
Towards a Methodology for Benchmarking
Edge Processing Frameworks

Pedro Silva, Alexandru Costan, Gabriel Antoniu
Univ Rennes, Inria, CNRS, IRISA

Rennes, France

pedro.silva@irisa.fr, alexandru.costan@irisa.fr, gabriel.antoniu@inria.fr

Abstract—With the spectacular growth of the Internet of
Things, edge processing emerged as a relevant means to offload
data processing and analytics from centralized Clouds to the
devices that serve as data sources (often provided with some
processing capabilities). While a large plethora of frameworks for
edge processing were recently proposed, the distributed systems
community has no clear means today to discriminate between
them. Some preliminary surveys exist, focusing on a feature-based
comparison. We claim that a step further is needed, to enable
a performance-based comparison. To this purpose, the definition
of a benchmark is a necessity. In this short paper, we make a
step towards the definition of a methodology for benchmarking
Edge processing frameworks.

Index Terms—Edge Computing, Edge Analytics, Fog Comput-
ing, Cloud Computing, Benchmarking

I. INTRODUCTION

Stream processing is a new model for handling continuous

flows of data in real-time, which has recently been receiving a

lot of attention from the distributed systems community. This

is due to the inherent challenges related to its real-time and

low-latency requirements, and also to the underlying infras-

tructure, which breaks a standard that has been established

over the last twenty years.

Strongly emerged after the IBM-Google announcement in

2007, Cloud computing became the preferred option for de-

ploying distributed applications thanks to features like reduced

upfront investment, fast scalability, availability and pay-as-

you-go cost model. Applications deployed on the Cloud follow

a rather centralized processing model: they typically collect

data from the ”edge” of the network [1] and ship it through

the Internet for processing on centralized Cloud datacenters.

Lately, with the emergence of the Internet of Things (IoT)

and the increasing capabilities becoming available at the

edge of the network, a shift was initiated with the goal of

leveraging such edge resources for decentralizing processing.

For example, a connected heat sensor may filter temperatures

under 50 degrees Celsius before transmitting data to the Cloud

for further processing; or a home assistant may perform a first

lexical analysis before requesting a translation to the Cloud.

Edge computing is the new paradigm which enables data

processing at the Edge. It brings advantages such as: (i) the

exploitation of unused computing resources on the Edge and

their implicit parallelism, (ii) reduction of data sent to core

This work is supported by the ANR OverFlow project (ANR-15-CE25-
0003).

machines and consequently transmission costs, and (iii) data

locality in order to satisfy privacy constraints. However, it may

also have downsides such as: (i) raising energy consumption

on Edge machines or (ii) data loss due to limited fault

tolerance.

Several frameworks emerged recently to enable Edge com-

puting (cf. Section II-D). Their functionality is twofold: they

allow for execution and infrastructure management (e.g., han-

dling the deployed code versions on the machines or data

transmission) and data processing (e.g., implementation of

analytics algorithms). Our focus is on the latter. Despite the

increasing number of available Edge data processing frame-

works, there are only a few publications that evaluate and

compare them. This makes it hard for system architects to

choose the best solution for their scenarios. Most often, this

choice is simply made based on arbitrary trade-offs and on

empirical, small-scale evaluations.

In this work, our objective is to discuss a preliminary
methodology for comparing Edge processing frameworks
through benchmarking. While the definition and implemen-

tation of such a benchmark is still work in progress, this

paper discusses existing Edge processing frameworks and

preliminary benchmarking efforts (Section II). Furthermore,

we propose an initial version of a benchmarking methodology

for Edge processing and discuss the main challenges posed by

its implementation (Section III).

Edge

Edge
Devices

Edge
Nodes

Cloud

Stream Processing

Fig. 1. Edge computing infrastructure. Note that the area where “Edge nodes”
are depicted is commonly defined as the Fog.

904

2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-5386-5555-9/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPSW.2019.00149

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on February 28,2021 at 09:52:04 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND AND RELATED WORK

In this section, we first introduce stream processing appli-

cations, which are today the primary users of Edge processing

frameworks. Then, we define the concept of Edge computing

and discuss the state of the art on Edge processing frameworks.

A. Stream processing applications

A data stream, or simply a stream, is an unbounded,

continuous flow of data. Stream processing applications typ-

ically collect data from sources (e.g., mobile devices, home

computers, sensors, etc.) located at the Edge of the networks.

Some pre-processing can be done on Edge nodes located close

to the data sources, to have fast, real-time results, while most

of the data is sent to centralized Cloud datacenters for more

complex data analytics (e.g., using batch processing).

B. Edge computing and edge processing

Edge computing is a collection of technologies that allow

computation to be performed at the Edge of a network [2],

i.e., on the set of processing resources located between the

devices acting as data sources and the Cloud datacenters. Some

authors make a distinction between processing data on the

devices themselves (e.g., sensors, actuators, mobile phones,

etc.) and processing data on intermediary nodes (e.g., outpost

servers, cell phone base stations, routers, etc.). The former is

categorized as Edge computing, and the latter is defined as

Fog computing (cf. Figure 1). In this work, we consider that

the Fog is part of the Edge and ignore this distinction.

Edge processing is a particular type of edge computing,

whose goal is to process data in support of a data analytics

process. Examples of edge processing scenarios are numerous.

[3] presents an approach for locally processing events dis-

patched by sensors installed on trucks in order to reduce event

processing latency and transmission costs. In that work, data

is processed by a device, installed in the trucks, which is also

responsible for emitting events. In [4], local data processing

is used to detect anomalies (e.g. leaks) in water transmission

pipes in order to reduce latency and to overcome limitations

related to the connectivity inside of tunnels. Finally, in [5],

the computation of image and video processing from a mobile

app is offloaded to servers located near the smart phones, with

the objective of improving application performance.

Enabling Edge processing. Edge environments are different

from more traditional environments such as Clouds in several

aspects. In short, Edge processing leverages highly distributed

and heterogeneous small machines (e.g., thousands of devices

or sensors) connected to core datacenters through limited

networks (e.g., with high latency or low bandwidth). Such

particular features need to be specifically addressed to enable

Edge processing, especially in large-scale scenarios. In the

following paragraphs, we highlight three important dimensions

of Edge processing management.
(a) Management of software deployment, update and con-

figuration on Edge machines. In highly distributed sce-

narios, manually installing and configuring data processing

software on each machine may be unfeasible due to issues

such as difficult access to the machines, heterogeneity of

hardware and number of devices.

(b) Execution of data processing algorithms. The resource

capacities available to Edge machines are usually re-

stricted compared to Clouds or other computing environ-

ments. Hence, tools that are resource consuming (e.g., in

terms of storage, processing power or energy consump-

tion) may not be suited for the Edge computing.

(c) Management of execution and data transmission. In an

environment where connections are poor and machines are

highly distributed, not robust (e.g. cheap sensors / devices)

and may, sometimes, be physically accessed, it is essential

to have an execution management software layer. Besides

basic features such as starting and stopping services, it

should be also responsible for other more complex tasks

like monitoring, fault tolerance and cryptography.

In this work, we focus on dimension (b), hence, we aim at

understanding the ecosystem of data processing tools specially

adapted for the Edge environment, in support of data analytics.

Currently, in the related literature, the notions of “Edge pro-

cessing” and “Edge analytics” are often used interchangeably

(even if, semantically, data analytics refers to higher-level

extraction knowledge, while data processing concerns lower-

level management of data in motion and of data at rest). In

the remaining of this paper we will focus on Edge processing

tools, whose aim is to support higher-level data analytics.

C. Edge processing frameworks

Relevant and important open-source research prototype

frameworks include Nebula [6] (for generic computing and

data processing at the edge), or Geelytics [7] and SpanEdge [8]

(focusing on stream processing at the edge). We will however

rather focus on production-ready, stable software backed by

an open-source community. We find these characteristics in

Apache Edgent [9], “an open-source programming model and

runtime for edge devices” that enables data and event analysis.

Large technology companies lead the way on private so-

lutions, such as Amazon Greengrass [10], Azure Stream

Analytics [11], IBM Watson IoT [12], Intel IoT [13], and

Oracle Edge Analytics [14].

With such a rich landscape of private and open-source Edge

processing frameworks solutions, it becomes a challenge to

a system architect to choose the solution that best adapts

to its needs and budget. The problems becomes even more

complex if we take into consideration the heterogeneous nature

of those tools which may have distinct supported programming

languages and protocols, resource requirements, system inte-

gration capabilities, and configuration complexities.

D. Benchmarking Edge processing frameworks

Surveys and benchmarks can bring light into the main char-

acteristics of computer systems and compare them following

a scientific methodology.

In the survey of [15], authors present details about many

different frameworks acting in multiple dimensions of Edge

905

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on February 28,2021 at 09:52:04 UTC from IEEE Xplore. Restrictions apply.

processing management (cf. Section II-B), including the sup-

port for execution of data processing algorithms. Although

established tools like Amazon Greengrass and Apache Edgent

are not present, the proposed literature review is still inter-

esting. The survey of [16] does not mention tools like Intel

IoT and Apache Edgent, however, they present even more

frameworks than [15] and also compares their features. In

particular, authors propose an interesting state of the art review

on less stable academic/research solutions.

Edge computing benchmarks are a bit scarcer in the state

of the art, except for device benchmarks. In [17], a simple

methodology of benchmark is proposed and three different

physical machines are benchmarked. [18] presents a very

detailed description of a device benchmark methodology val-

idated and standardized by TPC 1. In spite of focusing on the

device benchmark methodology, there are ideas that can be in-

corporated in other types of Edge computing benchmark tools,

such as infrastructure configuration and workload definition.

Finally, a methodology for performing IoT benchmarks

which includes application, workloads and data generation is

proposed in [19], but it is only validated on Azure IoT. In [20]

a well defined benchmark methodology of Edge processing

frameworks is implemented, nevertheless they only compare

Azure Streams against AWS Greengras, letting aside other

open-source and private solutions.

E. Discussion

The contributions of the aforementioned works are very

important. However, we consider that an Edge processing

benchmark of well-established private and open-source tools

would be strongly useful to the distributed systems community,

as long as it is founded on a well-defined methodology, on

realistic use-case applications, and on realistic workloads and

infrastructures. To the best of our knowledge, there is no

published work covering all these aspects. Our work aims to

make a step towards this goal.

III. PRELIMINARY BENCHMARKING METHODOLOGY

We divide our benchmark methodology in seven elements:

(i) benchmark objectives, (ii) Edge processing frameworks,

(iii) infrastructure, (iv) scenario applications and input
data, (v) experiment parameters, (vi) evaluation metrics,

and (vii) benchmark workflow. In the next subsections,

we discuss the main challenges associated to each of those

elements and detail our approach to address them.

A. Benchmark objectives

Benchmarks are often associated with measuring or com-

paring the performance of a computer program or device.

However, as the notion of performance is ambiguous, it must

be clearly defined. In this work, we call benchmark objectives

the characterization of performance, i.e., the definition of the

aspects of the tools being benchmarked that will be taken

into consideration during evaluation, such as computing power,

energy consumption or fault tolerance, for example.

1http://www.tpc.org

Our proposed methodology defines a threefold benchmark

objective: we evaluate processing power, supported program-
ming languages and development easiness.

B. Edge processing frameworks

A set of potential candidates was described in Section II-C,

namely Apache Edgent, Amazon Greengrass, Azure Stream

Analytics, IBM Watson IoT, Intel IoT and Oracle Edge Ana-

lytics. It is also important to define baseline data processing

programs to be used for comparison to the other frameworks.

For this purpose, we developed two Edge processing programs,

one in C++ (BLC++) and another in Java (BLJava). In short,

differently from the benchmarked tools which are generic and

optimized to the Edge computing, they hardcode data process-

ing applications and their connections to other software.

C. Infrastructure

The specification of the machines on which the bench-

marked tools will be deployed is a crucial component of

a benchmark methodology because it may impact on their

performance. In particular, Edge environments are often very

heterogeneous, hence, they may have machines with different

resource profiles (e.g., sensors, gateways, routers, etc.).

To add this variety of machines to the benchmark, we use a

Raspberry Pi 2 (RPI2), bare metal machines from Grid50002,

a French experimental testbed, and virtual machines deployed

on top of Grid5000. Raspberry Pi 2 devices are interesting

because, besides their widespread utilization in IoT scenarios

and their limited resource profile (1GB RAM and 900MHz

quad-core ARM Cortex-A7 CPU), they also allow testing the

frameworks on ARM processors. In contrast, we also test the

benchmarked frameworks on the robust Dell PowerEdge R630

(Intel Xeon, 2.40GHz, 2 CPUs/node, 8 cores/CPU and 128GB

RAM). Machines with resource profiles smaller than and in

between those two are simulated with virtual machines.

D. Use-case applications and input data

Realistic scenario applications and representative data bring

credibility to the benchmark. In the proposed methodology, we

use two scenarios: taxi ride data from the New York City Taxi

and Limousine Commission (TLC) [21] and CCTV footage

from the University of California San Diego (CCTV) [22]. The

TLC data are used to calculate various aggregated metrics in

real-time (e.g., identifying the busiest drivers for some specific

time periods). The operations performed in the Edge are the

filtering of spurious data and the transformation of data to

a specific format. The CCTV scenario can serve for various

video data analytics (e.g., identifying the busiest monitored

place, in terms of number of people, over a period of time).

The operation executed in the Edge is the processing of video

frames in order to count the number of persons per frame.

2https://www.grid5000.fr

906

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on February 28,2021 at 09:52:04 UTC from IEEE Xplore. Restrictions apply.

TABLE I
PRELIMINARY LIST OF PARAMETERS OF INTEREST AS DISCUSSED IN

SECTIONS III-D AND III-E

Parameters Value

EPF
{Azure, Amazon, Edgent, IBM, Intel, Oracle,

BLC++, BLjava}
HM {Nano, RPI2, Mini, Medium, Large, Dell PE R630}
AS {TLC, CCTV}

DT (msg/s) {100, 1000, 10000}
Total executions 8× 6× 2× 3 = 288

E. Parameters of interest

A key point of a benchmark methodology is the designation

of parameters of interest (or knobs) whose values variation

and combination creates different scenario configurations. It

is important to keep a balance between having as many

representative parameters as possible without generating an

excessive number of scenarios.

Currently, we consider four benchmark parameters: Edge
processing framework (EPF), hosting machine (HM), appli-
cation scenario(AS) and input data throughput (DT). Their

preliminary values are described in Table I.

F. Evaluation metrics

In order to understand the results of the experiments and to

compare the performance of each benchmarked framework, it

is necessary to define performance metrics. In summary, they

describe how to process results, partial results and other in-

dicators with the objective of measuring performance. Hence,

evaluation metrics and benchmark objectives must be in phase.

In this work, taking into consideration that our benchmark

objectives are processing power, supported programming lan-

guages and development easiness, we consider five metrics:

message processing throughput (number of messages pro-

cessed per second), average message processing latency
(average of time taken to process all messages), quantity of
supported programming languages, quantity of supported
connectors to other frameworks, and number of lines of
code needed to implement each scenario.

G. Benchmark workflow

The benchmark workflow is a plan which describes the

necessary steps for performing the execution of the frame-

works using combinations of the values of parameters of

interest. It describes the deployment and configuration of the

infrastructure, the installation and configuration of the Edge

processing frameworks, the setup and upload of data to the

host machines, the execution control of the benchmarked tools

(i.e., when to start and when to end the execution), and the

collection and transmission of the results.

IV. CONCLUSION

In this short paper, we make a step towards the definition

of a methodology for benchmarking Edge processing frame-

works. We discuss state-of-the art Edge processing tools that

enable data analytics and point out the absence of benchmarks

for Edge processing frameworks. We present a preliminary

methodology that we are developing as the foundation of an

Edge processing framework benchmark that we are currently

implementing. We divide our methodology into six parts and

discuss associated challenges such as defining sufficiently

heterogeneous host machines, choosing representative applica-

tions and input data, and choosing the right set of benchmark

parameters and evaluation metrics. Once implemented, this

benchmark would make a step beyond existing feature-based

comparisons available in the related work, typically based on

their documentation: it will serve to compare a large number

of private and open-source Edge processing frameworks in a

performance-oriented fashion.

REFERENCES

[1] M. Satyanarayanan, “The emergence of edge computing,” Computer,
2017.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, 2016.

[3] R. Young, S. Fallon, and P. Jacob, “An architecture for intelligent data
processing on iot edge devices,” UKSim-AMSS, 2017.

[4] S. Kartakis, W. Yu, R. Akhavan, and J. A. McCann, “Adaptive edge
analytics for distributed networked control of water systems,” in IEEE
IoTDI, 2016.

[5] P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, and M. Satyanarayanan,
“Scalable crowd-sourcing of video from mobile devices,” in Proceeding
of MobiSys ’13, 2013.

[6] M. Ryden, K. Oh, A. Chandra, and J. Weissman, “Nebula: Distributed
edge cloud for data intensive computing,” in Proceedings of the 2014
IEEE International Conference on Cloud Engineering, 2014.

[7] B. Cheng, A. Papageorgiou, F. Cirillo, and E. Kovacs, “Geelytics: Geo-
distributed edge analytics for large scale iot systems based on dynamic
topology,” in IEEE WF-IoT, 2015.

[8] H. P. Sajjad, K. Danniswara, A. Al-Shishtawy, and V. Vlassov,
“Spanedge: Towards unifying stream processing over central and near-
the-edge data centers,” in IEEE/ACM SEC, 2016.

[9] Apache, “Apache edgent.” [Online]. Available:
https://edgent.incubator.apache.org

[10] Amazon, “Aws iot greengrass.” [Online]. Available:
https://aws.amazon.com/greengrass/

[11] Microsoft, “Azure stream analytics.” [Online]. Available:
https://azure.microsoft.com/en-us/services/stream-analytics/

[12] IBM, “Ibm watson iot.” [Online]. Available:
https://www.ibm.com/internet-of-things

[13] Intel, “Intel iot.” [Online]. Available: https://software.intel.com/en-
us/iot/home

[14] Oracle, “Oracle edge analytics.” [Online]. Avail-
able: https://www.oracle.com/middleware/technologies/complex-event-
processing.html

[15] M. A. A. da Cruz, J. J. P. C. Rodrigues, J. Al-Muhtadi, V. V. Korotaev,
and V. H. C. de Albuquerque, “A reference model for internet of things
middleware,” IEEE Internet of Things Journal, April 2018.

[16] A. J. Ferrer, J. M. Marquês, and J. Jorba, “Towards the decentralised
cloud: Survey on approaches and challenges for mobile, ad hoc, and
edge computing,” ACM Comput. Surv., Jan. 2019.

[17] C. P. Kruger and G. P. Hancke, “Benchmarking internet of things
devices,” in 2014 12th IEEE INDIN, 2014.

[18] M. Poess, R. Nambiar, K. Kulkarni, C. Narasimhadevara, T. Rabl,
and H.-A. Jacobsen, “Analysis of tpcx-iot: The first industry standard
benchmark for iot gateway systems,” 2018.

[19] A. Shukla, S. Chaturvedi, and Y. Simmhan, “Riotbench: A real-time iot
benchmark for distributed stream processing platforms,” CoRR, 2017.

[20] A. Das, S. Patterson, and M. Wittie, “Edgebench: Benchmarking edge
computing platforms,” in 2018 IEEE/ACM UCC Companion, 2018.

[21] B. Donovan and D. B. Work, “Using coarse gps data to quantify city-
scale transportation system resilience to extreme events.” in Transporta-
tion Research Board 94th Annual Meeting, 2015.

[22] A. B. Chan and N. Vasconcelos, “Modeling, clustering, and segmenting
video with mixtures of dynamic textures,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2008.

907

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on February 28,2021 at 09:52:04 UTC from IEEE Xplore. Restrictions apply.

