
Distributed Stream Processing
with Query Compilation

Ivan Ilic, Till Lehmann, Tobias Niedling, Youri Kaminsky

26.04.2021

2

Usability Efficiency

Apache Storm and Apache Flink Logo: Source: ™/®The Apache Software Foundation, Wikimedia-User “Vulphere”, License: https://www.apache.org/licenses/LICENSE-2.0.html
Keyboard: Source: http://pngimg.com/image/5867, License: https://creativecommons.org/licenses/by-nc/4.0/

https://www.apache.org/licenses/LICENSE-2.0.html
http://pngimg.com/image/5867
https://creativecommons.org/licenses/by-nc/4.0/

Outline

1. Technical Background

2. Workload Design

3. Implementation

4. Evaluation

3

Technical Background

4

5

Stream Processing Distributed Computing Query Compilation

6

Assumptions

1. We focus on processing time windowing only.

2. We solely implement sliding windows.

3. We assume a fixed number of nodes to distribute across for the entire query runtime. Thus, we

don't support re-scaling while executing a query.

4. We only support decomposable aggregation operations.

5. We do not ensure fault tolerance.

Workload Design

7

Sample Query

8

Stream 1:

ADS(
ad_id: Int,
user_id: Int,
cost: Double

)

Stream 2:

PURCHASES(
purchase_id: Int,
user_id: Int,
ad_id: Int,
value: Double

)

Sample Query

9

Receive

Receive

Parse

Parse

Filter Aggregate

Aggregate

Join Output

Processing Time Sliding Window

Ads

Purchases

Sample Query

SELECT
a.ad_id, p.sum_purchases - p.sum_costs

FROM
(SELECT ad_id, SUM(value) as sum_purchases
FROM PURCHASES GROUP BY ad_id) as p,

(SELECT ad_id, SUM(cost) as sum_costs
FROM ADS GROUP BY ad_id) as a

WHERE
p.ad_id == a.ad_id AND p.ad_id != 0;

10

Implementation

11

Data Generator

12

Streaming Engines

13

engine purpose expectation

1 query implemented into Apache Flink (JVM) baseline lower bound

2 query implemented into an
iterator style C++ engine baseline lower bound

3 highly optimized hardcoded
C++ query implementation baseline upper bound

4 C++ engine generating a
distributed, compiled C++ query evaluation (best engine ever!)

Query compilation

14

Query
compilation

15

Task parallelism

16

Distribution

17

Distribution

18

Evaluation

19

Experimental Setup

20

- 16 nodes cluster of Score Lab

- 2x Intel Xeon Gold 5220S CPU

- 95 GB RAM

- 25 Gbit/s Ethernet networking

- numactl to bind process and memory allocation

- Different NUMA nodes for generator and SPE

- Each experiment conducted 5 times

Experiment: Comparing SPEs

21

Experiment: Scaling number of nodes

22

Experiment: Scaling data sizes

23

Experiment: Sustainable Throughput (1)

24

Experiment: Sustainable Throughput (2)

25

Experiment: Varying Key Ranges

26

Discussion

27

 ✔ Included: Performance comparison with Flink and baseline approaches on a single node

Scale-Out experiments show real-world behaviour (multi-node cluster and unbounded stream)

Performance impact of data rate and key range

 ✖ To Do: Distribute Apache Flink and compare to our engine prototype on n nodes

Evaluate other workloads (i.e., different user-defined queries)

Conclusion

28

Conclusion

29

- Combining query compilation and distribution …

- … is practically feasible

- … shows significant performance improvements

- Our prototype achieves 12.6× higher throughput than Flink, and scales well when distributing

Future Work:

- Further extend our evaluation as discussed previously

- Move away from a prototype towards a more complete streaming engine

