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ABSTRACT

In this paper, we present HDES, a novel stream processing engine
(SPE). The proposed engine focuses on enabling ad hoc queries
to allow end-users to dynamically add and remove queries. While
other approaches added ad-hoc functionality on top of common
open-source SPEs, such as AStream and AjJoin, HDES aims to make
dynamicity a first-class citizen. This change in perspective allows
us to optimize this use-case upfront and elevates the performance
of ad hoc queries. Moreover, we include several resource shar-
ing optimizations into HDES to increase the performance of join-
operations.

To evaluate our performance, we benchmark the proposed SPE
using two distinct datasets and compare the results with Apache
Flink, a widely used state-of-the-art SPE.

1 INTRODUCTION

A stream processing engine (SPE) can provide near real-time in-
sights from arbitrary data streams. Today, most commonly used
SPEs, such as Apache Flink [1], Apache Storm [9] and Apache Spark
Streaming [11], are optimized for running a fixed set of queries
for a long period of time. While these tools can handle the most
common workloads, they lack adaptability. When a user wants to
add a query, the state-of-the-art SPEs have to halt, recompile all
queries and resubmit the job. While this process is happening, no
new insights can be derived from the incoming data and potentially
important computations are delayed. Meanwhile, dynamic SPEs
allow the user to create a query and submit a short lived query
without impacting the production system. A common use case are
short-lived queries. Imagine a team of data-scientist who want to
quickly verify hypothesis on incoming data streams. Nevertheless,
running a large amount of queries at the same time quickly ex-
hausts the computational resources. A large part of the overhead is
cause by computation intensive join queries. To tackle this issue,
we present a novel stream processing engine. HDES is a dynamic
stream processing engine that enables the user to add and remove
queries during runtime. It shares computation between queries
that use the same data-sources and join keys which is crucial to
achieve a good performance. To integrate these optimizations, we
incorporated the work of AStream [7] and AJoin [6].

In the following paper, we will first introduce AStream and AJoin
in Section 2. The SPE prototypes show the potential performance
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gains by sharing resources between queries. Utilizing these ap-
proaches, we present HDES architecture in Section 3. The archi-
tecture Section provides an overview for our engine and shows
the integration of resource sharing techniques into a SPE that al-
lows arbitrary user defined dataflows. The API to define these is
presented, as well as a description of design decisions to represent
dataflow graphs internally. In Section 4, we pick up the high level
architecture and dive deeper into the implementation details. We
start out with the transformation of queries into executable logic,
followed by the implementation of time handling and windows.
Then, we depict the execution of a single query in a local execution
environment and multi-query handling. Next we evaluate our sys-
tem in Section 6 using two different datasets, which is preceded by
an overview of the benchmarking setup in Section 5. The overall
resume is then summarized in Section 7 and further ideas that did
not fit the limited scope of this project are described in Section 8.

2 BACKGROUND

In this section, we introduce AStream (Section 2.1) and AJoin (Sec-
tion 2.2), two important concepts to understand ad-hoc and multi-
query processing in HDES.

2.1 AStream

AStream [7] is a ad-hoc, shared computation stream processing
framework built on top of Apache Flink. It introduces three opera-
tors that are chained. The shared selection operators are responsible
for tagging each tuple with their related queries. Then, the shared
aggregation or join operators perform shared computations based
on these query tags. Last, the router operators send each tuple to all
respective downstream processors. The tagging of queries is based
on a query set represented as a bit map. A set bit indicates that a
tuple is relevant for a specific query. Furthermore, to compact the
query sets by reusing the bits of old queries, AStream uses another
bitmap called changelog. A set bit in a changelog indicates that
the query remains unchanged. Based on a dynamic programming
approach, the query set k can be computed with with the query set
t - k and k changelogs.

In stream processing, aggregations, as well as joins, are based on
windows that group incoming data. AStream’s computation model
uses smaller, non-overlapping windows called slices. For each slice,
it computes a result. With that, it can reuse results for queries with
different windows but the same computation.



2.2 AJoin

AJoin [6] is an extension of AStream. Its goal is to improve the
performance of joins in multi and ad-hoc query settings. Karimov
et al. identify a skewed workload in modern SPEs. In contrast to
other operators, join operators are tasked with multiple resource-
intensive workloads. Consequently, there are a lot of idle resources
and no potential to scale individual parts of a join operation to
its needs. AJoin distributes the workload of the join operator. The
AJoin’s source is tasked with windowing and indexing incoming
tuples. Then, AJoin’s join operator builds sets of join elements that
are joined by its sink operator with late materialization.
Additionally, AJoin aims at optimizing the execution plan at runtime.
Joins with matching sources are deployed as one operation eagerly.
An optimizer monitors statics for all joins and calculates the cost
of shared and unshared join operations. Based on this, it reorders
join operations. Furthermore, it allows the vertical and horizontal
scaling of pipeline operators if needed.

3 ARCHITECTURE

In the following sections, we will provide an architectural overview
for the stream processing engine. It consists of several abstractions
depicted in Figure 1.

First of all, the user specifies each query on the stream, using our
APL It allows the user to define custom dataflow graphs containing
user-defined functions. Furthermore, the user specifies the event
time and allowed lateness for each incoming stream event. The user-
defined dataflow is transformed into a logical plan which represents
the event transformations in an environment agnostic way. It can
be efficiently traversed to build an environment specific execution
which is executed by our engine. To support ad-hoc queries, we
repeat the steps above for each query and merge the resulting
logical and execution plan.

3.1 External View

HDES provides a Java API to define queries similar to the APIs
of other well-known SPEs like Apache Flink or Storm. To explain
HDES API in more detail, we consider a query based on the example
of an online shop. There are two sources of streaming events. The
first contains sessions created by an external service and the other
purchase events. The query calculates the daily purchases of an
item, which costs more than a minimal amount, within 5 minutes
of a session start. In HDES, this query can be expressed as shown
in Listing 1.

The entry point is a TopologyBuilder, which allows creating a
stream from a source (lines 2 and 3). Streams in HDES are generic
and therefore support any kind of input data. They can be trans-
formed by several operations, like map, window or join. Those
operations take one or more user-defined functions (UDF), which
are defined as an interface. For example, the filter in line 4 has a
UDF as a parameter, which takes an element that has the same
type as the stream’s elements and returns a boolean. In line 5, the
stream is windowed by a tumbling window by 5 minutes windows
of the event time. HDES supports both tumbling and sliding stream
windows. Opposed to the previous operations, window returns
a WindowedAStream instead of an AStream. HDES uses different
types of streams to represent the current state of a stream, where
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Figure 1: Architecture Overview

TopologyBuilder builder = TopologyBuilder.newQuery();
AStream<Session> sessionStream = builder.streamOf(sessions);
builder.streamOf (purchaseSource)
.filter(purchase -> purchase.getAmount() > MIN_AMOUNT)
.window(TumblingWindow.ofEventTime(Time.seconds(20)))
.join(sessionStream,

(purchase, session) -> purchase,

Purchase: :getUserlId,

Session::getUserId,

Purchase: :getTimestamp)
.window(TumblingWindow.ofEventTime(Time.days(1)))
.groupBy(purchase -> purchase.getObjectId())
.aggregate(new CountAggregator<>())

.to(sink);
builder.buildAsQuery();

Listing 1: Query definition with HDES

each state supports a particular set of operations. Table 1 contains
a complete list of stream types and their respective operations.
Supporting windowing, HDES requires the presence of a timestamp
for each stream tuple. Therefore, the user can define a timestamp
extractor in a source. Additionally, out-of-order handling with wa-
termarks can be enabled by supplying a watermark generator. The
generator is customized by the allowed lateness of events and the
watermark interval. The latter determines the frequency with that
HDES generates watermarks.



Stream type Name Description Resulting type
flatMap Maps an incoming elements to an iterable of any type. AStream
map Maps an incoming element to a arbitrary type. AStream
AStream filter Retains only the elements, which comply with a given predicate. | AStream
window | Windows the stream with a given window assigner. WindowedAStream
to Writes the elements of the stream into a sink. None
groupBy | Groups the stream by a key. KeyedWindowedAstream
WindowedAStream aggregate | Aggregates the stream in a window. AStream
join Performs a join with a different stream. AStream
ajoin Performs an AJoin with a different stream. AStream
KeyedWindowedAStream | aggregate | Aggregates the stream by a key in a window. AStream

Table 1: HDES API for AStream, WindowedAStream and KeyedWindowedAStream

3.2 Internal Representation

3.2.1 Operators. An operator encapsulates user-defined transfor-
mation logic. For each input event, it produces zero or more output
events. The output events are then passed to a collector. The col-
lector is interchangeable and therefore, the operator is decoupled
from downstream operations. The user defined functionality is
encapsulated in the following four operator categories.
Source operator A source operator provides the implementa-
tion to read events from a source.
One input operator A one input operator transforms each
input event into an arbitrary amount of output events.
Two input operator A two input operator encapsulates the
logic to process data from two different input streams and
joins them to a single stream.
Sink operator A sink operator provides an implementation
to write events to some user-defined output.

3.2.2  Logical Plan. The logical plan represents the user-defined
dataflow using a directed acyclic graph (DAG). Therefore, it enables
us to use graph traversal algorithms for environment agnostic opti-
mizations and other transformations. Each graph node has between
zero and two inputs and an an arbitrary amount of downstream
nodes. There are four types of nodes, corresponding to the four
types of operators.

3.2.3  Execution Plan. The execution plan is built by traversing the
logical plan. It represents the environment specific execution logic
and is completely interchangeable. Currently however, HDES is
limited to an execution plan that executed on a single node. The
provided local execution plan is represented as a DAG and each
node corresponds to a node in the logical plan. Each execution node
wraps an operator, executes it and collects its output events. The
events are then passed downstream as shown in Figure 2.

3.3 Dynamic Query Processing

So far, we explained the architecture of processing a single query.
This section examines how HDES supports efficient scaling with
dynamic addition and removal of queries during runtime.

3.3.1 Source Sharing. HDES uses source sharing to reduce costly
10 operations. We consider the following example: multiple queries
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Figure 2: Routing events through the execution graph

analyzing a stream of purchases backed by an Apache Kafka topic.
In a naive approach, the SPE deploys a source for each query in-
dependently. Evidently, this introduces a major overhead. HDES
deploys only one source for all queries based on the same topic.
Sources are identified by manually defined or automatically inferred
IDs, while the latter depends on the concrete implementation of
each source type. This allows HDES to read items of a source only
once. Then, the source sends the read element to each downstream
processor. An example of source sharing can be seen in Listing 2
the corresponding object diagram in Figure 8. The join operator
and j and the map operator m share the network source nws1.

3.3.2  Aggregation Sharing. HDES borrows the idea introduced by
AStream to share results of aggregations between multiple queries.
Tagging each tuple with its respective query, requires knowledge of
currently active queries in the operator. Therefore, HDES supports
a special metadata stream that operators can subscribe to. The
engine’s query manager informs the operators of the active queries
by writing in this stream. Then, the operators can tag all relevant
tuples with their query set and a custom operator performs the
shared aggregation.

3.3.3 Join Sharing. HDES shares the results of joins based on
AJoin’s distributed join architecture. We see two issues regard-
ing AJoins architecture and HDES. First, source sharing between
AJoin and non-AJoin queries is not feasible when AJoin requires
specialized sources. This is especially problematic if the source does



not support multiple reads. Second, a sink operator does not allow
for any further down-stream processors. With that, AJoin marks the
end of a query definition. Thus, we introduce specialized one-input
operators to distribute the join’s workload as shown in Figure 3.
This allows source sharing and further down-stream processors
while maintaining the advantage of distributing the workload of
the join operator.

Adoin

Figure 3: AJoin integration in HDES

4 IMPLEMENTATION

In this section, we first explain how HDES handles time. This in-
cludes important concepts like windows and watermarks. Next, we
describe the conversion of a user-defined query into an execution
plan, followed by the execution of single queries. In Sections 4.4
and 4.5, we examine HDES implementations of AStream and AJoin,
respectively.

4.1 Time and Windows

4.1.1 Event time. First, we need to extract the time from the in-
coming events as shown in Figure 4. We attach this metadata in
each source before any further transformations are applied to the
event. Non-source operators may extract and utilize the event time
metadata.

To extract the time from each event, we use a user provided
TimestampExtractor. Then, we use the specified lateness and the
watermark interval of the WatermarkGenerator to add a watermark
timestamp to every n elements, where n is the watermark interval.
The watermark timestamp is calculated as follows:

watermarkTimestamp = eventTime — allowedLateness

We only attach it every n times to limit the amount of data and time
to transfer and process the watermarks.

After performing operations that merge events like joins or
aggregation, the user has to supply a WatermarkGenerator and a
TimestampExtractor again to specifiy time handling for the new
events.

Currently, the watermark timestamp is used by the aggregation
and join operators only, to advance their event time and close
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Figure 4: Wrapping incoming events with AData Metadata

windows. Join operators receive watermark timestamps from two
different streams. Therefore, we decided to advance their event
time to the minimum event time of the joined streams whenever
they receive a timestamp.

4.1.2  Windows. Implementing windows builds the foundation for
any kind of aggregation or join operator. The user specifies the
window type as shown in the code example 1 creating a WindowAs-
signer.

A window assigner maps timestamps to windows which store the
metadata of each window. Figure 5 illustrates a WindowAssigner
for sliding windows. It receives the timestamp 18s and calculates
all matching TimeWindows. The returned TimeWindows store the
start and end time of each window. Each operator may use the
WindowAssigner to buffer and transform elements depending on
the Window they belong to.

ITimeWindow|
5s-20s

Timestamp 18s Window-

assigner

ITimeWindow|
10s-25s

ITimeWindow|
15s-30s

Figure 5: WindowAssigner for sliding windows with size 15s
and slide 5s

Currently, we only support sliding and tumbling windows but
implementing a new window only requires the user to implement
a new WindowAssigner and a Window which stores the window
metadata.

4.2 Conceptual Transformation

Ilustrating the conceptual transformations required in HDES, we
consider the example query of Section 3.1 shown in Listing 1. HDES
represents the logical plan as a list of nodes, where each node stores
both its children and parents. The engine differentiates between
four different types: SourceNode, UnaryOperationNode, BinaryOper-
ationNode and SinkNode. Therefore, the resulting topology as shown
in Figure 6 consists of six nodes: two SourceNodes and UnaryOp-
erationNodes as well as one BinaryOperationNode and SinkNode.



Transforming the logical plan into the execution plan, the execution
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Figure 6: The logical plan of the example query

plan builder first identifies already deployed sources. As described
in Section 3.3.1, this is based on IDs. Therefore, it simply uses a set
intersection of the currently deployed logical plan and the query’s
logical plan to drop these source nodes.

We use the visitor pattern to traverse the logical plan in a type
safe manner. Thus, each node accepts a NodeVisitor, which is an
interface implemented by the ExecutionPlanBuilder. The builder
creates a different slot for each node type visiting the nodes of
the logical plan. Because of the topological ordering of the logical
plan’s nodes, the parents are created before their children. Hence,
the builder can safely register the current slot as an output in the
parent slot. As described in 3.2, this ensures the correct routing of
elements in HDES.

4.3 Query Execution

HDES’ execution model uses slots as its basic building blocks. A
slot provides all necessary dependencies and piping for an oper-
ator. A Slot collects the transformed events of its operator and
passes them on to the downstream operators. Figure 7 presents
a simplified model of the execution architecture. We differentiate
between three different implementation of slots: OnelnputPushSlot,
SourceSlot, and TwolnputPullSlot. The two latter inheriting from
RunnableSlot, meaning they run in their own threads.

4.3.1 SourceSlot. Sources have their own thread and can read from
the network or in-memory data structures. SourceSlots are followed
by OnelnputPushSlots or TwolnputPullSlots depending on the query.
If a SourceSlot is followed by a OnelnputPushSlot, it will directly
write into that slot’s OnelnputOperator via the SlotProcessor abstrac-
tion. An example of this can be seen in Figure 8, where the source
slots sends the events it reads from the source to the OnelnputOper-
ator at the top of the diagram. In case the SourceSlot is followed by a
TwolnputPullSlot, it will write into a Buffer also via the SlotProcessor
abstraction, this can also be observed in Figure 8. The SlotProces-
sor interface has only one method namely sendDownstream. Any
Slot can have one or more SlotProcessors which receive events for
further processing downstream. This mechanism also provides the
functionality for adding new queries during runtime as new down-
stream SlotProcessors, i.e. operators, sinks and buffers can be added
to the Slot’s list.

«interface» «interface» «interface»
Buffer Sink OnelnputOperator
2 ( %7 7_J 1
«interface»
SlotProcessor
1.
1
Slot
‘ 1
RunnableSiot OnelnputPushSiot
) ‘F %
TwolnputPullSlot SourceSlot
1 1
1 1
«interface» «interface»

TwolnputOperator Source

Figure 7: Class diagram illustrating the query execution
structure

4.3.2  OnelnputPushSlot. The only slots not running in their own
thread are OnelnputPushSlots. They are chained together and exe-
cuted in a thread with a SourceSlot or a TwolnputPullSlot. This is
done to enable operator-chaining for unary operations. Synchro-
nization between threads has a significant cost, thus, it is desirable
to execute simple, low cost operators like map and filter together
in one thread sequentially, thus avoiding synchronization between
threads. An operator inside a OnelnputPushSlot will receive its input
value from the previous slot and will use its OnelnputPushSlot to
write the resulting value into its succeeding operators.

4.3.3  TwolnputPullSlot. HDES uses TwolnputPullSlots to execute
Jjoin or ajoin operators. These slots have two input Buffers from
which they read the events that are supplied to the TwolnputOper-
ator. The results of this operator are then written to the attached
SlotProcessors. TwolnputPullSlots also run in their own thread, just
like SourceSlots. This decision was made because join operations are
usually the computationally most expensive operation in a stream
query. By prepending joins with two buffers, that synchronize the
upstream and the join thread, we can prevent upstream operators



from stalling, when a join computes its window result. This helps
us to keep the throughput more stable. An example can be seen in
Figure 8, the TwolnputPullSlot polls from two buffers and writes the
events to its TwolnputOperator. In turn, this operator writes its join
results back to the TwolnputPullSlot. which routes the joined events
to the sink, For simplicity, the sink is omitted from the diagram.

4.3.4 Buffer. Buffers are the synchronization method between
RunnableSlots. Therefore, they are crucial for performance. Buffers
are implemented as queues. We found that the synchronizing queues
of the Java standard library use a lot of locking and therefore limit
performance significantly. Thus, we implemented a buffer which
pre-buffers incoming elements in an ArrayList called chunk before
writing this whole chunk into a synchronized queue. This speeds
up the buffer throughput substantially. The chunk size as well as
the maximum latency introduced by the buffer, and the maximum
size of the buffer itself can be fine-tuned to optimize performance.

sends collects

m:OnelnputOperator s2:0nelnputPushSlot

s1:SourceSlot

b1:Buffer

L polls
e —— s3:TwolnputPullSlot

sends
polls

collects

reads collects

nws1:Source b2:Buffer processStreams

j:TwolnputOperator

Figure 8: Object diagram of execution of the queries shown
in Listing 2, the second source and the sinks are omitted

4.4 AStream

4.4.1
participating operators about the current queries. HDES allows
operators to subscribe to additional streams that contain current
metadata such as the current query set. The shared session is a
singleton that is updated by the engine. For each window slice, it
writes the current query changelog in the metadata stream.

Shared session. AStream requires a central instance to inform

4.4.2 Selection operator. The operator StreamSharedSelection tags
each incoming tuple with the query set. Therefore, it needs to read
the metadata stream of the shared session.

4.4.3 Aggregation operator. The StreamSharedAggregation con-
tains an intermediate state for each query set in a window. An
incoming tuple updates the state according to the user-defined
function. The processing of the intermediate state is triggered by
a watermark. For each closed window, the operator iterates over
the intermediate states of all query sets and combines the states for
each query individually. Afterward, it computes the result for the
state of each query and creates a shared value, where only the bit
for the corresponding query is set.

4.4.4  Routing operator. The routing operator is required because
HDES does not support dynamic routing in operators. Hence, such
an operator is deployed for each query involved in the shared

JobManager jobManager = new JobManager();
// Create source objects
NetworkSource nws1 = new NetworkSource(7001, ...);

NetworkSource nws2 = new NetworkSource(7002, ...);

// Create join query

TopologyBuilder builder1 = TopologyBuilder.newQuery();
AStream<Tuple2<Long,Long>> sla = builder.streamOf(nws1);
AStream<Tuple2<Long,Long>> s2 = builder.streamOf(nws2);
sla.window(TumblingWindow.ofEventTime(Time.seconds(5)))

.join(s2,
(t1, t2) -> Tuple2.of(t1,t2),
Tuple2::v1,
Tuple2::v1)

.to(new FileSink("join"));
Query joinQuery = builder1.buildAsQuery();
jobManager . addQuery (joinQuery) ;

// Create map query

TopologyBuilder builder2 = TopologyBuilder.newQuery();
AStream<Tuple2<Long,Long>> s1b = builder.streamOf(nws1);
s1.map(t -> Tuple2.of (t.v1(), t.v2() + 1)).to(new

— FileSink("map"));

Query mapQuery = builder2.buildAsQuery();
jobManager . addQuery (mapQuery) ;

Listing 2: Multi-Query definition with HDES

aggregation. Each operator is responsible for selecting the tuples of
one query by selecting the respective bit of the query set. It strips
the query set and forwards the element to downstream processors.

4.5 AJoin

AJoin must be explicitly enabled in user-defined queries. This can
be done by using ajoin instead of join. As introduced in Section
3.3.3, HDES version of AJoin consists of three nodes. The source
and sink are represented by UnaryOperationNodes and the join
by a BinaryOperationNode. Therefore, AJoin requires no special
handling during the conversion into the execution plan.

4.5.1 Source operator. The class StreamASource is an one-input
operator responsible for windowing and indexing the incoming
elements. For both streams of the join, an independent source oper-
ator is deployed. On processing an incoming element, the operator
extracts the join index and window. It then appends the element to
the list of values for this index in the window.

The windowing is based on a slicing approach, which allows to
share the indexing of joins with different sized windows. The slice
size of the operator’s window assigner is a configurable fraction of
the maximal slice size of the smallest window. When a watermarks
closes a slice, the operator creates an immutable data structure
called Bucket. A bucket contains the mapping of indices to elements
for a particular window slice.

4.5.2  Join operator. The StreamAJoin operator processes the in-
coming buckets of both sources. Since AJoin leverages late material-
ization, the operator stores all buckets in its state until encountering



a watermark. Then, it builds the set intersection for the indices of
buckets in the same window. The resulting IntersectedBucket, which
contains two sets of values with the same index and window, is
forwarded to to the sink operator.

4.5.3  Sink operator. The StreamASink operator performs the cross-
product of the two value sets. In contrast to both other operators
described previously, the sink operator is deployed for each AJoin
independently. Thus, joins with the same predicates but different
selections can be shared efficiently.

4.5.4  Ajoin identification. To avoid deploying source and join op-
erator multiple times, HDES uses the same id-based strategy as for
source sharing (Section 3.3). However, since our version of AJoin al-
lows up-stream operators, it is not always trivial to infer an unique
id. HDES offers an automatic and a manual id assignment. The au-
tomatic assignment uses the IDs of the parent operators. Therefore,
this approach is feasible when there are no up-stream operators
other than sources. The manual id assignment requires the user to
choose an unique identifier for AJoins with the same input.

5 BENCHMARK DESIGN

To evaluate HDES’ performance and put it into context, we designed
a benchmarking suite that runs different benchmarks and compares
HDES’ performance to Apache Flink, a popular stream processing
engine.

5.1 Architecture

Our benchmark setup consists of two separate elements, the data-
generator and the engine itself. We decided to strictly separate the
data generation and the engine to get a clear picture of the system
under test. Furthermore, we execute the two programs on different
machines to isolate the computation. That way, we avoid that the
engine and the data-generator have to compete for resources. By
running the benchmark over the local network, we are theoretically
limited by the 1 Gbit/s bandwidth. However, we do not fully exhaust
the network bandwidth using our specific test setup.

A benchmark starts by the data-generator listening on at least
one network socket (TCP) for incoming connections. The engine
then connects to the data-generator with a given IP-port combi-
nation to start the execution. The data-generator then generates
events in a time-aware fashion, serializes the events, and finally
sends them via the socket to the engine. The data-generator will
generate data at a rate no higher than the specified events per sec-
ond (EPS). However, both HDES and Flink are capable of asserting
backpressure through the socket by slowing down the rate at which
they read from its sockets. If the engine is overloaded, it will reduce
its read rate from the socket; thus, the data-generator will reduce
its event generation and send rate. This theoretically means that
the engines accept events only at a sustainable throughput rate. If
this is ever not the case and latencies rise unsustainably, we high-
light this in our analysis. The execution of the benchmark is halted
once either part is exceeding a set benchmarking time period. All
benchmarks are run for five minutes.

5.2 Test Setup

To benchmark our system, we used two machines that are connected
via a 1-GBit LAN. The data-generator runs on a 2.50 GHz 4-core
Intel i5-7300HQ CPU with 16 GB of DDR4 memory, while the
engine is utilizing a 3.40 GHz 4-core Intel i7-2600K CPU with 16
GB of DDR3 memory. Both machines are running Windows. The
JVM is provided 10 GB of memory on both the data generator and
the engine. We synchronized the internal clocks according to the
Windows time servers before each run, although that method did
not always result in exact synchronization. We tried to minimize
this effect on the benchmark as much as possible. Flink runs as a
local stream environment with check-pointing disabled to make
the results more comparable. It has to be kept in mind that all the
numbers we produce in this benchmark are tied to this setup and
might look very different on a machine that has more memory and
more CPU-cores.

5.3 Metrics

To evaluate the engine’s performance, we employed three different
metrics. While the event time ¢, is defined as the time at the creation
of an event by the data-generator, the processing time t, describes
the point in time when the engine first processes the event, i.e.,
it has been read from its socket and input buffer and reached the
first operator. At last, the ejection time t; is the time when the
event leaves the engine’s last operator and is written into the sink.
With these three timestamps, we define the event time latency
late = tj — t. and processing time latency lat, = tj — t, to use as
our main metrics for the benchmarks. Thus, lat. includes the time
an event spends in the data-generator before being sent and the
time it spends in the engine’s input buffer in addition to lat,.

As a third metric, we also measure the sustainable throughput
of the system at the data-generator. This can be done as the en-
gine pulls the events on demand according to its current load. The
throughput is measured by counting the number of events sent by
the data-generator as opposed to counting the events ejected by the
engine. This is done because different queries can alter the number
of events ejected by the engine, which would hinder comparison of
query performance.

We mostly use the terminology and methodology described in
[5], including how latencies are calculated for windows. However,
with one notable exception: We always use a sustainable event
generation rate as opposed to starting with a very high generation
rate and slowly decreasing it until we reach a sustainable rate. This
was mainly done not to overload our limited hardware setup and
to be able to run the tests for a shorter amount of time as we do
not have to spend time finding the equilibrium.

5.4 Serialization

Our benchmarking setup requires that we send the generated events
over the network. This forces us to serialize the Java objects into a
format that can be sent over the network. Over the development
of the project, we have tried several serializers such as Kryo [8],
GSON [3], Jackson [2] and Protobuff [4]. While GSON and Jackson
rely on the JSON format, both Kryo and Protobuff serialize the
message into a byte format. The mentioned libraries are of great



help serializing objects of varying types, but this flexibility comes
with a performance cost.

Since the impact of serialization and deserialization was rather
large, we decided to additionally try to serialize the objects by using
a custom string serialization. While not being adaptable to arbitrary
objects, this approach gave us the lowest serialization overhead.

5.5 Data

The choice of the benchmarking data-sets and the associated queries
for stream processing engines is not unified and varies among re-
searchers. Especially ad-hoc stream processing has no common
workload definitions [7]. Therefore, we took inspiration from exist-
ing stream processing benchmarks [5, 10] and included our own
ideas.

To evaluate our engine, we used two different data-sets. On the
one hand, we used a simple tuple consisting of an integer value and
an event-time timestamp, further referred to as "basic benchmark"
to establish a performance baseline that should be unaffected by
data size. On the other hand, a reduced set of the Nexmark [10]
benchmark. These two types of data-sets allow us to test the engine
using small and efficient integer events and more realistic Nexmark-
like events.

Our adapted version of Nexmark consists of Bids and Auctions.
An auction has an auction ID, a quantity, a type and a reserve
price. A bid consists of a bid ID, an auction ID, a bidder ID and a
price. Several attributes from both entities are normally distributed
to simulate, for example, an especially active group of bidders.
In concordance with their semantic attributes, both auctions and
bids contain an event-time timestamp. Each of the two objects is
transported by an individual network socket.

5.6 Queries

To gain an in-depth understanding of the individual operator per-
formance as well as the overall performance, we defined a variety
of query types for our two data sets. Each query type was executed
in two different categories with several different configurations.
The first category measures static multi-query performance by ex-
ecuting a fixed number of the same queries. The second category
adds and deletes a varying number of queries in a fixed interval to
get an understanding of ad-hoc query performance. That means
our benchmark will add X queries at once, wait a specified wait
period, and then remove Y queries at once at the end of that period.

5.6.1 Basic Queries. Aswe use the basic data set mainly to establish
a baseline, we only used two query types. A map query that simply
maps the events with an identity function and a join. For the join,
a key which meets the join criteria occurs every ten-thousandth
element per stream. The join is performed on a tumbling window
with an event-time size of 5 seconds.

5.6.2  Nexmark Queries. To demonstrate the capabilities of the
engine, we decided to use simple filter and join queries in these
experiments as well as two complex queries on the Nexmark data-
set. This allows us to evaluate how the engine performs on queries
which cover a larger range of operations in one single query. While
one calculates the highest price per auction within a given time-
window (HPPA), the other one aims to find the hottest category

(HotCat), which is the category which received the highest amount
of bids in a certain time-window.

More specifically, the HPPA query joins the bid and the auction
stream on the auction id with a five-second event-time window.
The resulting stream is then filtered to make sure that only bids
above the reserve price are considered. After that, stream events are
grouped on the auction id, using another five-second event-time
window. In the last step, the highest bid for each auction is written
into the sink.

Similar to the HPPA query, the HotCat query also joins both
streams on the auction id within a five-second event-time window.
These joined tuples are then grouped by the category, using an-
other five-second event-time window. Finally, the category with
the highest number of bids is written into the sink.

Both queries are also implemented in Flink in a very similar
fashion to enable a fair comparison.

6 EVALUATION

In this section, we first have a look at static multi-query perfor-
mance in subsection 6.1 where we also compare the performance
of HDES with Flink, and then we look at ad-hoc query perform in
subsection 6.2.

In all experiments, we measure the metrics from subsection 5.3
with the two data sets and the different query configurations. To
illustrate the results, we use Box-Plots, according to their most com-
monly used configuration. The green line signifies the median, the
box the interquartile range and the whiskers are defined as the min-
imum and maximum point within 1.5 times the interquartile range
(IQR). For clarity, we exclude outliers outside of the mentioned 1.5
times IQR if there are any.

To make the plots more compact, we use abbreviations. The first
word refers to the query type, a refers to the batch size of queries
added, r refers to the batch size queries removed, w refers to the
wait time in seconds between the addition and/or removal of a batch
of queries, f refers to the number of fixed queries, i.e., the number
of queries that run the full time of the benchmark. For brevity, we
do not always include all possible comparisons but rather the ones
that provide interesting insights. Often, we compare the AJoin to a
standard join implementation provided by HDES. This join is not
optimized for multi-query execution, i.e., does not share any data
among joins. The graphs abbreviate this join with pJoin for plain
join. If labels are prefixed with NAR it means the queries where
performed on the Nexmark data set.

6.1 Static Multi Query Performance

In this group of experiments, we want to evaluate how many queries
of one type HDES and Flink can execute at once. This way, we can
get a rough understanding of how scalable a particular operation
is.

6.1.1  Map Basic Data. In this experiment, we establish a first base-
line for multi-query execution by mapping the events with the
identity function.

As we can see in Figure 9, HDES’s throughput for one fixed
query is higher, while multi-query execution of the map operator
performs similar to Flink. However, while Flink seems to be able to
keep its latency stable (Figure 10), HDES increases the event-time
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Figure 10: Map event-time latency comparison for basic data

latency with each added Map operator, as all map operators run
sequentially in the SourceSlot whereas Flink runs map operators in
multiple threads.

6.1.2  Filter Nexmark Data. To establish a baseline for Nexmark,
we used a slightly more complex filter query. As we can see in
Figure 11, HDES compares more favorably than in Figure 9. The
latency, however, looks similar and is therefore omitted here. We
believe that Flink’s decreased performance is owed to the large
event size of the Nexmark events, which seems to affect Flink more
than HDES in this benchmark.

Figure 12: Join throughput comparison for basic data

6.1.3  Join Basic Data. As we can see in Figure 12 and Figure 13, the
standard join implementation is superior in regards to throughput
and latency when executing one join. However, as soon as the
number of joins that have to be computed concurrently is increased
to ten, the AJoin implementation is more performant. Additionally,
we can observe that AJoin has a latency that is almost twice as
high as the standard join’s latency, because of its additional data
structures and computations. Both implementations perform better
than Flink except when only a single join query is executed. In that
case, AJoin is slightly slower.
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In Figure 13 we can also see that the standard join did not pro-
vide any results for twenty and thirty queries running in parallel.
This highlight one of Flink’s strength quite well. While it had a
very low throughput, it was stable enough to still provide results.
Additionally, we can also see that the median latency for the stan-
dard join and Flink’s join for one fixed query is close to the 2.5
seconds that would be ideal for a window size of 5 seconds. AJoin’s
optimizations for multi-query optimization, however, come with a
latency penalty.

6.1.4  Join Nexmark Data. The comparison of join performances
with Nexmark data is more complex. As we can see in Figure 14 and
Figure 15 AJoin’s performance, especially when executing just one
join is worse than the one of the standard join. We can see in Fig-
ure 15 and Figure 16 that AJoin starts well, but after a few seconds
the processing time latency starts to rise and after circa 150 seconds,
AJoin stops reading events from the source. We investigated this
issue and concluded that the problem lies with the Java garbage
collection. We regularly observed more than 80% of the runtime
spent with garbage collection, due to the nature of Nexmark’s larger
tuple size memory gets scarce faster, and the garbage collection
is no longer able to free memory fast enough. AJoin is affected
the most because it keeps additional data structures—especially
Hashmaps—that further increase the garbage collection overhead.
As the AJoin operator itself is not able to rate-limit itself, it reads a
lot of events into its data structures, quickly causing large garbage
collection pauses. This also explains why ten AJoins perform better
than one. Because the benchmark includes a map operator before
the join to set the processing time timestamp, source sharing be-
tween these map operators is enabled. As these map operators run
sequentially in the same SourceSlot, they naturally lower the input
rate. This results in fewer events in AJoin’s data structures and thus
less garbage collection. To limit this problem, we experimented
with HDES’s network input buffer sizes. As we can see in Figure 18,
all tests that had a network input buffer of 10 thousand elements
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or less, kept the latency stable and almost performed equally with
a median near 200 thousand events per second. The buffer size of
17 thousand already shows increasing latencies and is therefore not
sustainable.

6.1.5 Hottest Category Nexmark Data. As the hottest category
query is defined on the Nexmark data-set, we had to limit the input
buffer size for the experiments that used AJoin as the join operator.

We can observe in Figure 19 that the standard join implementa-
tion yields better results if only one query runs because its input
buffer size is not reduced. We can also see that AJoin has slightly
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better throughput if more than ten queries run. However, the event-
time latency increases significantly if thirty queries are run at once
and is not sustainable in that case, as we can see in Figure 20.
Flink, on the other hand, cannot run more than ten hottest category
queries at the same time.

6.1.6  Highest Price per Auction Nexmark Data. The highest price
query presents a picture that is very similar to that of subsubsec-
tion 6.1.5. The queries that use AJoin again struggle with unsustain-
able latency if twenty or more queries run in parallel, even though
we once again use a reduced input buffer size for AJoin. This can be

50000 1

40000 -

latency in milliseconds

\
it

0 50 100 150 200 250
runtime in seconds

—— ptl NARaJoinB100K f:1
—— ptl NARaJoinB10K f:1
—— ptl NARaJoinB17K f:1

—— ptl NARaJoinB25K f:1
—— ptl NARaJoinB2K f:1

—— ptl NARaJoinB50K f:1
—— ptl NARaJoinB5K f:1

Figure 18: AJoin processing-time latency comparison for dif-
ferent buffer sizes

le6
2.00 1 o
1.75 A
1.50 1
©
S 1.254
19
[}
(2]
@ 1.00
Q
"
£
o 0.7541
>
w
0.50 1
B E £ & %
— o o o — o o o — o o
(i — o m [rig — o~ m .e — o~
S £ 5 =
Z 2 2 2 ¢ ® =B ®8 8§ ® =
jrev) o o o 8 (9] 9] (@] = o o
s £ £ £ ° 5 35 3 s £ 8
Q © © © T [} [}
3 0L v g = £ £ Z =z I ZI
T S) S] 3] ™ = =
= T T T = x ~
=2 =2 =2 = = =
= =

Figure 19: Throughput for Hottest Category query. The first
four columns are using AJoin with a 10k buffer input size,
the four middle columns use the standard join

seen well in Figure 22. If the query is performed with AJoin and 20
or 30 queries run in parallel, the latency increases consistently. This
can be seen well on the red and green line. If the query is executed
with the standard join (pJoin), the latency stays stable. However,
the throughput is slightly worse than what the query achieves if
AJoin is used as can be seen in Figure 21. However, that throughput
is likely not sustainable if AJoin is used due to the rising latency.
Flink performs again worse than the standard join version of HDES.
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6.2 Ad-hoc Query Performance

In this experiment, we want to evaluate the performance of HDES
when adding queries in an ad-hoc fashion. To assess this capability,
we add and remove X queries every Y second to the engine and

200000

175000 -

150000 -

125000 -

100000 A

75000 4

latency in milliseconds

50000

25000 ! ‘ <

BN

SNL R EARNE A,

0
0 25 50 75 100 125 150 175 200
runtime in seconds

—— etINARHPPAB10 f:1 ~ —— etl NARHPPAPJoin f:10
—— etl NARHPPAB10 f:10 etl NARHPPAPJoin f:20
—— et NARHPPAB10 f:20 —— etl NARHPPAPJoin f:30
—— etl NARHPPAB10 f:30 etl flink NARHPPA f: 1
—— et NARHPPAPjoin ;1 —— etl flink NARHPPA f: 10

Figure 22: Excerpt of event-time latency for highest price
per auction query

le6

1.8 1

1.6 A

1.4 1

1.2 1

1.0 1

H

Events per second

0.8 A

F
i

0.6

0.4 A

all

map a:2 r:2 w:10 f:1 4
map a:4 r:4 w:10 f:1 4
map a:8 r:8 w:10 f:1 4

map a:10 r:10 w:1 f:1 4
map a:20 r:20 w:1 f:1 4
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monitor the performance. As Flink does not support ad-hoc query
execution [7], we ran the tests only with HDES.

6.2.1 Map Basic Data. As we would expect, Figure 23 shows us
that the performance of the map operator decreases the more map-
queries we add and remove in a ten-second interval. This is mainly
owed to the fact that maps are not executed in parallel but sequen-
tially inside a SourceSlot. When we compare the third and fourth
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columns in Figure 23, we can observe that the frequency with which
map queries are added and removed does not really have a large im-
pact on the throughput. Even though we add and remove two more
events per interval, the benchmark in the fourth column performs
only slightly worse than the one in the third while having an inter-
val of one second compared to ten. In Figure 24 we can see that—as
anticipated—continuously adding or respectively removing a query
over time exhibit mirrored throughput, i.e. the configuration that
continuously adds queries starts out with a high throughput that
decreases as more and more queries run in parallel and the con-
figuration that continuously removes queries starts off with a low
throughput that increases with each query that is removed. From
this, we can conclude that add and remove have a similar amount
of overhead and neither is more costly than the other.

6.2.2 Join Basic Data. The ad-hoc query benchmark clearly high-
lights AJoin’s advantage. It achieves a much higher median through-
put (Figure 25) in all three tests, albeit at the cost of higher processing-
time latencies as Figure 27 shows. We already observed in Figure 13
that AJoin has a higher event-time latency than the standard join
implementation for multi-query execution. Here we see that the
same also applies to processing-time latency. This behavior is owed
to the additional computation AJoin performs.

In Figure 26, we can see that AJoin also performs better for
continuous query addition and removal, respectively. Even though
the throughput for continuous query addition has more variance
than the one of the standard join, it is significantly higher. Again,
we can observe that the removal and addition lines meet at about
150 seconds, leading us to the conclusion that neither operation
has more overhead than the other.

6.2.3 Join Nexmark Data. As already discussed in subsubsection 6.1.4,
AJoin has a garbage collection problem when used with Nexmark
data in our setup. For ad-hoc queries, this effect is further increased,
as data structures that hold many objects are repeatedly removed
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and added, creating more references and thereby increasing the
workload of the garbage collector. For ad-hoc queries, this also
affects the standard join implementation. Therefore, we decided
to reduce the network input buffer size to ten-thousand elements
to prevent HDES from ingesting too many events. As we can see
in Figure 28 the performance of the two join implementations is
about equal, with AJoin having the slight edge in most cases. As
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usual, AJoins have a processing time latency which is about two
seconds higher than that of the standard join.

In Figure 29, we can observe how AJoin profits from being op-
timized for performing multiple joins. Unlike the standard join
implementation, which has the typical mirrored lines like in Fig-
ure 24 because it is not able to provide the full throughput rate if

500000

400000

300000

#events

oo i Bl ,x',L,r., bl b o Jih "”'. “»’:' .t',"rl,‘\'”
Mg L

0

o 50 100 150 200 250 300
seconds
—— NARaJoinB10 a:1 r:0 w:10 f:1
~—— NARaJoinB10 a:0 r:1 w:10 f:31

—— NARpJoinB10 a:1 r:0 w:10 :1 —— NARpJoinB10 a:0 r:1 w:10 f:31

Figure 29: Throughput for join with Nexmark data and con-
tinuous ad-hoc query addition/removal
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Figure 30: Throughput for the HotCat query when continu-
ously adding or removing a query every 10 seconds

many queries are attached, AJoin can keep a more stable throughput
rate with its less costly multi-query join.

6.2.4  Hottest Category (HotCat) Nexmark Data. We executed this
ad-hoc benchmark only with AJoin because the standard join queries
overloaded the system in the ad-hoc scenario because they did not
share any resources. For this query, a different picture compared to
the simpler map and join queries emerges. In the latency diagram in
Figure 31, we can see that the latency for the configuration which
repeatedly removes queries starts low, even though the load at the
start of the execution should be at its highest point as 31 queries
run in parallel. However, it quickly rises and only begins to drop
at around 150 seconds, which equates to a workload of 15 queries.
That confirms what we already saw in Figure 20. Namely, 30 HotCat
queries at once cannot be sustainably supported by our setup and
lead to rising latencies. Conversely, we observe that the adding
configuration does not increase latency in a major way until the
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210-second mark. This is striking since the removing configuration
is struggling around the 90-second mark when it has to deal with
the same amount of queries. One explanation might be that the
latency does not increase as quickly if the load is increased gradu-
ally compared to when a high load exists from the start. Further,
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Figure 33: Event-time latency for the HotCat query when
adding and removing a fixed number of queries every 10 sec-
onds

a possible explanation is that already removed queries have a per-
formance impact because the garbage collection has to check all
objects referenced in their topologies.

When looking at the throughput diagram in Figure 30, we can
see that both the adding and the removing have a roughly simi-
lar throughput at the beginning of the execution. However, as the
computation advances and resources are getting sparse, the queries
converge into their specific directions, meaning that the adding
configuration is performing worse as more queries run simultane-
ously. The removing configuration is performing better as fewer
queries run.

An interesting observation in this figure is that the adding config-
uration does not show the same peak performance in the beginning
as the removing configuration shows in the end. The expectation
would be that the queries would mirror their performances like
shown in Figure 24.

When looking at the scenario of adding and removing a fixed
number of queries every 10 seconds illustrated in Figure 32 and
Figure 33, we can see that AJoin keeps the median throughput
relatively stable independent of the number of queries. However,
we see that the variance in both figures increases as the number
of added and removed event grows larger than eight. Although we
can spot some outliers, such as a:14 r:14 in the throughput box-plot
and a:8 1:8 in the event time latency box-plot, the general trend
remains true.
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Figure 34: Throughput for the HPPA query when continu-
ously adding or removing a query every 10 seconds
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Figure 35: Latency for the HPPA query when continuously
adding or removing a query every 10 seconds

6.2.5 Highest Price per Auction (HPPA) Nexmark Data. For the
HPPA query, we see a picture comparable to the HotCat query.
The major difference is that the adding configuration is behaving
more reasonably as its latency increases as expected when the
amount of queries surpasses the threshold of about 15 queries, as
seen in Figure 35. However, we also see that HDES effectively stops
processing for the last 20 seconds, as the workload is getting too
high because too many queries have been added. Moreover, we can
also observe in Figure 34 that the throughput of HPPA looks very
similar to that of HotCat and also exhibits a stable throughput for
the adding configuration and only a slight increase in throughput
for the removing configuration.
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Figure 36: Throughput for the HPPA query when adding and
removing a fixed number of queries every 10 seconds
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Figure 37: Event-time latency for the HPPA query when
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When considering the scenario of adding and removing a set
of queries every 10 seconds, illustrated in Figure 36 and Figure 37,
we can see that the performance increases slightly up to 8 queries
and then decreases again. However, this configuration is also the
configuration where the variance is at its peak. Interestingly, we
see that adding and removing only two queries every ten seconds
yields worse throughput than doing the same with more queries.
However, this is likely an outlier. When adding and removing more
than ten queries at a time, the engine does not provide satisfying
results.

7 SUMMARY

The research stream processing engine HDES enables the user to
define custom dataflows on processed events. Unlike other common
stream processing engines, it supports the dynamic modification
of the dataflow graph during runtime, without downtime. Further-
more, it implements cutting edge join sharing techniques that are
not yet standard in common stream processing engines. The evalu-
ation of queries that join two datastreams shows that join sharing
significantly improves the performance for both multi-query pro-
cessing and ad-hoc query processing, given similar join conditions.

The current implementation splits the transformation from a
single query towards execution logic into multiple decoupled parts.
This opens up the possibility to swap out parts of HDES to support
future use cases.

When comparing the engine to Flink, we can see that HDES
outperforms Flink in many use-cases. Due to the implemented op-
timizations, we were able to process query-sets that Flink cannot
efficiently process. To sum up, HDES shows the performance gained
by using state of the art stream processing optimizations and build-
ing a stream processing engine with ad-hoc query processing in
mind. However, due to its prototype status, HDES still lacks essen-
tial features that would be desirable for production environments.

8 FUTURE WORK

Currently, HDES only supports single-node execution. As all tradi-
tional SPEs operate in a distributed setting, HDES should support
distributed execution as well and thus, allowing a better compar-
ison. In like manner, the original AJoin monitors the statistics of
joins to rearrange the execution plan and dynamically scale opera-
tors horizontally and vertically. This functionality can be adopted
by HDES.

Albeit HDES implementing AStream, a complete version and API
support is missing. Together with a complementary benchmark,
this is a feasible next step to further investigate ad-hoc query pro-
cessing. Furthermore, we identified UDFs to complicate multi-query
processing because their implementation is unknown. Hence, an
operator containing a UDF like a filter or map has to be deployed
for each query. We see two options to tackle this problem. The first
one being an additional parsing step as used in SQL. The second
approach can be to let the user tag each unique UDF with an ID.
This could be integrated into a front-end for queries where users
could submit new queries during runtime.

As shown, one major bottleneck we encountered was the garbage
collection of the JVM. Therefore, we think a port to a system-level

programming language like C++ or Rust would come with improved
stability and performance.
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