of the data
□ Constraints have to be defined in context of the application

■ RDBMS monitors those constraints
□ Referential Integrity (key/foreign-key)
□ CHECK Constraints in DDL
□ Trigger

■ When to perform the checks
□ Operation wise
□ Transaction wise

Chart 42

Data Integrity
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Atomicity
■ A transaction is either executed completely (commit) or not at all (abort)
Consistency
■ A transation transforms a consistent database state into a (possibly different) consistent database 

state
Isolation 
■ A transaction is executed in isolation, i.e., does not see any effect of other concurrently running 

(„uncommitted“) transactions.
Durability
■ A successfully completed („committed“) transaction has a permanent effect on the database

Note: ACID is important for OLTP (online transaction processing) applications. Other applications 
(e.g., OLAP (online analytical processing) with fewer write operations often trade off the ACID 
principle with performance. Esp. true for Big Data. 

Chart 43

ACID Principle
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■ Nonrepeatable Read
□ A transaction T1 modifies a data item. Another transaction T2 reads the same item 

before T1 commits or rolls back. If T1 rolls back, T2 has read a value that never 
existed.

■ Dirty Read
□ T1 reads a data item. T2 modifies or deletes the data item and commits. T1 attempts 

to reread the data item. It discovers another value or that the item has been deleted.
■ Phantom-Problem

□ T1 searches using a < X < b. T2 creates some items that fall in the range (or updates 
items in the range so they do not qualify anymore). T1 repeats its search, and 
discovers a different set of items.

■ Lost Update
□ Two transactions, T1 and T2, read a data item concurrently. T1 updates the item first

and then T2, without considering T1‘s update. T1‘s update is lost.

Chart 44

Problems with Concurrent Access
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■ Which operations are in conflict? How do determine if serializable?

Chart 45

Transactions and Serializability

T1

T3

T2

S = r1(y)r3(u)r2(y)w1(y)w1(x)w2(x)w2(z)w3(x)
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■ Serializability enforced by locking data items
■ Lock manager: global in-memory data structure that keeps tracks of locks

■ Two types of locks
□ Shared (S) lock: Used to protect read access
□ Exclusive (X) lock: Used to protect write access

■ Schedule with locks: 
X1(A);R1(A);W1(A);U1(A);S2(A);R2(A);S2(B);R2(B);

U2(A);U2(B);S1(B);R1(B);U1(B);X2(B);W2(Β);U2(B)

Chart 46

Locking Overview

S X
S yes no
X no no

Lock requested

Lock held
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■ Transaction is well formed if 
□ It holds an S or X lock on a data item while reading it
□ It holds an X lock on a data item while writing it

■ Two phase locking (2PL)
□ Every transaction is well formed
□ Once a transaction has released a lock, it is not allowed to 

obtain any additional locks

■ Transactions have two phases
□ Growing phase: Acquiring locks
□ Shrinking phase: Releasing locks
□ Transition from growing to shrinking as soon as the first lock 

is released

Chart 47

Two Phase Locking (2PL)



RDBMS Internals

Chart 48
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■ Very Expensive

■ Very Expensive

■ ~ 10 € / GB

■ ~ 0.05 € / GB

■ < 0.02 €/GB

Chart 49

Overview: Memory Hierarchy

Cache

Main Memory

Hard Disk

Tertiary Storage

Register
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■ Head (1min) 

■ Room (10 min) 

■ Berlin (1.5h) 

■ Pluto (2 years) 

■ Andromeda 
(2000 years) 

Chart 50

Overview: Memory Hierarchy

Cache

Main Memory

Hard Disk

Tertiary Storage

Register

Access Time Gap
105
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More Modern View (by IBM)

https://www.slideshare.net/Flashdomain/flash-and-storage-class-memories-technology-overview
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5 Layer Architecture

Query compilation, Access path selection, 
Access control, Integrity checks

Physical Record Manager, Index Manager, 
Locking, Log / Recovery

Sorting, Transaction management, Cursors, 
Data Dictionary

Page management, Buffer management, 
Caching

Peripheral memory management

Bulk oriented access

Record oriented access

Internal record interface

Buffer interface

File interface

Device interface

Data model level

Logical access

Memory structure

Buffer management

Operating system
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Objects and Operations
Bulk oriented access

Record oriented access

Internal record interface

Buffer interface

File interface

Device interface

Data model level

Logical access

Memory structure

Buffer management

Operating system

SQL: select ... from ... Where
Grant access to ... 
Create index on ...

STORE record on pages, UPDATE all access 
paths, B*-Tree

OPEN – FETCH – CLOSE (Tab o. Index) 
STORE record

READ page
WRITE page

Disc driver
MOVE head ...
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■ Set-oriented interface
□ Access to sets of tuple by a declarative language 
□ SELECT ... FROM ... WHERE ...
□ Monitoring of data integrity and authorization

■ Record-oriented interface
□ Access to typed tuple 
□ Access through logical access paths (Indexes, Scans)
□ Open/Next/Close Interface
□ Partition management

■ Generic record interface
□ Access to uniform and un-typed tuple
□ Locking
□ Mapping tuples (logical objects) to pages

Chart 54

Interfaces
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■ Buffer interface
□ Uniform access to all blocks within the virtual address space
□ Mapping of virtual block addresses to physical block addresses
□ Synchronization of blocks (cache management, concurrent access) 

(“locking”, but different to “transaction locks”, often called “latching” or 
“pinning”)

■ File interface
□ Access to physical blocks
□ Managing the mapping between block and segment, tablespaces, files
□ Software-RAID

■ Device interface
□ Access to hard drive data
□ Addressing discs – Disc, Track, Sector
□ Controller cache, Prefetching
□ Hardware RAID

Chart 55

Interfaces
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■ Idealized representation
□ No need to strictly stick to that model
□ Some techniques cut through layers, e.g., synchronization, recovery

■ Combination of layers is possible
□ E.g. „Record oriented and internal record interface“

■ Often a direct access to another layer
□ Prefetching: Caching needs information about the actual workload; not only about the actual 

tuple
– From layer logical record layer to buffer/OS layer
– Perhaps from data model layer to buffer/OS layer

□ The optimizer needs information about physical allocation of blocks From OS layer to logical 
record/data model layer

□ Thus: In many DBMS implementations, the principle of „Information Hiding“ is not 100% 
adhered to for performance reasons 

Chart 56

5 Layer Architecture
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■ Many topics cannot simply be associated with a single layer
□ Locking
□ Recovery
□ Request optimization
□ ...

Chart 57

Bottom Up

Data model level

Logical access

Memory structure

Buffer management

Operating system
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■ Access time for a disk page:
□ Positioning time (track) (~4-8 ms)
□ Rotational delay (sector)(~8 ms for 7200 rpm)
□ Transfer time (sector) (> 1 GB/s)

■ Distinction
□ random I/O
□ sequential I/O

■ disk page# = 
f(cylinder#, platter#, track# , sector#) 

□ usual size: (2, 4 ,8, 16, 32, 64, 128 kB)

Chart 58

Magnetic Hard Disk
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Disk vs. CPU

Disk SpeedTransistors per CPU
https://www.slideshare.net/Flashdomain/flash-and-storage-class-memories-technology-overview



(c) 2019 - Data Engineering Systems Group

■ Data security: redundancy of all data (mirror)
□ But no help when bit errors occur – who‘s right

■ Double amount of capacity will be needed
■ Load sharing when reading: e.g. block A can be read from the left or the right hard drive
■ But upon write accesses, both copies must be written

□ It may be parallelized
□ The needed time is the same as writing on a single hard disk

Chart 60

RAID 1

A

C

B

D

A

C

B

D
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■ RAID 0: Block-level striping

■ RAID 0+1: Mirrored striping

■ RAID 4: Block-level striping with parity disk

■ RAID 5: Block-level striping with distributed
parity

Chart 61

Other RAID Levels
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Sequential File
■ Access to records by record/tuple identifier (“RID” or ”TID”)

Operations:
■ INSERT(Record): Move to end of file and add, O(1)
■ SEEK(TID): Sequential scan, O(n)

□ FIRST (File): O(1)
□ NEXT(File):  O(1)
□ EOF (File): O(1)

■ DELETE(TID): Seek TID; flag as deleted
■ REPLACE(TID, Record):Seek TID; write record

Chart 62

Introduction to Access Methods

1522 Bond ...
123 Mason ...
... ... ...
1754 Miller ...
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■ Index File
■ Access by search key (note: not necessarily data model key)

■ Operations:
□ SEEK( key):Use order in TIDs; O(log(n))

– Only if tree is perfectly balanced
□ INSERT( key): Seek key and insert; might require restructuring
□ DELETE( key):Seek key and remove; might require restructuring
□ REPLACE( key):Seek key and write 

– Variable size keys?

Chart 63

Introduction to Access Methods 2
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Tree with degree m
■ Nodes have at most 2m keys
■ Nodes have at least m keys, the root at least 1 key
■ Node with x keys has x+1 children
■ Balance: All leaves have the same depth 
B*-Tree: data only in leaves, intermediate nodes only store separator of search key

Chart 64

Indexing: B and B* Trees
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■ n = 2
□ All nodes: At most 4 keys and 5 pointers
□ Root: At least 1 key and 2 pointers
□ Inner Nodes: At least 2 key and 3 pointers
□ leaves: At least 2 keys and 3 pointers

Chart 65

Example

41

12 28 46 67
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Recursive Algorithm:

□ Search corresponding leaf. 

– If room, insert key and pointer.

□ If no room: Overflow

– Split leaf in two parts and distribute keys equally

□ Split requires inserting a new key/pointer pair in parent node

– Recursively ascend the tree

□ Exception: If no space in root

– Split root 

– Create new root (with only one key)

Chart 66

Inserting into a B-Tree



(c) 2019 - Data Engineering Systems Group Chart 67

Example of B-Tree Insertion

41

12 28 46 67

12 15 19 28 33 37 41 45 46 53 59 67 71 83 991 5 9

K = 60

41 ≤ 60

46 ≤ 60< 67
46 53 59 60

Easy


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Example of B-Tree Insertion

41

12 28 46 67

12 15 19 28 33 37 41 45 67 71 83 991 5 9

K = 61

41 ≤ 61

46 ≤ 61< 67
46 53 59 60

?
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Example of B-Tree Insertion

41

12 28 46 67

12 15 19 28 33 37 41 45 67 71 83 991 5 9

K = 61

46 53 59 60 61We need a key/pointer 
pair Key: 59
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Example of B-Tree Insertion

41

12 28 46 59 67

12 15 19 28 33 37 41 45 67 71 83 991 5 9

K = 61

46 53 59 60 61
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■ Hash file consists of
□ Set of buckets  (one or more pages)

– B0, B1, ..., Bm-1, m>1;
□ A hash function h(K)  = {0 ,...m-1 }  on a set K of keys;
□ A hash table (bucket directory) as array of size m with pointers to buckets

■ Hash files are structured according to one attribute value only

Chart 71

Hashing

Hash
table

Buckets with overflow pages
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■ Extensible Hashing ■ Linear Hashing

Chart 72

Hashing 2
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Caching = Buffer Management

Buffer Manager

Main Memory Buffer

Disk

P0 P1 P2

Logical Page Request
■ First-In-First-Out (FIFO)

Replace oldest block
■ Least Recently Used (LRU)

Replace block with oldest 
access timestamp

■ CLOCK
Fast approximation for LRU

■ Least Frequently Used (LFU) 
Replace block with smallest 
access count

■ Least Reference Density (LRD) 
Replace block with smallest 
reference count
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Mapping alternatives   
■ absolute addressing: rid = <PageId, Offset>

■ absolute addressing + search:  rid = <PageId>

Chart 74

Record Addressing

Page Id
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Page Id -- Search --
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Three Layer Model
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Query Processing
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index, order of joins, 
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Declarative query
SELECT Name, Address, Checking, Balance

FROM customer C, account A

WHERE Name = “Bond” and C.Account# = A.Account#

Generate a Query Execution Plan
FOR EACH c in CUSTOMER DO

IF c.Name = “Bond” THEN

FOR EACH  a IN ACCOUNT DO

IF a.Account# = c.Account# THEN
Output (“Bond”, c.Address, a.Checking, a.Balance)

Query Execution Plan (QEP) 
■ Procedural Specification
■ Semantically equivalent to query

Chart 77

Query Processing
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■ Parse the query (check syntax)
□ Check if the semantics of schema elements match

■ Generic rewriting
□ View Expansion, Common Subexpressions, …

■ Pick optimal execution plan
□ Rule-Based Optimizer: Iteratively apply rules
□ Cost-Based Optimizer:

– Generate candidate plans (exponentially in number)
– Compare plans by applying cost functions
– Requires statistics on the data

■ Execute the query plan
□ Possibly involves dynamic runtime refinement

Chart 78

Query Translation and Optimization
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Logical and Physical Plans
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■ Relation -> Scan
■ σ -> Filter, or index-access
■ π (with duplicates) -> Trivial
■ x -> Nested-loops-join
■ ⋈ -> Hash-, sort-merge-, index-nested-loops-join
■ γ -> Hash-aggregation, sorted-aggregation
■ π (eliminating duplicates) -> Special case of aggregation
■ ∩ -> Special case of a join
■ - (difference) -> Inverse case of a join (anti join)
■ U -> Union

Chart 80

Logical – Physical Mapping
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Choices to be made
□ Algebraic transformations
□ Order of joins
□ Join method/algorithm 

– Nested Loop, Sort-Merge, Hash, ...
□ Access path: Index (which?) vs. Full-Table-Scan
□ Order of operators 

– push down predicates/aggregation
□ Correlate / un-correlate subqueries

Chart 81

Degrees of Freedom
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■ Enumerate Plans and estimate their execution costs
■ Use statistics to estimate costs

□ Table Cardinalities: Size of base table;
□ Column Cardinalities & Frequent Values: Selectivity of equality predicates
□ High/low keys & Histograms: Selectivity of range predicates
□ Indexes depth/density/cluster-ratio: Cost of index seeks

■ Statistics are always flawed
■ Using sampling is expensive

Chart 82

Cost Based Optimization
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■ Employ Heuristics
□ Minimize intermediate results
□ Minimize materialization
□ Minimize access to secondary storage

■ Example
□ Push selections as far as possible 
□ Push projections as far as possible
□ Does not use information about current state of relations and indexes
□ Does not help much for join order

Chart 83

Rule Based Optimization
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■ Nested loop join has complexity O(m*n)
□ m,n: sizes of joined relations

■ Other methods
□ Sort-merge join

– First sort relations in O(n*log(n)+m*log(m))
– Merge results in O(m+n)

□ Might be better, but ...
– external sorting is expensive
– does not pay off if relations already in cache

□ Hash join, …

■ Note: Usual complexities measure number of comparisons
□ This is “main-memory” viewpoint
□ Should not be used for I/O tasks
□ For data intensive operations, we need to look at number of I/Os (or communications) as bottleneck

Chart 84

Join Methods
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partition R into n buckets so that each bucket fits in memory;

partition S into n buckets;

for each bucket j do

for each record r in Rj do

insert into a hash table;

for each record s in Sj do

probe the hash table.

■ Works good when memory is small
■ Otherwise: Hybrid-Hash-Join

Chart 85

Grace Hash Join
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■ Statistics are useful but
□ Need to be stored and accessed
□ Need to be kept current
□ Difficult problem!

■ Query transformation and optimization needs data dictionary
□ Semantic parsing of query: Which relations exist?
□ Which indexes exists?
□ Cardinality estimates of relations?
□ Size of buffer for in-memory sorting?
□ ...

Chart 86

Data Dictionary

Table_name Att_name Att_type size Avg_size

Customer Name Varchar2 100 24

Customer account# Int 8 8

Customer ...
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■ Read and write access on objects
■ Read and write access on system operations 

□ Create user, kill session, export database, …
■ GRANT, REVOKE Operations

■ Example:
□ GRANT ALL PRIVILIGES ON ACCOUNT TO Lawrence WITH GRANT OPTION
□ “User Lawrence has Read/Write access to the ACCOUNT relation
□ It is possible for Lawrence to grant this rights to others”

■ No complete protection
□ Granularity of access rights usually relation/attribute – not tuple
□ Access to data without DBMS
□ Ask several questions to derive requested data
□ In addition: file protection, encryption of data

Chart 87

Access Control
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■ Transaction: “Logical unit of work”
Begin_Transaction

UPDATE ACCOUNT

SET Savings = Savings + 1M

SET Checking = Checking - 1M

WHERE Account# = 007;

INSERT JOURNAL <007, NNN, “Transfer”, ...>

End_Transaction

Chart 88

Transactions



(c) 2019 - Data Engineering Systems Group

■ When are two schedules „conflict-free“?
□ when they are serializable
□ when they are equivalent to a serial schedule
□ Prove serializability of schedules

■ Checking after execution is wasteful
□ Synchronization protocols
□ Guarantee only serializable schedules
□ Require certain well-behavior of transactions 
□ Methods

– Two phase locking
– Multi-version synchronization
– Timestamp synchronization

Chart 89

Synchronization and Locking
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Synchronization is the “I” in ACID

Transaction manager is responsible for
■ Concurrency control

□ Concurrent access to data objects
□ Synchronization & locking 
□ Deadlock detection and deadlock resolution

■ Logging & recovery 
□ Compensate for system und transaction errors
□ Based on log files (redundant storage of information)
□ Error recovery protocols – undo; redo

Chart 90

Transaction Manager
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■ Store data redundantly 
□ Save old values

■ Uses different file format, adapted to different access characteristics
□ Sequential write, rare reads

Chart 91

Recovery – Broad Principle
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■ Next week: no lectures!

■ Next lecture:
□ Big Data Stack and Overview

■ Questions?

Thank you for your attention!

Chart 93
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