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Abstract

Sorting is a fundamental database operation with use cases in index creation, dupli-
cate removal, grouping, and sort-merge joins. In recent years, Graphics Processing
Units (GPUs) emerged as database accelerators due to their massive parallelism
and high-bandwidth memory. Many single-GPU sorting algorithms have been pro-
posed and shown to outperform highly parallel CPU algorithms. Today’s accel-
erator platforms include multiple GPUs with direct high-bandwidth Peer-to-Peer
(P2P) interconnects. However, the few published multi-GPU sorting algorithms
do not efficiently harness the all-to-all P2P transfer capability of modern intercon-
nects, such as NVLink and NVSwitch. All previous multi-GPU sorting algorithms
are sort-merge approaches. Their merging workload grows for increasing numbers
of GPUs.

In this thesis, we propose a novel radix-partitioning-based multi-GPU sorting al-
gorithm (RMG sort). We present a most-significant-bit (MSB) radix partitioning
strategy that efficiently utilizes high-speed P2P interconnects while reducing the
inter-GPU communication compared to prior merge-based algorithms. Indepen-
dent of the number of GPUs, we exchange radix partitions between the GPUs in
one all-to-all P2P key swap. We analyze the performance of RMG sort on two
modern multi-GPU systems with different interconnect topologies. Our evalua-
tion shows that RMG sort scales well with the number of GPUs. We measure it to
outperform highly parallel CPU sorting algorithms up to 20×. Compared to two
state-of-the-art merge-based multi-GPU sorting algorithms, we achieve speedups
of up to 1.26× and 1.8× across both systems.





Zusammenfassung

Sortierverfahren gehören zu den grundlegenden Operationen eines Datenbank-
managementsystems. Sie finden u.a. in der Indexerstellung, der Duplikatenelimi-
nierung, der Gruppierung und bei Sort-Merge Joins Anwendung. Innerhalb der
letzten Jahre haben sich Grafikprozessoren (englisch: Graphics Processing Unit,
kurz GPU) dank ihrer hohen Parallelität und Speicherbandbreite als Datenbank-
Beschleuniger etabliert. Viele Grafikprozessor-basierte Sortierverfahren übertreffen
parallele Sortierverfahren auf der CPU. Heutige Hochleistungsserver enthalten
mehrere Grafikprozessoren und verknüpfen diese untereinander mit Peer-to-Peer
(P2P) GPU-zu-GPU-Verbindungen hoher Bandbreite. Allerdings nutzen die publi-
zierten Multi-GPU Sortieralgorithmen die fortschrittliche Kommunikationsfähig-
keit moderner P2P-Verbindungen, wie beispielsweise NVLink und NVSwitch, nicht
effizient aus. Alle bisherigen Multi-GPU Sortierverfahren sind Mergesort Algorith-
men, deren Verschmelzungsaufwand mit zunehmender Anzahl der GPUs steigt.

In dieser Arbeit präsentieren wir einen neuartigen Multi-GPU Sortieralgorithmus
(RMG Sort), der auf Radix-Partitionierung basiert. Wir präsentieren eine Radix-
Partitionierungs-Strategie, die mit den Bits der höchsten Stellenwerte beginnt
(englisch: most significant bit, kurz MSB). Im Vergleich zu vorherigen Mergesort
Algorithmen, reduzieren wir die Kommunikation zwischen den GPUs, und nutzen
moderne P2P-Verbindungen effizient aus. Unabhängig von der Anzahl der GPUs
mit denen wir sortieren, übertragen wir Partitionen zwischen den GPUs in nur
einem vollständig allseitigen P2P Austausch. Unsere Auswertung zeigt, dass RMG
Sort sehr gut mit einer steigenden Anzahl an GPUs skaliert. Wir messen dass RMG
Sort hochparallele Sortierverfahren auf der CPU mit einem Faktor von bis zu 20×
übertrifft. Im Vergleich mit zwei modernen Multi-GPU Mergesort Algorithmen,
erreicht RMG Sort eine bis zu 1,26- und 1,8-fach schnellere Ausführung.
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1 Introduction

Today’s database systems need to process ever-growing amounts of data. Often-
times, the data volume exceeds the size that database systems can process and
analyze efficiently [21]. This creates an increasing demand for improving the per-
formance of database systems and data processing solutions [28]. To tackle the
challenge of processing large data sets in a timely fashion, research and industry
steadily adapt to and exploit modern hardware developments, such as multi-core
CPUs, heterogeneous processor architectures, and massively-parallel accelerators.

Graphics processing units (GPUs) provide unparalleled computational power via
thousands of cores, which are supported by a high-bandwidth memory subsys-
tem [38, 40]. Ever since the introduction of general-purpose computing platforms
such as CUDA [45], and OpenCL [20], GPUs have evolved from specialized graph-
ics rendering devices into processors suitable to accelerate any computational task
that benefits from highly parallel execution. For compute-intensive tasks on small
data sets that reside in GPU memory, GPUs achieve orders of magnitude higher
throughput rates compared to the CPU. Thus, they are commonly used as accel-
erators for deep learning and HPC workloads [59]. However, GPUs experience a
slower adoption into the enterprise database management systems market, mainly
because of the data transfer bottleneck [10, 32]. For many GPU-based operator
implementations, copying the data from main memory to the GPU and back via
the PCIe 3.0 interconnect bus has been the limiting factor [18, 32, 34, 55, 56].

In recent years, high-bandwidth, low-latency interconnects, such as NVIDIA’s
NVLink, AMD’s Infinity Fabric, and the Compute Express Link (CXL) have been
introduced [3, 39, 60]. They increase the GPU-interconnect bandwidth close to
that of main memory, accelerating CPU-to-GPU and Peer-to-Peer (P2P) trans-
fers. On hardware platforms with high-speed interconnects, GPUs have been
shown to efficiently accelerate data analytics workloads and core database op-
erations [32, 34, 55]. Sorting is one such database operation. Within database
systems, sorting has use cases in index creation, user-specified output ordering,
duplicate removal, grouping, and sort-merge joins [19]. Over the past years, nu-
merous single-GPU sorting algorithms have been proposed and shown to outper-
form highly parallel CPU sorting algorithms by orders of magnitude. Parallel radix
sort algorithms have been proven to be best suited for modern GPU architectures,
achieving the fastest single-GPU sorting performance [35, 36, 41, 44, 59, 63].

Nowadays, modern server-grade hardware platforms combine multiple GPUs for
even higher computing power. Thus, the research community started adapting
algorithms to utilize multiple GPUs [56, 50]. To the best of our knowledge, all of
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the few published multi-GPU sorting algorithms are sort-merge approaches [18, 52,
56, 64]. The P2P-based multi-GPU merge sort by Tanasic et al. (P2P merge sort)
utilizes inter-GPU communication to merge the previously sorted chunks within
GPU memory [64]. Gowanlock et al. employ a heterogeneous sorting algorithm
(HET merge sort) that uses the CPU to merge data chunks that multiple GPUs
sorted. Recently evaluated on modern multi-GPU systems, they show promising
speedups over a single GPU [34].

However, the merging workload of merge-based multi-GPU sorting algorithms
grows with increasing numbers of GPUs. For HET merge sort, the final merge
phase on the CPU quickly becomes a bottleneck because the multiway merge
is heavily main memory bandwidth-bound. The CPU’s main memory (i.e. the
on-chip memory controller) provides significantly less bandwidth than the GPU
device memory [18, 34, 42, 63]. For P2P merge sort, scaling up the number of
GPUs g results in a linear increase in the number of key swaps issued over the
P2P interconnects. This is because Tanasic et al. do not employ an all-to-all
exchange of keys between the GPUs. Instead, at any point in time during the
merge phase, each GPU swaps data with only one other GPU. Therefore, multi-
ple merge steps are necessary. This algorithm design made sense in a time when
GPUs had no dedicated, direct P2P interconnects attached. On such systems,
many concurrent P2P transfers over the PCIe 3.0 interconnect tree topology suffer
from shared bandwidth effects. Today, modern multi-GPU accelerator platforms
incorporate direct high-bandwidth P2P interconnects for exclusive bandwidth us-
age. Most recent hardware systems allow for full non-blocking all-to-all inter-GPU
communication (e.g. via NVLink and NVSwitch) [39, 42]. Given these hardware
improvements, the design of a novel multi-GPU sorting algorithm becomes nec-
essary to efficiently harness modern P2P interconnect technology. Thus, we raise
the following questions:

1. Can we better utilize the non-blocking all-to-all P2P interconnects of modern
multi-GPU accelerator platforms, and reduce inter-GPU communication?

2. How can we design a faster and better scaling multi-GPU sorting algorithm?

2



1.1 Contribution

1.1 Contribution

In this master’s thesis, we propose a novel radix-partitioning-based multi-GPU
sorting algorithm (RMG sort). In contrast to previous work, our algorithm exploits
P2P interconnects, such as NVLink 2.0, NVLink 3.0, and NVSwitch, to their fullest
extent. We reduce inter-GPU communication by exchanging the radix partitions
between all GPUs in parallel. In contrast to merge-based algorithms, RMG sort
requires one P2P key swap independently of the number of GPUs used. Thus,
our approach achieves a more efficient P2P interconnect bandwidth utilization,
especially when scaling to increasing numbers of GPUs. We evaluate our sorting
algorithm on modern multi-GPU systems with state-of-the-art high-bandwidth
interconnects. With this master’s thesis, we make the following contributions:

1. We design a novel multi-GPU sorting algorithm (RMG sort). We employ an
MSB radix partitioning strategy to exploit modern interconnect technology.

2. We implement our multi-GPU sorting algorithm in the CUDA framework
and publish our optimized source code together with automated benchmark
scripts to enable reproducible evaluation results.

3. We evaluate the performance of our multi-GPU sorting algorithm for up to
eight GPUs and compare it to parallel CPU sorting algorithms as well as
two state-of-the-art, merge-based, multi-GPU sorting algorithms.
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1.2 Scope and Delimitation

1.2 Scope and Delimitation

The main focus of this thesis is to design, implement and evaluate a novel multi-
GPU sorting algorithm. We focus only on developing a high-performance sorting
algorithm, rather than embedding it into a real-world database system. The inte-
gration of GPU-accelerated operators into a fully-fledged database system exceeds
the scope of this thesis. We compare the performance of our multi-GPU sort with
that of state-of-the-art parallel CPU sorting algorithms. Thus, our evaluation
indicates the potential speedup that a database system can achieve when using
multiple GPUs for sorting.

For simplicity, we only support sorting basic numeric keys and unsigned key values,
i.e. unsigned integer types, and positive floating-point numbers. Extending the
algorithm to support key-value pairs is a valuable addition for future work. Also,
radix sort algorithms can be adapted to support negative value ranges without
sacrificing performance [66].

We evaluate our algorithm on hardware systems that include NVIDIA GPUs and
implement our algorithm in the CUDA framework. Thus, we only support NVIDIA
GPUs. The algorithm could, however, be ported to GPUs of other vendors and
their runtime APIs.

1.3 Thesis Outline

The thesis is structured as follows. In Section 2, we explain relevant background
information with regards to the GPU hardware architecture, modern interconnect
technology, and radix sort algorithms. Section 3 explains our radix-partitioning-
based multi-GPU sorting algorithm, while we describe how we implement it to
achieve peak performance in Section 4. In Section 5, we evaluate the performance
of RMG sort on two state-of-the-art multi-GPU accelerator platforms. We discuss
our work and our experimental evaluation in Section 6. Finally, we give an overview
of the related work in Section 7 and conclude in Section 8.
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2 Background

In this section, we explain the background information required to understand
our multi-GPU sorting algorithm in terms of its design and its implementation.
First, we describe the GPU hardware architecture and how it translates to the
CUDA programming model in Section 2.1. In Section 2.2, we give an overview
of the different interconnect types that multi-GPU accelerator platforms incorpo-
rate, outlining the importance of understanding a system’s interconnect topology.
Finally, we explain the radix sort algorithm class as well as the key insights into
its relevant algorithm variants in Section 2.3.

We evaluate our algorithm on systems with NVIDIA GPUs only. Therefore, we
explain the GPU hardware architecture (e.g. Volta, Ampere, etc.) and the GPU
programming environment (i.e. CUDA) of NVIDIA GPUs. The explained concepts
apply to GPUs of other vendors as well. When we reference the technical terms
introduced by NVIDIA throughout this section, we additionally mention the names
and terms that other vendors, such as AMD, use to describe the equivalent or
similar concept or component of their own.

2.1 GPU Architecture

GPUs are designed to support massively parallel computations. In contrast to the
CPU that hides the memory access latency with complex flow control and large
data caches, a GPU hides memory access latency with concurrently executed com-
putation [46]. GPUs are equipped with thousands of cores that are organized in a
specialized hierarchy. The main unit of computation is the Streaming Multiproces-
sor (SM) [40], equivalent to the Compute Unit (CU) for AMD CDNA architecture
GPUs [4]. One GPU consists of an array of SMs. For example, the latest server-
grade GPUs, such as the NVIDIA Tesla V100 (Volta architecture) and the NVIDIA
A100 GPU (Ampere architecture), consist of 80, and 108 SMs, respectively [38, 40].
Each SM can run multiple concurrent groups of threads, so-called thread blocks.
Unlike the CPU, GPUs do not support branch prediction, but they excel at achiev-
ing high instruction throughput rates for arithmetic operations. Within the Tesla
V100 and the A100 GPU, each SM contains 64 INT32 cores and 64 FP32 cores
that execute simultaneously. For 64-bit floating-point numbers, each SM provides
32 cores. As a consequence, modern data-center GPUs can achieve remarkably
high peak instruction throughput rates. For single-precision floating-point num-
bers, the NVIDIA Tesla V100 reaches up to 15.7 TFLOPS while the NVIDIA A100
achieves 19.5 TFLOPS. The double-precision peak throughput is half as high for
both GPUs because each SM includes half as many 64-bit cores. Figure 1 shows a
simplified overview of the GPU architecture.
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2.1 GPU Architecture

SM SM SM SM SM SM SM SM

SM SM SM SM SM SM SM SM

L2 Cache

Global Memory

Graphics Processing Unit (GPU)

Figure 1: Simplified GPU architecture

GPUs also provide a high-bandwidth memory hierarchy that is tailored towards
and supports their massively parallel compute architecture. GPU memory is di-
vided into off-chip and on-chip memory. Off-chip memory mainly consists of global
HBM2 memory which all running threads access. It provides high peak bandwidth
rates of up to 900 GB/s (NVIDIA Tesla V100) and 1555 GB/s (NVIDIA A100).
Compared to main memory, however, the GPU memory capacity is rather limited.
The NVIDIA A100 is available with up to 80 GB of DRAM. The GPU cache hier-
archy begins with the L2 cache that hides the latency of global memory accesses
(similar to AMD GPUs). The L2 cache size of server-grade GPUs varies between
4 and 40 MB depending on the GPU. Furthermore, GPUs equip their SMs with
on-chip memory caches: Each SM comes with a local, high-bandwidth, low-latency
L1 cache to accelerate computation on frequently used data. Additional on-chip
memory components (i.e. per SM) are the register file and the shared memory
subsystem. While the L1 cache automatically hides the memory accesses of all
threads running on the same SM, shared memory needs to be explicitly managed
by the programmer, and, can thus be seen as a user-managed cache. Since the
Volta architecture, NVIDIA GPUs combine the L1 data cache and shared memory
for a total of 128 and 196 KB per SM on the Tesla V100 and the A100 GPU,
respectively (see Figure 2). Combining the L1 cache with the shared memory can
improve the performance of shared memory-agnostic applications. Still, manually
handling shared memory enables programmers to achieve maximum performance.
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2.1 GPU Architecture
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Figure 2: Simplified SM architecture

2.1.1 The CUDA Programming Model

CUDA is a general-purpose parallel computing platform and programming model
for NVIDIA GPUs [46]. (AMD offers the ROCm software stack as a general-
purpose and HPC programming environment [4].) The CUDA platform includes a
small set of C/C++ language extensions together with an API and a compiler that
allows developers to program CUDA-capable GPUs using the high-level program-
ming language C or C++. Toolkit-included libraries, like the high-performance
parallel algorithms library Thrust [44], further simplify the development of het-
erogeneous applications that utilize CPUs and GPUs cooperatively. CUDA code
typically contains a mixture of host code (executed on the CPU), and device code
(executed on the GPU). Thus, the CUDA programming model assumes the GPU
to act as a co-processor and as a physically separate device to the host CPU. The
CUDA API offers host-side functions for allocating device memory and for copying
host memory to the GPU (i.e. global device memory).

To execute parallel computations on the GPU, programmers write so-called ker-
nels. A kernel is a device code function, that is executed in parallel by multiple
threads on the CUDA device. The programmer configures the number of threads
that execute the kernel when calling the kernel function. For this, the execution
configuration syntax is used. It consists of two parameters, the number of thread
blocks and the number of threads per block. The number of threads per block
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2.1 GPU Architecture

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

blockIdx.x = 0

blockIdx.x = 1

0 1 2 3 4 5 6 7 blockIdx.x = 2

threadIdx.x: [0,7]

0 1 2 3 4 5 6 7 blockIdx.x = 3

threadId = blockIdx.x * blockDim.x + threadIdx.x = 2 * 8 + 4 = 21

Figure 3: Calculating a unique CUDA thread ID

is limited because all threads of a block run on the same SM, sharing its limited
on-chip memory (e.g. the register file and shared memory). The latest NVIDIA
GPU architectures (i.e. Pascal, Volta, and Ampere) support a maximum of 1024
threads per block. Thread blocks can be scheduled in any order across any number
of cores. This enables CUDA code to scale very well to many cores.

The kernel function is implemented following the SIMT architecture (Single In-
struction, Multiple Threads). The kernel code defines the execution behavior and
branching path from the perspective of a single thread. Thus, the programmer
writes kernel functions for independent, scalar, and scalable threads, allowing for
thread-level parallelism in a simple way.

Within the device code of a kernel function, a thread’s unique thread ID is exposed
to the programmer through built-in CUDA variables, e.g. thread-level, and block-
level indices and dimensions. Figure 3 shows an example of how each thread
can calculate its kernel-wide unique thread ID for a kernel that is launched with
four thread blocks and eight threads per block. The variable blockDim.x holds
the number of threads per block. The variable threadIdx.x is the thread index
within the respective block (blockIdx.x) that the running thread is a part of. A
common way of dividing a given computational task across many threads equally
utilizes this globally unique thread ID. Typically, each thread calculates which
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2.1 GPU Architecture

small subset of the input data to process based on its thread ID. Nonetheless,
the programmer can orchestrate memory accesses to arbitrary addresses in global
memory to perform compute operations on this data. To achieve peak memory
bandwidth and compute resource utilization, however, it is necessary to understand
exactly how the GPU schedules such high numbers of threads in parallel, and how
it services the memory operations that each thread requests.

2.1.2 Thread Scheduling

A streaming multiprocessor creates and executes the threads of an affiliated thread
block. A thread block can run up to 1024 threads in total. The SM schedules these
high numbers of threads in groups of 32 consecutive threads, so-called thread
warps, and stores the necessary execution context in on-chip memory. As a result,
context switches happen at a very low cost. All threads of a running warp start
with the same program counter, while each thread holds its instruction address.
Therefore, the threads of a scheduled warp can execute independently from one
another. However, out of its 32 threads, the warp executes only those threads that
share the next instruction to be issued. The threads that are executing the current
common instruction are called active threads. The other disabled threads have to
idle until they are scheduled. Whenever a warp encounters a data-dependent
conditional branch and threads diverge, the execution of the different possible
branches is serialized. First, those threads that take path A execute in parallel,
while the rest idles. Then, the threads that take the branch path B execute, and
so on. Thus, to maximize the number of threads running in parallel within a
warp, the programmer needs to avoid branching and/or orchestrate the conditions
in such a way that thread divergence happens at warp borders. The threads of
different warps can always execute independently. Ideally, the only constraint on
the level of parallelism within a thread block is given by hardware limitations,
i.e. the size of the register file and shared memory.

Since the Volta architecture, the SM stores the execution context (i.e. the program
counter, the call stack, and registers) of each thread in on-chip memory during
the whole runtime of a kernel. This enables the threads of the same warp to
run completely independently and in parallel. The performance implications of
branch divergence within a warp are therefore heavily mitigated for GPUs of that
and later architectures.

To achieve peak instruction and memory throughput on the GPU, it is crucial to
maximize the number of concurrently executing threads because high numbers of
threads increase the chances that the GPU’s computational units (cores) are fully
utilized at any given time. However, having many thread warps run in parallel
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2.1 GPU Architecture

does not yet guarantee optimal hardware resource utilization since a significant
portion of threads might suffer from high instruction latency. Optimal performance
is achieved when the warp scheduler always has enough ready-to-execute thread
warps to schedule. This hides the latency of other waiting thread warps. Thus,
the number of clock cycles it takes until a thread is ready to execute its next
instruction needs to be minimal. One main reason that prevents a thread warp’s
instruction to be ready to execute is that the required input operands are not yet
available because they need to be loaded from memory first.

The memory latency of global memory is orders of magnitude higher than that of
on-chip memory (e.g. the L1 cache, and shared memory). Therefore, the negative
performance impact of a sub-optimal memory access pattern to global memory is
much more significant than misaligned accesses to on-chip memory. The global
memory is part of the device memory and can only be read or written to via
32-, 64-, or 128-byte memory transactions. Moreover, all global memory accesses
performed by a thread are handled as part of its thread warp. For the current
instruction executed by a thread warp, the GPU groups together the memory ac-
cesses to global memory of all active threads within that thread warp. Here, the
GPU tries to coalesce the required reads and writes in such a way that as few
memory transactions as possible are performed. Since the byte-granularity of de-
vice memory transactions is commonly much higher than the number of bytes of
the variables the kernel instruction operates on, over-fetching can become a per-
formance bottleneck. If the threads of the same thread warp read 4-byte integers
from distant memory addresses in global memory (e.g. because of a random access
pattern), then 28 bytes of each 32-byte memory transaction will be loaded unnec-
essarily. This decreases the memory throughput, highlighting the importance of
aligned memory access patterns within thread warps.
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2.2 System Interconnects

2.2 System Interconnects

As physically separate devices, GPUs are attached to the CPU’s memory controller
via an interconnect bus. Traditionally, the PCIe interconnect has been used to con-
nect the GPU to the CPU. Given that its bandwidth rate is significantly lower than
that of main memory, GPU-accelerated data processing operations on such sys-
tems are often data transfer-bound. Today’s high-performance computing (HPC)
systems include multiple GPUs to increase the total computational power and the
available GPU memory. Consequently, it became relevant to interconnect GPUs
between each other. The interconnect topology defines exactly how the GPUs
are connected to the host-side and between each other. It significantly impacts
the performance of multi-GPU-accelerated applications [31]. This is especially
relevant for modern systems that often incorporate heterogeneous interconnect
technology [37, 42]. A specific interconnect topology can render the utilization of
only a certain subset of GPUs efficient while employing all system-wide GPUs can
decrease the end-to-end performance [34]. In the following, we explain the differ-
ent interconnect technologies of modern multi-GPU accelerator platforms. Given
that we implement and evaluate our multi-GPU sorting algorithm on two hard-
ware systems, we focus on explaining the concrete interconnects that these systems
come with. To keep this thesis as vendor-independent as possible, we mention the
interconnect advances of other hardware vendors as well.

2.2.1 CPU Interconnects

Since most multi-GPU accelerator platforms are Non-Uniform Memory Access
(NUMA) systems, we first explain CPU interconnects. To enable one NUMA node
to access the memory of a remote NUMA node, the CPU sockets are connected
via CPU interconnects. CPU interconnects commonly provide higher latency and
less throughput than the CPU’s memory controller [33]. Consequently, memory
accesses of one CPU to the main memory of another remote NUMA node are
slower than local accesses.

There are many different CPU interconnects available. Intel’s QuickPath (QPI)
interconnects are point-to-point links for the Intel Xeon Skylake architecture, that
connects multiple processors while supporting cache coherency across all NUMA
memory regions [11]. The QPI has later been replaced by its successor, the Intel
UltraPath (UPI) interconnect. AMD’s latest Infinity Fabric is a high-bandwidth,
general-purpose interconnect that is used as the CPU interconnect for multi-socket
systems including AMD EPYC processors [27]. IBM’s Power Systems interconnect
their CPU sockets with the X-Bus interconnect [37].

Typically, NUMA systems attach equally as many GPUs to each NUMA node.
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Data transfers from one NUMA node to the GPUs that are attached to the remote
NUMA node traverse the CPU interconnects as well as the CPU-GPU intercon-
nects. If a system lacks direct P2P interconnects between the GPUs of different
NUMA nodes, P2P copies have to traverse the host-side via multiple hops, includ-
ing the CPU interconnect.

2.2.2 GPU Interconnects

In this section, we give an overview of state-of-the-art GPU interconnects.

PCIe. PCIe 3.0 (Peripheral Component Interconnect Express) is used as the
standard interconnect bus for many peripheral devices, including GPUs. It is
exclusively used to connect GPUs to the CPU. The PCIe interconnect supports
full-duplex communication at 1 GB/s per lane. Thus, data can be simultaneously
transferred in both directions at full speed. One PCIe 3.0 link typically connects
two devices with 16 lanes for a total, theoretical bandwidth of 16 GB/s per direc-
tion.

Recently, the first multi-GPU systems with PCIe 4.0 interconnects became avail-
able on the market. PCIe 4.0 doubles the bandwidth rate of PCIe 3.0 for a theo-
retical peak of 32 GB/s per direction. With up to four PCIe 4.0 links per CPU, a
two-socket system can attach a total of eight GPUs.

Multi-GPU systems with no further direct P2P interconnects only support inter-
GPU communication through multi-hop host-side transfers. On such systems,
the P2P throughput between GPUs suffers from shared bandwidth effects as the
host-side (i.e. PCIe lanes, PCIe switches, CPU memory controller) becomes the
bottleneck.

NVLink. Over the last few years, hardware vendors introduced high-bandwidth,
low-latency GPU interconnects for direct P2P transfers, enabling faster inter-
GPU communication. AMD released the Infinity Fabric interconnect [3], while
NVLink is NVIDIA’s fast interconnect technology. NVLink 1.0 interconnects
provide 20 GB/s per link per direction while NVLink 2.0 interconnects achieve
25 GB/s. One NVLink 2.0-enabled GPU supports up to six links. If two GPUs
were interconnected with all of their six NVLink 2.0 links directly, P2P copies
would benefit from a theoretical peak bandwidth of 150 GB/s per direction.

The latest NVLink 3.0 increases the number of links per GPU up to 12, doubling
the theoretical peak P2P bandwidth between two GPUs up to 300 GB/s. As
mentioned, NVLink is primarily designed for accelerating inter-GPU communica-
tion. However, the IBM Power System AC922 connects its GPUs to its POWER9
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CPUs via NVLink as well. NVLink-based CPU-GPU interconnects significantly
mitigate the data transfer bottleneck, as their bandwidth comes close to that of
main memory. Thus, NVLink interconnects can enable GPU systems to accelerate
data processing workloads efficiently [32, 34].

NVSwitch. NVSwitch is an NVLink-based switch chip introduced by NVIDIA
in 2018. It enables non-blocking, all-to-all, inter-GPU communication at high
bandwidth rates by connecting up to 16 GPUs between each other in a point-to-
point network (i.e. hybrid cube mesh) [39]. When the GPUs are interconnected
via NVLink 3.0-based NVSwitch, any GPU i benefits from a theoretical peak
bandwidth of 300 GB/s per direction to any other GPU j. More importantly, all
GPUs can transfer data between each other simultaneously without sharing the
bandwidth.

2.2.3 The Data Transfer Bottleneck

For single-GPU systems, the infamous data transfer bottleneck simply resulted
from the fact that the interconnect’s bandwidth was significantly lower than that
of CPU and GPU memory. In multi-GPU systems, there is not one data transfer
bottleneck anymore as different interconnect topologies introduce different pitfalls.
For more details, we refer to the work of Maltenberger et al. [34]. We summarize the
main scenarios where the device-side or host-side hardware components throttle
the measured data transfer throughput in a multi-GPU system:

1. Lack of P2P interconnects. A limited number of direct, high-bandwidth
P2P interconnects can result in P2P transfers between different GPU pairs
having varying costs. For example, some systems connect GPU i with GPU
j via NVLink 2.0, but do not include a direct P2P path to GPU k. Thus,
P2P transfers from GPU i to k require traversing the host-side via multiple
interconnect hops. If the system attaches its GPUs to the CPU via PCIe
interconnects, the P2P copy from GPU i to k is much more expensive than
that to GPU j. Some algorithms employ a multi-hop routing strategy be-
tween GPUs [50]. The P2P transfer from GPU i to k is re-directed from
GPU i to j first, and then traverses from GPU j to k, thus, avoiding the
host-side entirely. However, this strategy is only suitable for certain systems
with a fitting interconnect topology. In this example, it only works if GPU
j is directly interconnected with GPU k.

2. Shared PCIe switches. On systems that connect the GPUs to the host-
side via PCIe interconnects, the number of available PCIe switches per
NUMA node critically influences the performance of concurrent CPU-GPU
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transfers to/from multiple GPUs. Especially on hardware platforms with a
total of eight GPUs (or more), the CPU oftentimes does not include enough
PCIe switches to attach all four GPUs exclusively. Then, each pair of GPUs
is attached to the CPU through the same, shared PCIe switch (i.e. via one
PCIe instance of 16 lanes). As a consequence, data transfers to/from neigh-
bouring GPUs suffer from shared bandwidth effects if performed simultane-
ously. Then, the throughput of copying 8 GB of data per GPU from CPU
node 0 to GPUs 0 and 1 concurrently is equal to that of a single CPU-GPU
copy of 8 GB from CPU node 0 to either GPU 0 or 1.

3. Low NUMA interconnect bandwidth. A CPU interconnect of insuffi-
cient bandwidth Bc makes it infeasible to include GPUs of remote NUMA
nodes. Then, the CPU-GPU transfer throughput to the remote GPUs can
not exceed the CPU interconnect bandwidth Bc, even though the CPU-GPU
interconnect itself has a high bandwidth Bi, with Bi > Bc. Therefore, the
data arrives at the local GPUs significantly earlier, which delays the over-
all performance if the multi-GPU algorithm includes a synchronization step
between the GPUs.

4. Low main memory bandwidth. Given that the CPU-GPU interconnects
bandwidth and the number of GPUs per CPU increases, the main memory
is increasingly put under pressure. The main memory bandwidth Bm poses
an upper limit to the throughput that multiple, concurrent data transfers
to g GPUs can achieve. Thus, if the main memory bandwidth is insufficient
to support g concurrent transfers at full interconnect speed, the achieved
throughput will be throttled to Bm GB/s, even if each individual CPU-GPU
interconnect could provide a bandwidth rate Bi so high that g ∗Bi > Bm.
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2.3 Radix Sort

2.3 Radix Sort

Radix sort is a non-comparison-based sorting algorithm that proves to be very
efficient for data set sizes that go beyond a certain threshold, due to its linear
computational complexity [2, 16, 54, 58, 63]. As the radix sort algorithm does not
perform any comparisons, the otherwise relevant lower boundary for comparison-
based sorting algorithms of O(n × log n) does not apply. Instead of performing
comparisons, radix sort algorithms iterate over the keys’ bits and partition the
keys into distinct buckets based on their radix value.

The word radix (or base) refers to the number of unique digits that are used to
represent a number. In the binary system, there are two possible digit values
(bits): 0 and 1. To reduce the number of iterations, radix sort algorithms look
at multiple consecutive bits c at a time. We present the notation that we use
throughout this work in Table 1.

There are two fundamentally different radix sort algorithm variants with regards
to where the iteration over the keys’ bits starts. This can either be from the
most or the least significant bit (MSB or LSB). Given k-bit keys, the number of
partitioning passes (or rounds) is p = ⌈k/c⌉. In each partitioning pass, each of
the n input keys is scattered into one of 2c distinct buckets according to its radix
value in the c bits that are considered in the current pass until all k bits have been
considered. This leaves radix sort with a computational complexity of O(n × p).
The final partitioning pass arranges the keys into the fully sorted order.

When iterating over the keys’ bits, an LSB radix sort algorithm stores the 2c

buckets of the current partitioning pass only, as long as it respects the keys’ sort
order from preceding rounds. In contrast, an MSB radix sort algorithm refines the
keys’ partitioning within each bucket in each round recursively. Thus, an MSB
radix sort needs to keep track of increasing numbers of buckets. However, the
MSB approach can ignore the sort order of preceding rounds as this information is

Table 1: Radix sort notation

Symbol Description

n Number of input keys

k Number of bits per key

c Number of consecutive bits considered at a time

p Maximum number of partitioning passes
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2.3 Radix Sort

implicit in the way that each bucket is refined in each pass (i.e. further partitioned
into smaller buckets).

Even when considering many consecutive bits c per partitioning pass, radix sort
has a comparatively high memory bandwidth demand. Since the few necessary
compute operations are cheap to perform, radix sort algorithms and radix parti-
tioning approaches quickly become memory bandwidth-bound. Single-GPU radix
sort algorithms outperform parallel CPU radix sort algorithms, mainly because
GPUs are equipped with memory subsystems that provide significantly higher
bandwidth rates than the CPU’s main memory [34, 63, 59].

A common data structure used in radix sort algorithms is the histogram. It is
used to keep track of how the input keys distribute across the different buckets.
More precisely, for each of the 2c buckets, the histogram stores the number of keys
that fall into that bucket. Thus, radix sort algorithms that rely on histograms
resemble counting sort algorithms. After reading the input keys once to compute
the histogram, the keys need to be partitioned in memory so that all keys of bucket
i proceed all keys of bucket i+1. Figure 4 illustrates a simplified partitioning phase
of a radix sort algorithm for an example of n = 8 keys with k = 3 bits per key and
c = 3 considered bits at a time.

[0] [1] [2] [3] [4] [5] [6] [7]

0 1 2 1 0 2 1 1

histogram: 

[0] [1] [2] [3] [4] [5] [6] [7]

0 0 1 3 4 4 6 7

prefix sum: 

001 010 010 011 101 101 110 111

0 1 2 3 4 5 6 7

010

0 1 2 3 4 5 6 7

010 101 010 001 011 111 101 110

input keys: 

0 1 2 3 4 5 6 7

[0] [1] [2] [3] [4] [5] [6] [7]

0 0 2 3 4 4 6 7

prefix sum: 

output keys: 

[0] [1] [2] [3] [4] [5] [6] [7]

0 1 3 4 4 6 7 8

prefix sum: 

A
B

read prefix sum at [2]

increment prefix sum at [2]C

write key of 
bucket [2]

Figure 4: Simplified radix sort example with histogram and prefix sum
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Given the information about the number of keys per bucket, we obtain the starting
write offsets for each bucket by calculating the prefix sum on the histogram. Then,
the input keys are read once again. This time, each key is written to a new
location based on the write offset of the bucket it belongs to. To ensure that the
following keys of the same bucket are written to subsequent and unique positions,
the bucket’s write offset needs to be incremented by one (as one key has successfully
been scattered). In the example, one partitioning pass on c bits is sufficient to
fully sort the input. On 32-bit or 64-bit keys, multiple partitioning passes become
necessary.

To scatter the keys into their corresponding buckets efficiently and in parallel,
most radix sort algorithms operate with an auxiliary memory buffer of size n [58,
63, 67, 68]. In each partitioning pass, the role of the two memory buffers alternates
between holding the input keys and the partitioned output keys. Thus, radix sort
algorithms often have a relatively high space complexity, i.e. memory consumption.
To avoid costly dynamic memory allocations, the radix sort primitives of state-of-
the-art GPU-based parallel programming libraries, such as Thrust and CUB [44,
41], allow for passing a pre-allocated memory buffer to the function call, which
will be used as auxiliary memory internally.

Sorting Floating-Point Numbers. While the radix sort algorithm is intuitive
for integer data types, given their binary representation, radix sort algorithms can
equally as well sort floating-points data types. The IEEE Standard for Floating-
Point Arithmetic (IEEE 754) defines the binary representation format of floating-
point numbers [26]. It is the most widely used standard for how to represent and
operate floating-point numbers. floating-point data type implementations that
follow the IEEE-754 standard reserve the most significant bit as the sign bit.
The following eight bits are reserved for the exponent, and the remaining 23 bits
represent the mantissa. Since the exponent is stored at more significant bits than
the mantissa, and the exponent is always positive, floating-point numbers can be
sorted via radix sort algorithms in the same way as integer keys. When comparing
a floating-point numbers as if it was an integer type, greater floating-point numbers
are interpreted as such compared to smaller values. Both, for negative integer and
floating-point numbers, radix sort algorithm need to be adjusted [66, 25].
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3 Algorithm

In this section, we explain our proposed radix-partitioning-based multi-GPU sort-
ing algorithm (RMG sort). It sorts the input keys using only the GPUs. Since
we do not involve the CPU in any computation, we can only sort data sets that
fit into the combined device memory of the system’s GPUs. Since we design a
radix-partitioning-based algorithm, we avoid the need to merge data. The GPUs
partition the keys into buckets based on their radix values. We exchange the keys
of certain buckets between the GPUs and finally sort the buckets on each GPU. We
use an incremental most significant bit (MSB) radix partitioning strategy on the
GPUs to determine which keys belong to which GPU. Our algorithm requires one
all-to-all key swap between the GPUs via the P2P interconnects, independent of
the number of GPUs used. Our algorithm reduces the inter-GPU communication
compared to previous sort-merge algorithms, especially for many GPUs.

In summary, our proposed algorithm works as follows: First, the unsorted input
keys are copied to the GPUs in chunks of equal size. Each GPU partitions its
chunk’s keys locally, starting from the most significant bit, until every radix bucket
on each GPU is small enough for the following all-to-all P2P key swap between
the GPUs. The P2P key swap re-distributes the keys across all GPUs so that
afterwards, 1) each GPU contains keys of a distinct value range and 2) bringing
all keys into the global sort order across the g GPUs does not require any further
key exchange. In other words, after the P2P key swap, all keys of GPU i have
smaller or equal most significant bits compared to the keys’ of any subsequent
GPU j with j > i. Thus, the keys of GPU i are all less than or equal to the keys
of GPU i + 1. After the key swap, each GPU sorts its keys locally in order to
bring all keys across the g GPU chunks into the final, sorted output order. We
can reduce the final sorting workload because we partitioned the keys into distinct
buckets based on their MSB radix value before the P2P key swap and because we
respect this partitioning order during the P2P key swap. Instead of sorting the
entire chunk, each GPU sorts its radix buckets individually. Given that the radix
partitioning phase already examined the most significant r bits of each key, we
sort on the remaining k − r bits in the bucket sorting phase. Finally, we copy the
sorted GPU chunks back to CPU memory. Because we sort the distinct buckets
of each GPU individually, we can interleave the sorting computation with copying
the data back to the CPU. Once a bucket is fully sorted, we already transfer it
back, while the remaining buckets are still being sorted. Thereby, we effectively
hide the time duration of the sorting computation on the GPUs.

In the following subsections, we give a more detailed explanation of how the radix
partitioning phase ensures that one exchange of buckets (P2P key swap) between
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the GPUs is sufficient, even for highly skewed data distributions (Section 3.1). Fur-
thermore, we explain how our algorithm determines to distribute the keys across
the GPUs in such a way that the global sort order is respected, and nearly per-
fect load-balancing is achieved (Section 3.2). Finally, we explain how we use the
bucket information gained during the radix partitioning phase to accelerate the
final sorting computation after the P2P key swap (Section 3.3).

3.1 On-GPU MSB Radix Partitioning

After the n input keys are split up and copied to the g GPUs in equal sized chunks,
each GPU starts with its radix partitioning phase. During the entire partitioning
phase, each involved GPU partitions its keys locally (i.e. in its local device memory
only). Each GPU first computes the histogram over its ⌈n/g⌉ keys on the most
significant c bits. Calculating the prefix sum on the computed histogram gives us
the starting write offsets for each of the 2c buckets. Using the prefix sum, each
GPU partitions all keys of its chunk in its local device memory so that all keys of
bucket i precede all keys of bucket i+ 1. Given that we keep the histogram data,
we know how many keys belong to each bucket. The keys that belong to the same
bucket still remain in unsorted order as we have only taken the most significant c
bits into account.

For most data distributions, the probability is high that there is a radix bucket
for which every GPU finds dedicated keys, i.e. keys that belong to that bucket.
In fact, for uniformly distributed keys, every GPU contains keys that belong to
every one of the 2c possible buckets. The goal of the P2P key swap is to re-
distribute the keys across all g GPUs so that all keys that belong to the same
bucket are gathered and aligned in the device memory of one and the same GPU
(i.e. complete, but not spanning buckets). We also have to ensure that all keys
of GPU i are smaller than or equal to the ones on GPU i + 1. We satisfy both
constraints by distributing the keys across the GPUs in the order of their radix
digit values. Bucket [0] represents keys with c leading 0s, bucket [1] represents
the keys that have their most significant c bits’ digit value equal to 1, and the
bucket of number 2c contains the keys that have only 1s in their c most significant
bits. We distribute the buckets across the GPUs in ascending order with respect
to the radix value that they represent. Thus, we distribute the buckets of the
smallest radix values to GPU 0, while GPU g gets the buckets with the highest
radix values. Afterwards, sorting the buckets individually on each GPU brings the
keys across all GPUs into the final, globally sorted output order.

Determining how exactly to re-distribute the keys that are spread across the GPUs
according to their dedicated bucket, requires exchanging the histogram data be-
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tween the GPUs. Every GPU sends its own histogram to all the other involved
GPUs via the P2P interconnects. In that way, each GPU knows about the entire
key distribution and uses it to determine how to proceed. More precisely, using
the combined multi-GPU histogram, each GPU computes the logical distribution
of buckets across the g GPUs and checks whether the current level of partitioning
allows for each complete bucket to fit onto one GPU only. As soon as there is
one bucket that spans over more than one GPU, the level of partitioning is not
sufficient.

Spanning Buckets. Depending on the data distribution of the input keys, more
than one radix partitioning pass might be necessary. We can not know in advance
how many different buckets our partitioning pass on the most significant c bits will
generate. The input data might be highly skewed and contain only leading zeros
in the most significant c bits. In that case, we simply do not have enough buck-
ets to distribute across the g GPUs and a more refined partitioning of the large
buckets is necessary. Even if the key distribution is such that the partitioning pass
on the most significant c bits leaves us with more buckets than we have GPUs,
some buckets might contain significantly more keys than others. We can not pre-
determine how many keys the different buckets will contain. It is desirable for our
radix partitioning phase to split the keys into buckets that are small enough, be-
cause a fine-grained partitioning of keys enables avoiding load imbalances between
the GPUs. When each GPU contains approximately the same number of keys
after the P2P key swap, the computational workload is equally divided and we
maximize the performance. Therefore, we perform multiple partitioning passes on
subsequent sets of c bits, starting from the most significant one, until all buckets
are small enough, i.e. there are no spanning buckets left. Using our radix parti-
tioning strategy, we ensure that the P2P key swap distributes the keys between
the GPUs with nearly perfect load balancing while respecting the globally sorted
bucket order.

A spanning bucket is not necessarily the bucket that contains the most keys because
we specifically order the buckets based on their radix value. A bucket of bigger
size might be placed at the beginning of the GPU chunk and fit onto that GPU
while a subsequent bucket with a higher radix value and less keys is placed at the
end of the same GPU chunk that can not fit all of those keys anymore. In any
case, a spanning bucket prevents us from performing the re-distribution of buckets
(i.e. the P2P keys swap) because we could not fully sort the spanning bucket
without further communication between those GPUs that the bucket spans. Thus,
we perform another partitioning pass. Any subsequent radix partitioning round
only refines the partitioning of the spanning buckets. The buckets that already fit
onto one GPU stay untouched.
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In Figure 5, we show an example of our radix partitioning algorithm phase on
four GPUs. In the example, we sort 32-bit keys while considering c = 8 bits at
a time. In the first partitioning pass, each GPU scatters its keys based on their
radix value in the most significant eight bits [32..24). We show the result of the
local partitioning step in the top half of each partitioning pass, referred to as the
physical view of the GPU memory. For the sake of simplicity, the input does not
contain keys for every possible bucket. However, all GPUs find many keys that
belong to bucket 0. They exchange their histogram information which allows each
GPU to construct the logical distribution of complete buckets (i.e. the bottom
half of each partitioning pass shown in Figure 5). As a consequence of many keys
having eight leading zeros, the complete bucket [0] is a spanning bucket after the
first partitioning pass. Consequently, no P2P key swap is yet possible.

We continue with another partitioning pass on bits [24..16) on the spanning bucket
[0] only. We color the buckets that are already sufficiently partitioned in light gray
color in Figure 5, while the buckets that are subject to the current partitioning
pass are colored based on the bucket they belong to. In the second partitioning
pass, each GPU j, that contains keys belonging to the complete but spanning
bucket [0], refines its bucket [0](j) into multiple sub-buckets – at least one, at
most 2c. For example, bucket [0] on GPU 0 is refined into two smaller buckets.
It contains keys that have either another eight zeros in the most significant bits
[24..16), or 00000001 as their most significant bits [24..18]. After the histogram
exchange, the constructed logical distribution of complete buckets shows that the
spanning bucket was heavily reduced. However, bucket [0:2] (physically resident
on GPU 3) now remains a spanning bucket as it would span the GPUs 1 and 2 if we
were to perform the P2P key swap. Thus, a third partitioning pass on bits [16..8)
is necessary. Since the third partitioning pass results in a bucket distribution with
no spanning buckets, the radix partitioning phase is completed.

3.2 Multi-GPU P2P Bucket Exchange

At the bottom of Figure 5, we show an example of the final bucket distribution
that the radix partitioning phase determines. This distribution of complete buck-
ets aligns them in a globally sorted order across the g GPUs. After the radix
partitioning phase, the keys of each complete, non-spanning bucket are still scat-
tered across different GPUs as they reside in the device memory of their initial
GPU (seen at the top half of each partitioning pass in Figure 5).
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Figure 5: Radix Partitioning Example

Up until this point, the keys have only been partitioned into buckets locally on each
GPU. In the multi-GPU P2P key swap, we re-distribute the keys between all GPUs
according to the determined bucket distribution. Thus, we do not swap individual
keys, but rather entire buckets of a GPU. The P2P key swap is therefore really
an exchange of GPU-local buckets. Each bucket’s destination GPU can either be
the same as the source GPU or a remote GPU in which case the memory copy
is performed over the P2P interconnects. As seen in the example in Figure 5,
bucket [0:0](1) of GPU 1 needs to be transferred to GPU 0 next to the bucket
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[0:0](0) that is already on GPU 0. For each bucket, we need to know not only the
destination GPU but also the exact write offset to the destination GPU’s device
memory.

As explained in the previous section, we compute the logical distribution of buck-
ets after each partitioning pass to check if there are any spanning buckets left.
Consequently, the final radix partitioning pass already leaves us with all the infor-
mation necessary to perform the multi-GPU P2P key swap. Determining if there
are spanning buckets requires to compute the destination GPU and write offset
for each bucket to be transferred to in a potential bucket exchange.

3.2.1 Multi-GPU-Striped Histogram

The first step of calculating the logical distribution of buckets across the g GPUs
is to exchange the histograms between the GPUs via P2P transfers. We reserve
enough memory buffers for each GPU to store g separate histograms. After each
GPU receives the histograms of all other g−1 GPUs, it computes the multi-GPU-
striped histogram – a histogram data structure that combines the histograms of
all g GPUs in the following way: We reserve the memory space for an array of size
g · 2c. We do not add together the bucket counts of each GPU but rather align
the bucket counts from every histogram in a specific order. First, we order by the
radix value that the bucket represents (from 0 to 2c) and as a tie-breaker, we sort
by the GPU identifier i ∈ {0, ..., g}. Thus, the first bucket count stores how many
keys belong to bucket [0] and reside on GPU 0. The second bucket count stores
the number of keys belonging to bucket [0] that are in the device memory of GPU
1. The bucket count at index g stores the number of keys of GPU 0 that belong
to bucket [1], and so on.

Calculating the prefix sum on the multi-GPU-striped histograms returns the start-
ing write offsets for each bucket of each GPU. However, since the prefix sum con-
tinuously adds up the bucket counts, the write offsets are computed as if all GPUs
share the same device memory. Once we perform the actual P2P bucket exchange,
we adjust the memory offsets to the destination GPU’s chunk-local memory ad-
dress space for each bucket b by subtracting the number of keys that we distribute
onto all the preceding GPUs.

Using the prefix sum of the multi-GPU-striped histogram, we also determine the
mapping of each bucket to its destination GPU. The computation of this mapping
is the last step of each partitioning pass. In the case that each bucket maps to
exactly one GPU only, there are no spanning buckets and the radix partitioning
phase is completed.
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3.2 Multi-GPU P2P Bucket Exchange

3.2.2 Load-Balancing

To reduce the number of partitioning passes, we do not enforce perfect load-
balancing. Instead, we allow for certain GPUs to handle slightly more keys than
other GPUs. The first partitioning pass very rarely results in a bucket distribution
that is perfectly aligned with the chunk size. The sum of the bucket sizes that
belong to the same GPU would need to be exactly equal to the chunk size ⌈n/g⌉
for every GPU. Even for uniform data distributions, this is highly unlikely. For ex-
ample, the radix partitioning phase shown in Figure 5 could already be completed
after two rounds if we allowed for distributing the entire bucket [0:2]3 to GPU
2. Then, GPU 2 sorts slightly more keys than GPU 1, but we avoid computing
another histogram and scattering the keys for that one spanning bucket on GPU
3 while all the other GPUs idle.

We define a threshold ϵ as the number of keys that each GPU can use as additional
padding at the start and the end of its chunk buffer to avoid slightly overflowing
buckets to be treated as spanning buckets. Thus, whenever a bucket overflows
into a GPU by a number of keys σ ≤ ϵ, these otherwise overflowing σ keys are
assigned to the adjacent GPU that already holds more than σ keys of that same
bucket. If an overlapping bucket would span over two or three GPUs for a perfectly
load-balanced approach, our additional ϵ-padding can, in the best case, result in
avoiding this spanning bucket completely. In that case, the entire bucket fits
onto a single GPU and we avoid an entire partitioning pass, given that there are
no spanning buckets on other GPUs. If the spanning bucket spans over more
than three GPUs, our nearly-perfect load-balancing approach reduces the number
of GPUs that the bucket spans over by up to two. This is because each GPU
employs the ϵ-padding at the start (spanning bucket is left-reducable?) and the
end (spanning bucket is right-reducable?) of its chunk buffer.

3.2.3 Last-Pass Spanning Buckets

In cases of extremely skewed data distributions, it can happen that spanning buck-
ets occur even after the last partitioning pass on the least significant c bits. The
simplest example of such a case is an input data set whose n keys all consist of
one single value. Having considered all k bits after the radix partitioning phase,
there will still be a spanning bucket with n keys that spans over all g GPUs. The
important insight here is that any spanning bucket that remains after the last
partitioning pass is completed, can only consist of keys of the same single value.
Since all keys of one last-pass spanning bucket are of the same value, we can choose
arbitrary borders for where to split the spanning bucket, and consequently, how
to distribute its parts onto the different GPUs. We simply distribute the keys
of each such last-pass spanning bucket across the spanning GPUs in such a way
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3.2 Multi-GPU P2P Bucket Exchange

that we achieve perfect load balancing on the involved GPUs. Thus, this so-called
last-pass spanning bucket poses an exception to the rule that no spanning buckets
are allowed before the P2P key swap.

3.2.4 Upper Bucket Bound

Since our algorithm employs MSB radix partitioning, the number of buckets that
we need to manage grows continuously with each partitioning pass. It is therefore
necessary to analyze the upper bound for the number of buckets that our radix
partitioning phase generates. Since we consider c bits at a time, each partitioning
of a spanning bucket divides that spanning bucket into 2c sub-buckets. Thus, the
upper bound for the number of possible spanning buckets determines the maximum
possible number of buckets that we need to manage, and sort in the final bucket
sorting phase. In this context, we view the initial input data of n keys that is
divided onto the g GPUs as the initial spanning bucket (spanning over g GPUs).

Given that a GPU can only be involved in at most two spanning buckets (one on
each side of its GPU chunk buffer), the maximum possible number of spanning
buckets that result from a partitioning pass is g − 1. In that case, the spanning
buckets are spanning over two GPUs each: One spans from GPU 0 to GPU 1, the
next spans over GPUs 1 and 2, and so on.

We perform a maximum of p partitioning passes in our radix partitioning phase,
with p = ⌈k/c⌉ (see Table 1), while in the first partitioning pass, we partition the
initial input data as the only spanning bucket of that first pass. Thus, the upper
bound for spanning buckets is smax = (g − 1) · (p − 1) + 1. As a result, the total
number of buckets can not exceed 2c · smax. Given a reasonable number of bits to
consider at a time, e.g. c = 8, this is equal to 256 · smax.

For each spanning bucket, we perform the following operations on each GPU that
contains keys of that spanning bucket: We compute and store the histogram, we
perform the local partitioning of keys into their respective buckets (i.e. key scatter-
ing), we exchange the histograms between the involved GPUs, and we determine
the logical distribution of buckets. The latter step includes computing the multi-
GPU-striped histogram and the bucket-to-destination-GPU mapping.

The number of spanning buckets also influences the memory allocations necessary.
For each spanning bucket, we store many different data structures on each GPU;
including the g individual histograms of every GPU and the multi-GPU-striped
histogram. We explain how exactly the upper bound on the number of spanning
buckets translates into the memory overhead of our algorithm implementation in
Section 4.5.
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3.3 On-GPU Bucket Sorting

After the P2P key swap, each GPU contains complete buckets with keys of dis-
tinct value ranges. While the keys of different buckets are correctly sorted given
that the buckets are ordered by their MSB radix values, the keys within each indi-
vidual bucket are still unsorted. Depending on the number of partitioning passes
performed before the key swap, we have already examined a certain number of
most significant bits of each key. We use this information to accelerate the sorting
computation. We use a single-GPU radix sorting algorithm to sort each bucket
locally on its respective GPU. For each bucket to sort, we specify the bit range
that the radix sorting algorithm sorts on. For example, when sorting 32-bit keys
with c = 8, and a radix partitioning phase that required only one partitioning
pass, we use a single-GPU radix sort algorithm to sort the final buckets on the
remaining least significant 24 bits: [24..0].

Since many spanning buckets can occur on different GPUs in different partitioning
passes, the final bucket partitioning level is heterogeneous in the following sense:
Some buckets are sufficiently partitioned after the first partitioning pass already
while others are much more refined through multiple partitioning passes. This
becomes clear in the example in Figure 5, where the complete buckets that will
be distributed to GPU 3 stay untouched after the first partitioning pass while the
spanning bucket [0] is subject to refining partitioning rounds. The heterogeneous
and also recursive nature of the partitioning is also indicated by the bucket notation
that we employ: [b0:b1:(...):bp−1]. It represents a bucket’s partitioning history
by enumerating the identifiers of parent-buckets that the bucket was a part of,
colon-separated from the first to the last partitioning pass.

As a consequence, for each complete bucket that we sort, we have taken a different
number of most significant bits into account already during the radix partitioning
phase. Since, we store the partitioning pass pb that generated each bucket, we
determine the bit range to sort on as follows: [endbit..0], with endbit = k− ((pb +
1) · c). If a bucket went through the maximum number of partitioning passes p in
the radix partitioning phase, we do not need to sort the bucket at all because all of
its bits have been taken into account already. In contrast to sorting on the entire
bit range that includes all k bits per key, specifying a reduced bit range improves
the sorting performance of the local radix sort algorithm significantly. We evaluate
the impact of the reduced bit range on the sorting duration in Section 4.4.

Many buckets result in many radix sort kernel launches. The overhead of these
kernel launches, however insignificant for a single launch, can add up to have a
negative performance impact for too large numbers of buckets, especially when the
buckets contain very small numbers of keys. In order to reduce the total number of
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buckets and mitigate the associated overhead, we fuse neighbouring buckets whose
number of keys is below a certain threshold SBT (small bucket threshold). We can
only fuse neighbouring buckets and still preserve the buckets’ global sort order.

Whenever we fuse two buckets, the bit range that we sort the combined bucket on
needs to be extended. To avoid extending the bit range too much, and thereby
losing the benefit of the reduced sorting duration, we fuse buckets of the same
partitioning pass only. As a result, the combined buckets share their initial bit
range [endbit..0] which we extend by the necessary minimum, depending on the bits
in which the two buckets’ radix values differ. For example, when we fuse bucket
[33], representing keys that start with 00100001, and bucket [36], representing
keys with 00100100 as their most significant bit, we extend the bit range by three
bits. This is the case because the third least significant bit of the two bucket’s
radix values is the most significant bit in which they differ.

In general, the bit range is extended by the most significant bit position in which
the two bucket values differ, starting from the least significant bit to minimize the
bit range extension. We compute the bit range extension by performing an XOR
operation on the two buckets’ radix values (from 0 to 2c) and counting the left
shift operations that we perform on the result until it becomes equal to zero.

After the buckets have been fused and each final bucket’s bit range is determined,
each GPU sorts its buckets individually. As soon as a bucket is sorted, we transfer it
back to the CPU, effectively overlapping the sorting computation with the device-
to-host copy operation.
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4 Implementation

In this section, we give detailed information about how we implement our radix-
partitioning-based multi-GPU sorting algorithm (RMG sort). It is designed to
scale inherently well to increasing numbers of GPUs. Still, each kernel function
needs to be fine-tuned and its performance highly optimized to achieve a com-
petitive end-to-end sort duration. In this context, we explain the performance
optimizations that we employ in order to leverage the GPU’s hardware capabili-
ties. Across this section, we reference important variables and constants that we
use in our implementation. We give an overview of our relevant variables’ notations
and values in Table 2.

Table 2: RMG sort variables and constants

Symbol Description Value

c
Number of bits considered
at a time

8

NUMB
Number of buckets per
spanning bucket

2c = 256

KPT Keys per thread 12 for 32-bit keys,
and 6 for 64-bit keys

NUMTPB
Number of threads per
thread block

1024

NUMTB Number of thread blocks ⌈⌈n/g⌉/(KPT · NUMTPB)⌉

NUMTPW Number of threads per warp 32

NUMBHA

Number of consecutive, block-
local histograms aggregated per
thread block

256

ϵ GPU chunk buffer padding 0.5% · ⌈n/g⌉

SBT Small bucket threshold 1% · ⌈n/g⌉

MAXBRS
Maximum number of buckets for
the reduced-sorting optimization

128

MINSCO
Minimum number of buckets for
the sort-copy-overlap

4
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4.1 Histogram Computation

After the input data has been copied to the GPUs in chunks, the first step of the
radix partitioning phase is for each GPU to compute the histogram on its keys
on the most significant c bits. To compute the histogram, we need to read all
⌈n/g⌉ keys of the GPU’s chunk. For each key, we increment one of the 2c bucket
counters in our histogram array depending on the radix value of the key’s most
significant c bits. When parallelizing the computation with thousands of thread
blocks, we assign each thread block an equal number of keys to process: KPT ·
NUMTPB (see Table 2). The involved arithmetic operations to find out the correct
bucket of a key are cheap to perform (logical AND operations and bit shifting).
The main performance-related challenge of the histogram computation is to find
a way to efficiently orchestrate the many atomic operations that are performed
concurrently by all threads on the small histogram array of size 2c.

When each thread block performs globally atomic increments on a single global
histogram that is stored in device memory and accessed by all threads concur-
rently, the atomic load is too high. At any time during the execution, nearly all
threads would be stalled, waiting for their atomic operation to finish. To achieve
peak performance instead, it is crucial to utilize each thread block’s shared mem-
ory. We split the histogram computation into two kernel functions. In the first
kernel (ComputeHistogram), each thread block first computes a thread-block-local
histogram that is stored in its shared memory. Atomic operations on shared mem-
ory are significantly faster than on global device memory. After writing each
block-local histogram back to global memory, we need to aggregate these partial
histograms into the final GPU-global histogram. For this, we implement a second
kernel function.

The second kernel (AggregateHistogram) aggregates the block-local histograms
and therefore needs to perform global atomic operations. To reduce the number
of performed global atomics, we divide the NUMTB block-local histograms into
subsequent groups of size NUMBHA (see Table 2). We launch just enough thread
blocks so that each block pre-aggregates one such group of NUMBHA block-local
histograms before performing the global atomic operation.

To simplify the parallelization within each thread block, we utilize only the first
2c out of the NUMTPB threads. This allows us to assign each thread of a thread
block to aggregate one bucket counter only – the one that corresponds to its thread
index. Each thread iterates over and sums up the corresponding bucket counters of
its NUMBHA block-local histograms using a single counter variable in the register.
Then, the thread performs one atomic add operation to the respective bucket
counter in the GPU-global histogram in global memory – incrementing the global
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counter by the sum of its block-local counters. In that way, we reduce the number
of global atomic operations by a factor of NUMBHA.

Our employed memory read pattern to the block-local histograms, that are stored
in the relatively slow global memory, is perfectly warp-aligned because the accesses
are orchestrated using the thread index as the read offset. Consequently, the
threads of a warp read from consecutive memory addresses, and the number of
necessary memory transactions is minimal.

Handling Data Skew. By splitting the GPU-global histogram computation into
two kernel functions (compute local histograms and aggregate), we significantly
reduce the global atomic operations, and efficiently utilize shared memory. For
very skewed distributions, the shared memory atomic operations on the block-
local histogram are under increased pressure. In the most extreme case, where
all keys that a thread block processes are the same in the currently considered
c bits, all NUMTPB threads increase the same bucket counter of the block-local
histogram. This results in high contention for the atomic add operations between
the threads of that thread block.

To mitigate the performance degradation for skewed data distributions, we employ
the following lightweight optimization: Each thread stores its first key’s bucket
value and holds back the atomic increment for that first bucket. Instead, we
initialize an additional counter variable (start bucket count) in the register to
be equal to one. For every following key, we first check if its bucket is equal
to the first key’s bucket and if so, we increment the start bucket count by one
instead of performing an atomic increment. After the thread finished iterating
over its KPT keys, we perform the postponed shared atomic add operation: We
atomically increment the first key’s bucket counter by start bucket count. This
optimization heavily mitigates the performance drop that skewed distributions
would otherwise cause. Even if the data is moderately skewed, the probability of
reducing the number of performed atomic operations is still high enough. After
this optimization, we measure the execution time of the histogram computation on
skewed data to be equal to that on uniformly distributed keys. The performance
optimization is lightweight in the sense that it does not introduce a measurable
overhead for those cases where the optimization does not improve the performance
(i.e. for uniform distributions where start bucket count does not exceed one).

4.2 Key Scattering

After the histogram computation, the key scattering is the second step of each
partitioning pass. Each GPU locally partitions its keys in its device memory
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based on their radix values in the most significant c bits so that all keys of bucket
i precede all keys of bucket i+ 1, for all i ≥ 0 and i ≤ 2c.

In contrast to the histogram computation, we not only need to read the n keys of
the GPU chunk, but also write them back to global memory. To avoid synchro-
nization between reading from and writing to the same memory buffer via many
threads, we perform the key scattering step out-of-place. We allocate two buffers
of size n + 2 · ϵ and use these two buffers as alternating input/output buffers,
keeping track of which buffer is currently considered as the input (i.e. the current
key buffer) and which one is the output buffer (i.e. the buffer where the current
partitioning pass writes the result into).

Similar to the histogram computation, we launch the ScatterKeys kernel with
many thread blocks and assign a small distinct subset of the input keys KPT to
each thread. The threads process their assigned keys one after another. For each
key, we determine the bucket that it belongs to based on the currently considered
c (most significant) bits. Depending on the bucket it belongs to, each key needs to
be written to different positions in the output buffer in global memory. For data
distributions with little skew, the keys that a thread processes are very likely to
belong to different buckets. Therefore, writing keys back to global memory one
by one results in random write patterns, and thus, poor performance. To avoid
random write patterns, we first pre-scatter all the keys of a thread block into their
respective buckets in shared memory. This allows each thread block to write its
pre-scattered buckets back to global memory one after another. As a result, the
global memory write pattern is sequential for the keys of the same bucket.

Both, pre-scattering the keys in shared memory, and writing them back to global
memory, require knowledge of the exact memory offsets for where to write the keys
of each bucket. We determine both using our computed histogram data structures.
We launch the ComputeHistogram kernel with the same number of threads and
thread blocks as the ScatterKeys kernel. In that way, we can re-use the block-
local histograms from our histogram computation step, not only the GPU-global
histogram.

4.2.1 Global and Shared Memory Write Offsets

Before launching the ScatterKeys kernel, we compute the prefix sum on the GPU-
global histogram. For this, we use the thrust::exclusive scan primitive provided
by NVIDIA’s parallel computing library Thrust [35, 49]. The prefix sum on the
GPU-global histogram gives us the starting position for each full bucket in the
global memory output buffer, which we refer to as the starting global write offsets.
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They determine the global memory output buffer index of each bucket’s first key
for the 2c buckets of the entire GPU chunk of ⌈n/g⌉ keys.

Since we divide the key scattering workload among NUMTB thread blocks, each
thread block writes only a subset of the keys for each of the GPU-global 2c buckets.
All thread blocks concurrently scatter their share of keys for each bucket. We
orchestrate the concurrent write access of NUMTB thread blocks as follows. At
the beginning of the ScatterKeys kernel, each thread block initializes its exact
global write offsets. For each bucket b, the thread block atomically increments the
starting global write offset of bucket b by the number of keys it will write to. The
block-local histogram gives us exactly that information as it contains the number
of keys per bucket for a given thread block. This first initialization step ensures
that the global memory write-back phase of the kernel is performed without further
synchronization.

Before the global memory write-back, we pre-scatter the keys in a shared memory
buffer of size KPT · NUMTPB. As part of the kernel initialization, we also compute
each bucket’s starting position in the shared memory buffer, i.e. the starting local
write offsets. For this, each thread block computes the prefix sum on its block-
local histogram. We implement the prefix sum computation on the block-local
histogram sequentially in a tight for-loop and measure an insignificant execution
time. After the prefix sum computation, we continue with the pre-scattering of
keys in shared memory.

4.2.2 Shared Memory Pre-Scattering

Each thread iterates over its assigned KPT keys. For each key, we check the
currently considered c (most significant) bits to determine the bucket b that the key
belongs to. We determine the exact shared memory write offset for the current key
value to be written to by atomically reading the current starting local write offset
of b, and incrementing it by one. We write the key’s value to the shared memory
offset that we read before the increment. Any subsequent writes by another or the
same thread will be performed on the incremented offset, avoiding write conflicts.
With this approach, we deliberately perform significantly more atomic operations
on shared memory than on global memory because they are substantially faster in
shared memory.

The limited shared memory size (128 KB on the NVIDIA Tesla V100, and 196 KB
on the NVIDIA A100 GPU) sets an upper bound for the number of keys that
each thread block can pre-scatter. We configure our algorithm implementation to
process twelve 32-bit keys per thread, and each tread block to run 1024 threads.
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Figure 6: A thread warp writes back pre-scattered keys
from shared to global memory.

For 64-bit keys, each thread processes six keys. This results in a shared memory
usage of 12 keys · 4 Bytes ·1024 threads = 49.152 KB. The remaining memory is
used as the L1 cache. We find that this configuration achieves the best performance
on our evaluated GPUs.

4.2.3 Global Memory Write-Back

The pre-scattering step in shared memory substantially accelerates the global
memory write-back because it allows us to write back keys of the same bucket in
a sequential pattern rather than scattering individual keys to random addresses.
We optimize the global memory throughput even further by implementing the
write-back in a warp-aligned way.

We orchestrate the global write-back so that each thread warp is responsible for
writing back a small, constant number of consecutive buckets, one after the other.
Figure 6 illustrates how one thread warp of a thread block writes back the pre-
scattered keys of buckets [0] and [1] as an example. In the example, other thread
warps would concurrently write back the remaining buckets. For each bucket, the
associated thread warp writes its keys in such a way that the number of necessary
memory transactions is minimal (i.e. cache-optimal). To achieve this, each thread
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warp’s thread writes one of NUMTPW = 32 consecutive keys of the current bucket,
iterating over the bucket’s keys in steps of 32. As explained in Section 2.1, 32 is
the number of threads that run concurrently as part of one thread warp. Since
all threads of the same warp execute the same instruction concurrently, and their
memory accesses are grouped, all 32 threads of a warp write a consecutive block
of 32 keys at the same time. This results in warp-aligned memory accesses, and
peak GPU memory bandwidth utilization.

However, as indicated in Figure 6, the bucket size can negatively influence the
achieved memory throughput. When a thread block’s local bucket is not empty
but contains less than 32 keys, some threads of the warp idle. If many buckets
contain very small numbers of keys, the memory throughput drops considerably.
Therefore, it is desirable that all non-empty buckets should contain enough keys
to fill at least one full memory transaction of a thread warp.

Because the shared memory size is limited, we set the number of keys per thread
block to be constant. Thus, the number of consecutive bits c that we consider
per partitioning pass influences on how many keys can fall into each bucket. For
example, if we chose to partition on c = 16 bits in each partitioning pass, the
number of possible buckets 216 = 65, 536 would be higher than the number of keys
that a thread block processes (KPT · NUMTPB = 12,288). This would drastically
reduce the achieved memory throughput of our global memory write-back because
most of the buckets would contain very few keys – if any – for uniform distributions.
If we set c to be too small, we increase the number of necessary partitioning passes,
ultimately decreasing the total sort duration as well. We find that configuring c = 8
is an ideal trade-off between minimizing the number of partitioning passes and
maximizing the achieved memory throughput of the ScatterKeys kernel. Thus,
we confirm the findings of Stehle et al. who configure their single-GPU MSB radix
sort to take 8 bits into account at a time as well [63].

We measure our global write-back to achieve a global memory throughput between
70% and 95% of the GPU’s peak memory bandwidth on the NVIDIA A100 GPU.
The total execution time of the ScatterKeys kernel depends not only on the global
write-back but also on the shared memory atomic operations performed during the
pre-scattering of keys. We evaluate the performance of our key scattering kernel,
our histogram computation, and other steps of our algorithm in detail in Section 5.

4.2.4 Scatter and Swap

In the first partitioning pass, we scatter all keys of the GPU chunk based on the
most significant c bits. While the partitioning phase proceeds, we only refine the
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partitioning of spanning buckets. That is, we perform partitioning passes on those
parts of a GPU chunk that belong to a spanning bucket. In the first partitioning
pass, we view the entire input as the initial spanning bucket that is spanning all g
GPUs, and the entire chunk of each GPU.

After the first partitioning pass, it depends on the input data distribution how
many keys we scatter in subsequent partitioning passes. If a subsequent parti-
tioning pass is performed on a spanning bucket that is not taking up the entire
chunks of the GPUs that it spans, we only scatter parts of the chunks’ keys. Since
we perform the key scattering out-of-place, we write the scattered keys into the
output buffer of our alternating double buffer. Thus, we need to copy all the re-
maining keys of the current input buffer to the output buffer as well. Thereby, the
partitioning pass aligns its output keys in one complete buffer. We implement the
key swap to be interleaved to the key scattering, i.e. we launch the ScatterKeys

kernel to run concurrently to the issued device-local CUDA memory copy opera-
tions in separate CUDA streams. After both streams finish executing, we flip the
alternating double buffer’s input and output pointers, as the current output will
be treated as the input for the next partitioning pass or, if sufficiently prepared,
the P2P key swap.

We measure that the device-local CUDA copy operations execute orders of mag-
nitude faster than the ScatterKeys kernel. Thus, the scatter and swap execution
time is bound by the ScatterKeys kernel execution.

For skewed distributions, partitioning pass can generate only one bucket. For
example, if all n 32-bit input keys have leading zeros in their most significant eight
bits, the first partitioning pass will find that all keys on each GPU belong to bucket
[0]. It is only in the second partitioning pass that the histogram computation
will identify a difference in the keys’ radix values. If, in any case, the histogram
computation on a GPU determines that all keys of its part of a current spanning
bucket belong to the same bucket, we skip the key scattering step completely. Since
a GPU can be a part of two spanning buckets, we perform up to two histogram
computations per GPU per partitioning pass. If during a partitioning pass, a GPU
skipped all of its ScatterKeys kernel launches, we do not swap any keys between
the input and the output buffer. Consequently, we do not flip the alternating
double buffer’s input and output pointers, as the input buffer still contains the
unchanged keys.
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4.3 P2P Key Swap

At the end of a partitioning pass, each GPU locally computes the distribution
of buckets across the g GPUs. For this, the GPUs exchange their GPU-global
histograms via P2P transfers. Once a GPU computed its histogram, we launch
the CUDA copy operations that transfer its histogram to every other GPU via
the P2P interconnects. During the histogram exchange, we concurrently run the
ScatterKeys kernel. By interleaving these two operations, we hide the time du-
ration of the histogram exchange. Since the histogram of one GPU is only 256 ·
8 Bytes ≈ 2 KB in size, we measure the histogram exchange time to be negligible.

Once a GPU receives the histograms of all other GPUs, it constructs the multi-
GPU-striped histogram and computes the prefix sum on it. Finally, each GPU
determines the bucket distribution across the GPUs by computing the mapping
of buckets to their destination GPUs. For both, the multi-GPU-striped histogram
and the bucket mapping, we implement one kernel function respectively. For the
prefix sum computation, we again use the thrust::exclusive scan primitive. We
interleave the execution of the three kernels with the ScatterKeys kernel. Similar
to the histogram exchange, we measure insignificant execution times for all three
kernels, with runtimes of up to 3µs when sorting a total of 2 billion keys on two
GPUs.

As explained in Section 3.2.2, we employ nearly-perfect load balancing with re-
gards to distributing the complete buckets across the g GPUs. Experimentally,
we determine that setting our ϵ padding value to 0.5% of the initial GPU chunk
size achieves the best performance. With this configuration, uniformly distributed
keys need only one partitioning pass on their most significant c bits.

When the radix partitioning phase is completed, we perform the P2P key swap. For
each complete bucket, we asynchronously launch the CUDA memory copy opera-
tion to the bucket’s destination GPU. We perform the P2P key swap out-of-place,
utilizing our alternating double buffer from the key scattering step. This allows
us to utilize the P2P interconnects’ bidirectional bandwidth without synchroniza-
tion. We interleave the P2P transfers of all g GPUs, as each GPU transfers its
buckets simultaneously. Thus, our P2P key swap benefits from modern P2P inter-
connects, such as NVLink-based NVSwitch interconnects because they allow for
high-speed non-blocking all-to-all communication between all system-wide GPUs.
For those buckets whose destination GPU is the same as their initial GPU, we
perform device-local copies from the input to the output of our alternating double
buffer.
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Figure 7: P2P Key Swap Example

In the example of a P2P key swap depicted in Figure 7, each GPU only contains a
few buckets to swap. When sorting reasonably large data sets that are uniformly
distributed, each GPU transfers 256 buckets. Then, a GPU issues multiple CUDA
memory copy operations to the same destination GPU (one for each bucket that
is transferred to that same GPU). We test the performance impact of a bucket
batching approach where we, for each GPU, first locally align its buckets based
on the destination GPU that they will be transferred to (i.e. the so-called bucket
batch). For this, we copy all buckets’ keys within each GPU’s device memory
locally from the input to the output buffer in such a way that we can afterwards
reduce the number of issued CUDA copy operations: A GPU copies the entire
batch of buckets for each GPU that it needs to transfer at least one bucket to.

We find that this strategy does not improve the performance. In fact, the overhead
of an asynchronous CUDA copy operation, whether performed as a P2P transfer
or a local device memory copy, is negligible even for high numbers of buckets.
The CUDA driver appends each CUDA call into the specified CUDA stream’s
queue and is able to perform the issued copy operations one after the other at
peak bandwidth, without a significant delay or latency. Therefore, we discard the
bucket batching approach, and simply launch a CUDA copy for each bucket. This
avoids the need to align the buckets locally according to their destination GPU
prior to the P2P transfers, and thus, simplifies the code without any performance
sacrifice.

Last-pass spanning buckets are the exception with regards to our nearly-perfect
load balancing approach. For those spanning buckets, our kernel function that
determines the bucket-to-destination-GPU mapping returns more than one des-
tination GPU. For each spanning bucket that resulted from the last partitioning
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pass, we divide it up into fractions so that we achieve perfect load balancing across
its destination GPUs. We can choose arbitrary borders for splitting up a last-pass
spanning bucket because such a bucket is filled with the same key value. We split
up the last-pass spanning buckets into fractions right before the P2P key swap,
and then transfer them just as we transfer the ordinary, complete buckets.

4.4 Bucket Sorting and Copy-Back

Once the P2P key swap is completed, each GPU sorts its buckets and copies them
back to the CPU memory. For sorting each bucket, we employ the fastest state-
of-the-art single-GPU sorting algorithm. Maltenberger et al. recently publish an
evaluation study of merge-based multi-GPU sorting algorithms in which they also
evaluate the performance of state-of-the-art single-GPU sorting algorithms [34].
They find that the LSB radix sort algorithm provided in NVIDIA’s CUB library
achieves the fastest performance [41], sorting one billion 32-bit integer keys in
36ms on the NVIDIA A100 GPU. Thus, we implement our bucket sorting step
using cub::DeviceRadixSort::SortKeys as our sorting primitive. It uses the same
underlying radix sort algorithm that is used within thrust::sort from NVIDIA’s
parallel algorithms library Thrust [44].

As explained in Section 3.3, we accelerate the sorting computation for each individ-
ual bucket by reducing the bit range that we sort the bucket’s keys on, given that
we already looked at a certain number of most significant bits in the radix parti-
tioning phase. The cub::DeviceRadixSort::SortKeys function conveniently allows
for passing a custom bit range as a parameter. The magnitude of the performance
improvement of CUB’s radix sort primitive for reduced bit ranges depends on how
many bits still need to be considered. We perform a micro-benchmark of CUB’s
radix sort primitive to evaluate the performance impact of the reduced bit range
and depict our results in Figure 8. We observe that specifying a reduced bit range,
i.e. sorting on fewer bits per key, significantly improves the sorting performance.

Since there is a performance overhead associated with launching a kernel function
(in this case the CUB’s radix sort primitive), we only want to sort each bucket indi-
vidually, when the total number of buckets on a GPU is below a certain threshold
MAXBRS (see Table 2). Otherwise, when there are more than MAXBRS buckets,
the kernel launch overhead adds up to a significant amount, and it becomes faster
to simply call CUB’s radix sort primitive on the entire GPU chunk, disregard-
ing the information gained during the radix partitioning phase. To avoid losing
the buckets’ partitioning information, we fuse neighbouring buckets of the same
partitioning pass that are too small, i.e. have less than SBT keys (see Table 2).
We find that for an SBT equal to 1% of the initial GPU chunk size, we rarely
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Figure 8: Sorting performance of cub::DeviceRadixSort for
reduced bit ranges on the NVIDIA Tesla V100 GPU.

(1 billion 32-bit unsigned integer keys)

end up with too many buckets. Consequently, we benefit from the reduced-sorting
optimization in most cases.

The second optimization that we implement, given that we sort each GPU’s buck-
ets individually, is the overlap of the sorting computation and the device to host
copy operation (as mentioned in Section 3.3). Starting from the first bucket of
each GPU chunk, we sort up to two subsequent buckets concurrently. As soon as
a bucket is sorted, we asynchronously launch the CUDA memory copy to transfer
the latest sorted range of keys back to main memory.

Some buckets of the final sorting phase can be the result of the last partitioning
pass. For these buckets, we already looked at all of their keys’ k bits during the
partitioning phase, and thus do not need to sort them anymore. We still, however,
need to copy these buckets back to main memory. To account for this, we keep
track of the memory address up to which we have copied the sorted keys back to
the CPU. For each newly sorted bucket, we copy back all of the yet unreturned
keys up to the latest sorted bucket’s last key.

For current interconnects, the sort-copy-overlap optimization hides the time du-
ration of the sorting computation because the device to host copy takes longer.
This is the case, even when the GPUs are connected to main memory via NVLink
2.0 interconnects. Given that there are always sorted buckets ready to transfer in
each loop iteration, the device to host copy operation can be viewed as a transfer
of a total of x Bytes in chunks of size x/t Bytes. We find that there is an optimum
t for which the achieved copy throughput of the chunked transfer is equal to the
direct transfer of all x Bytes in one CUDA copy call. In our case, the factor t is
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determined by the number of buckets and their size. We reduce the total number
of buckets by fusing small, neighbouring buckets. We configure the small bucket
threshold (SBT) to ensure an optimal number of buckets for data distributions
that generate many buckets (e.g. uniform distributions). We find that a value of
1% of the initial GPU chunk size works well.

On the other hand, if the number of buckets is too small, overlapping the sorting
computation and the device to host copy does not improve the performance, as
each operation takes too long to achieve efficient overlap. Since we cannot split
buckets without introducing the necessity of merging them later on, we turn off the
sort-copy-overlap optimization if a GPU contains less than or equal to MINSCO

buckets (see Table 2). We measure the device to host copy throughput to reach
optimal throughput rates for most data distributions. We evaluate this and other
performance characteristics and implications of RMG sort in-depth in Section 5.4.

The cub::DeviceRadixSort::SortKeys primitive works out-of-place and requires
auxiliary memory in O(n), plus a small additional memory overhead that depends
on the number of streaming multiprocessors on the device. We re-use our alter-
nating double buffer to avoid dynamic memory allocations during the algorithm
execution. For each bucket to sort, we use a distinct block of memory from our
alternating double buffer’s output buffer as the auxiliary memory.

4.5 GPU Memory Implications

We avoid dynamic CUDA memory allocations, both on the device and the host,
during our algorithm execution. They are comparatively slow and would increase
the total end-to-end sort duration. Furthermore, dynamic CUDA memory allo-
cations implicitly synchronize CUDA operations from all streams that could oth-
erwise run concurrently to each other. Thus, to achieve peak performance, we
pre-allocate the necessary device memory, as well as pinned host memory, assum-
ing dedicated accelerators whose entire GPU memory is reserved for the database
system to run.

In this section, we lay out the memory overhead that our radix-partitioning-based
multi-GPU sorting algorithm implementation entails. First, we allocate the mem-
ory for the two buffers of our alternating double buffer. Any GPU-accelerated
sorting algorithm that relies on CUB’s out-of-place radix sort primitive has a
space complexity lower bound of O(2n).

For our nearly-perfect load balancing approach, each of the two buffers needs to
store n + 2ϵ keys. Furthermore, we add 128 MB of memory to each buffer to ac-
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count for the additional memory overhead that cub::DeviceRadixSort::SortKeys
needs. The 128 MB of additional constant memory space is enough to sort any
data set size that fits onto modern GPUs. When sorting two billion 32-bit integer
keys per GPU, the double buffer allocates 2 · 4 Bytes per key · 2 · 109 = 16 GB of
memory just for sorting exactly n keys. Then, the 2ϵ padding overhead makes up
only 20 MB per buffer (i.e. 40 MB in total). Together with the constant sorting
overhead of 128 MB per buffer, this constitutes less than 1.85% of the 16 GB that
are required for sorting the input keys out-of-place.

Additionally, we allocate the necessary memory for the histogram and bucket data
structures that we manage during our radix partitioning phase and beyond. In
Section 3.2.4, we already defined the upper bound for the number of buckets
that our algorithm needs to handle. The upper bound for spanning buckets is
smax = (g− 1) · (p− 1)+ 1. Since we cannot know in advance how many spanning
buckets a given input key distribution will generate, and which GPUs the spanning
buckets will span, we allocate enough data structures for smax spanning buckets
on each GPU. For each spanning bucket, each GPU stores the data structures that
are shown in Table 3.

Table 3: Data structures per spanning bucket per GPU

Data structure Data type Array size Memory
size

GPU-global histogram 64-bit unsigned
integer

2c 2048 B

Prefix sum on the GPU-global
histogram

64-bit unsigned
integer

2c 2048 B

Global key scatter write offsets 64-bit unsigned
integer

2c 2048 B

Thread block-local histograms 32-bit unsigned
integer

NUMTB · 2c NUMTB ·
1024 B

g GPU-global histograms
(histogram exchange)

64-bit unsigned
integer

g · 2c g · 2048 B

Multi-GPU-striped histogram 64-bit unsigned
integer

g · 2c g · 2048 B

Bucket-to-destination-GPU map 32-bit integer g · 2c g · 1024 B
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When sorting two billion 32-bit integer keys on each GPU with g = 8 GPUs
for a total input size of 16 billion keys, the number of thread blocks that we
launch for the histogram computation and the key scattering kernels is NUMTB =
162.761. Thus, the most significant data structure in terms of the memory overhead
is the thread block-local histograms. For 32-bit keys, the maximum number of
partitioning passes is p = 4. Thus, the upper bound for the number of spanning
buckets is smax = 22. The total memory overhead that results from allocating
all of our histogram and bucket data structures listed in Table 3 for 22 potential
spanning buckets is 22·166, 7 MB = 3,668 GB – 22% of the 16 GB that are required
for sorting the two billion input keys out-of-place.

The thread block-local histograms are not used after the associated ScatterKeys

kernel finishes execution. Thus, all block-local histograms only need to be stored
during their respective partitioning pass. Their memory buffers can therefore be re-
used, which significantly reduces the number of block-local histogram buffers that
we need to allocate on each GPU from smax down to g − 1. Given the example
from above, where we sort a total of 16 billion keys with g = 8 GPUs, the total
memory overhead of our histogram and bucket data structures would be reduced
to 7% of the 16 GB allocated by the double buffer. We propose to implement this
memory overhead reduction as part of future work.
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In this section, we evaluate the performance of our radix-partitioning-based multi-
GPU sorting algorthm (RMG sort). In Section 5.2, we compare its sorting
performance with state-of-the-art parallel CPU-only sorting algorithms. In Sec-
tion 5.3, we compare our radix-partitioning-based algorithm with two state-of-
the-art merge-based multi-GPU sorting algorithms from the literature. Finally,
we analyze the performance of RMG sort for different data distributions, includ-
ing skewed data, in-depth in Section 5.4.

5.1 Experimental Setup

In this section, we explain our experimental setup. This includes the hardware
systems that we evaluate our multi-GPU sorting algorithm on, our employed ex-
perimental methodology, as well as defining our sorting algorithm baselines.

5.1.1 Hardware Systems

For our experimental evaluation, we use two modern multi-GPU accelerator plat-
forms that are equipped with state-of-the-art interconnect technology. We provide
the basic hardware information for both systems in Table 4.

The first hardware system that we evaluate on is the IBM Power System AC922.
It is a two-socket NUMA system that attaches two NVIDIA Tesla V100 GPUs to
each NUMA node [37]. The interconnect topology of the IBM AC922 is shown
in Figure 9. We report the bandwidth rates of the different interconnects per
direction. Since all involved interconnects are bidirectional, their aggregated bidi-
rectional bandwidth is twice as high. On the IBM AC922, data transfers between
one NUMA node and its two local GPUs are powered by the high-speed NVLink
2.0 interconnect for a theoretical bandwidth of 75 GB/s per direction. The IBM
AC922 is currently the only system that uses NVLink 2.0 for CPU-GPU intercon-
nects. Furthermore, the two GPUs of each CPU-local GPU pair achieve a high
P2P copy throughput as they are interconnected with NVLink 2.0 as well. The
system’s data transfer bottleneck lies in the NUMA-interconnect as the X-Bus
bandwidth is comparatively low, compared to the CPU-GPU connections.

Our second evaluation system is the NVIDIA DGX A100 [42]. It comes with a to-
tal of eight NVIDIA A100 GPUs which are interconnected with NVLink 3.0-based
NVSwitch for high-speed inter-GPU communication. We show the system’s inter-
connect topology in Figure 10. The NVIDIA A100 GPU is currently NVIDIA’s
latest server-grade high-performance GPU, while NVLink 3.0 is their latest in-
terconnect. Connected via NVSwitch, the DGX A100 allows full non-blocking
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Table 4: Hardware systems overview

(a) IBM Power System
AC922

(b) NVIDIA DGX A100

CPU 2x IBM POWER9 2x AMD EPYC 7742

16 × 2.7 GHz 64 × 2.3 GHz

GPUs 4x NVIDIA Tesla V100 8x NVIDIA A100

SXM2 32 GB SXM4 40 GB

RAM 2x 256 GB DDR4 2x 512 GB DDR4

OS RHEL 8.2 Ubuntu 20.04

ISA ppc64le x86 64

Tools CUDA 11.2 CUDA 11.4

GCC 10.2.1 GCC 9.3.0

CPU

Main memory

170 GB/s

Main memory

170 GB/s

64 GB/s

X-Bus

GPU GPU

CPU

GPU GPU

75 GB/s
75 GB/s

75 GB/s

75 GB/s 75 GB/s

75 GB/sNVLink 2.0 NVLink 2.0
3x 3x

Figure 9: Interconnect topology for the IBM Power System AC922

all-to-all P2P transfers between the eight GPUs at 300 GB/s per direction. For
this system, the PCIe 4.0 CPU-GPU interconnects are the data transfer bottle-
neck. They limit the host-to-device and device-to-host copy throughput, especially
for neighbouring pairs of GPUs that share a PCIe switch, as seen in the system’s
interconnect topology depicted in Figure 10. For example, when we perform a par-
allel data transfer from CPU 0 to GPUs 0 and 1 concurrently, the throughput can
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not exceed the theoretical bandwidth rate of one PCIe 4.0 instance (i.e. 32 GB/s)
because the two GPUs share a PCIe switch.

CPU

Main memory

204 GB/s

Main memory

204 GB/s

102 GB/s

Infinity Fabric

GPU

GPU

CPU

GPU

32 GB/s

GPU
GPU

GPU

GPU

GPU

NVSwitch

300 GB/s

32 GB/s

PCIe 4.0 PCIe 4.0

32 GB/s

32 GB/s

12x NVLink 3.0

Figure 10: Interconnect topology for the NVIDIA DGX A100

5.1.2 Experimental Methodology

For all experiments, we measure the total end-to-end sort duration which includes
the time durations for transferring the data from main memory to the GPUs and
copying the output data back to the CPU. We run every experiment five times and
report the arithmetic mean across all runs. Our experiments results are stable as
we measure that the standard error across all runs is less than 4% from the mean.

In all experiments, we generate the input data in the main memory of NUMA node
0 and return the output to that same key buffer. Our standard data distribution
is the uniform distribution, and by default, we sort unsigned 32-bit integer keys.
However, we clarify exactly which data sets we sort for each experiment across the
entire section.

As mentioned in Section 4.5, we pre-allocate the GPU’s device memory buffers as
well as pinned host memory because we assume dedicated accelerators that are
reserved for the database system exclusively. For a fair comparison, we proceed
in that manner for our proposed multi-GPU sorting algorithms as well as for
the two state-of-the-art merge-based multi-GPU algorithms and the single-GPU
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sorting algorithm baseline. Furthermore, for all experiments that include GPUs,
we allocate pinned host memory because pinned memory accelerates the CPU-
GPU data transfers compared to pageable memory buffers. Pinning the host
memory significantly increases the achieved throughput rate because then, the
GPU’s copy engine accesses the host memory via direct memory access (DMA) [32,
34, 45, 51].

To enable reproducible evaluation results, we publish the source code of our multi-
GPU sorting algorithm together with benchmarks scripts to automatically run the
experiments and generate plots for the results1.

5.1.3 Optimal GPU Sets

Given a fixed number of GPUs g with g ∈ {1, ..., gmax}, the interconnect topology
determines which exact g GPUs achieve the fastest sorting execution. For instance,
when using a P2P-based multi-GPU sorting algorithm on the IBM AC922, the
optimal two-GPU-sets are the CPU-local GPU pairs (0, 1) and (2, 3) because of
the direct NVLink 2.0 P2P interconnects. Given that we run our experiments
starting from NUMA node 0, the most optimal 2-GPU set is (0, 1). Similarly,
the optimal four-GPU-set on the NVIDIA DGX A100 is (0, 2, 4, 6) as it includes
only one GPU of each GPU pair that shares a PCIe switch. Thus, the CPU-GPU
copy throughput is maximized. Across our evaluation section, when we depict the
measured performance for sorting with a given number of GPUs g, we always use
the system’s optimal g-GPU, and we mention which GPUs the optimal g-GPU set
consists of.

For some experiments, we only depict the overall best performing GPU set of
a multi-GPU accelerator platform. Oftentimes, a multi-GPU system achieves the
best performance when accelerating with all its gmax system-wide GPUs. However,
this is not always the case. On the IBM AC922 for example, we find that sorting
any given data set is slower with four than with two GPUs because the low X-Bus
bandwidth reduces the CPU-GPU copy throughput for remote GPUs. Thus, on
the IBM AC922, the best performing GPU set is the GPU pair (0, 1), when the
input data resides in the main memory of NUMA node 0. For this GPU pair,
the CPU-GPU data transfers achieve the peak copy throughput of the NVLink
2.0 interconnects. For more detailed multi-GPU data transfer benchmarks and an
evaluation of the impact of a system’s interconnect topology on the multi-GPU
sorting performance, we refer to the work by Maltenberger et al. [34].

1https://github.com/hpides/rmg-sort
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5.1.4 CPU Baselines

To compare the performance of RMG sort to the CPU’s sorting performance, we
use state-of-the-art parallel radix sort PARADIS as our CPU baseline [9]. Mal-
tenberger et al. recently benchmarked the performance of state-of-the-art parallel
CPU sorting algorithms and find that PARADIS achieves the fastest execution [34].
It is also platform-independent as it does not rely on hardware-specific SIMD in-
struction sets. PARADIS sort is an in-place parallel radix sort that employs spec-
ulative permutation followed by a repair phase to maximize parallelization. In our
experiments, we find that it scales very well with the number of physical CPU
cores.

Maltenberger et al. also evaluate the parallel sorting primitives of modern libraries,
including the GNU parallel algorithms extension [61, 14], Intel’s Thread Building
Blocks library [53, 12], and the parallel C++17 extension of std::sort. They find
that gnu-parallel::sort from the GNU parallel algorithms extension, a parallel
multiway merge sort algorithm [14], is the fastest library primitive. Thus, we use
it as our second CPU baseline.

5.1.5 Single-GPU Baseline

Our single-GPU radix sort baseline is thrust::sort [44], because it achieves the
fastest sorting performance on a single GPU [34]. As mentioned in Section 4.4,
thrust::sort uses the same underlying LSB radix sort as CUB’s sorting primitive
cub::DeviceRadixSort [41]. For sorting individual buckets in the sorting phase of
RMG sort, we use cub::DeviceRadixSort since its interface allows for reducing the
bit range. As our single-GPU baseline, we use Thrust’s sorting primitive because
it provides a simpler interface.

5.1.6 Multi-GPU Baselines

We compare the performance of RMG sort to two state-of-the-art merge-based
multi-GPU sorting algorithms. The algorithm by Tanasic et al. utilizes P2P
interconnects to merge sorted chunks within GPU memory [64]. The heterogeneous
multi-GPU sorting algorithm by Gowanlock et al. uses the CPU to merge chunks
that have been sorted on the GPUs [18]. The first multi-GPU baseline allows for a
direct comparison of the utilization of P2P interconnects. With the second one, we
compare our GPU-only algorithm to an approach that involves CPU computations.
We compare RMG sort to our multi-GPU sorting baselines in Section 5.3
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5.2 CPU Comparison

In our first experiment, we sort two billion uniformly distributed 32-bit integer
keys with our proposed RMG sort, our single-GPU radix sort baseline, and our
two parallel CPU sorting algorithm baselines. We depict the results for the IBM
AC922 in Figure 11. We compare the performance of RMG sort to that of the
CPU for the best performing interconnect-optimal GPU set of the IBM AC922;
the GPU pair (0, 1).
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Figure 11: Sorting performance overview: CPU, single-GPU,
and multi-GPU sorting algorithms on the IBM AC922

We observe that RMG sort (radix-mgpu) outperforms gnu-parallel::sort 19×.
We do not depict the sort duration of paradis::sort in the plot because it takes 10
seconds to sort two billion keys on the IBM AC922. We measure paradis::sort

to perform disproportionately worse on the POWER9 CPU of this system due
to the low number of physical CPU cores (see Table 4). Given sufficient thread-
level parallelism and sufficiently large input sizes, highly parallel CPU sorting
algorithms are commonly main memory bandwidth-bound [34, 59]. The IBM
AC022 has not enough physical CPU cores for paradis::sort to saturate the main
memory bandwidth. It only does so for data sets with more than eight billion keys.
With two GPUs and their limited memory capacity, we can sort up to six billion
keys. Thus, on the IBM AC922, gnu-parallel::sort is the faster CPU sorting
algorithm for all input sizes that the two NVIDIA Tesla V100 GPUs can sort.
While the single-GPU radix sort thrust::sort already outperforms the CPU by a
factor of 12×, RMG sort achieves a speedup of 1.6× over the single-GPU baseline.

In Figure 12, we depict the sort duration of RMG sort with GPU pair (0, 1), and
our two state-of-the-art CPU baselines for increasing numbers of keys. We measure
that RMG sort scales linearly with the number of input keys n. It outperforms the
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Figure 12: CPU-only vs. multi-GPU sorting performance for
increasing numbers of keys on the IBM AC922

CPU 20× for six billion keys. Thus, we find that our multi-GPU sorting algorithm
(RMG sort) considerably accelerates sorting on the IBM AC922.

In Figure 13, we depict the sorting performance overview for the NVIDIA DGX
A100. We compare the sort duration of RMG sort with four and all eight GPUs
against our two CPU baselines and the single-GPU radix sort baseline. The sys-
tem’s optimal four-GPU-set consists of GPUs (0, 2, 4, 6) as each GPU of the set
utilizes one PCIe switch exclusively, achieving peak CPU-GPU copy throughput.
Again, we sort two billion uniformly distributed 32-bit unsigned integers.
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Figure 13: Sorting performance overview: CPU, single-GPU,
and multi-GPU sorting algorithms on the NVIDIA DGX A100

We observe that both CPU sorting algorithms achieve shorter execution times
on the DGX A100 compared to the IBM AC922. The DGX A100 is equipped
with four times as many physical cores per CPU, twice as many threads, and a
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memory subsystem of higher bandwidth. Moreover, paradis::sort outperforms
gnu-parallel::sort on the DGX A100. When sorting large data set sizes with
enough physical CPU cores to saturate the main memory bandwidth, the beneficial
constant computational complexity of paradis::sort, a radix sort algorithm, be-
comes visible in comparison to gnu-parallel::sort, a merge sort algorithm. This
explains why paradis::sort is the faster CPU sorting algorithm on this system.

With regards to GPU-accelerated sorting, we see that one GPU achieves a speedup
of 3× over gnu-parallel::sort and 2.6× over paradis::sort. We observe that
the total sort duration of our single-GPU radix sort is approximately twice as high
on the DGX A100 as on the IBM AC922. The main reason for this significant dif-
ference is that the IBM AC922 connects the GPUs to the CPU via high-bandwidth
NVLink 2.0 interconnects while the DGX A100 uses PCIe 4.0 as the CPU-GPU
interconnects (see Figure 9 and Figure 10). Thus, the CPU-GPU data transfers
take significantly longer on the DGX A100.

When sorting with multiple GPUs using RMG sort, we achieve speedups over
gnu-parallel::sort of 9.8× for four GPUs and 10.8× for eight GPUs. Moreover,
RMG sort outperforms the state-of-the-art CPU-based radix sort paradis::sort

8× with four GPUs, and 9× with eight GPUs. Thus, we find that all gmax = 8
system-wide GPUs reach the best sorting performance on the DGX A100.
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Figure 14: CPU-only vs. multi-GPU sorting performance for
increasing numbers of keys on the NVIDIA DGX A100

In Figure 14, we depict the sorting performance of our two CPU baselines and
RMG sort for sorting increasing numbers of 32-bit keys on the DGX A100. We
again observe that RMG sort scales linearly. We also see that, with eight GPUs
and a total combined GPU memory of 320 GB, we can sort significantly larger
data sets. We measure RMG sort to sort the largest data set of 32 billion keys in
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3.1s, outperforming paradis::sort 4.3×. Including the data transfers, RMG sort
achieves an end-to-end sorting rate of over 10 billion keys per second.

With eight GPUs on the DGX A100, we can sort significantly larger data sets.
Due to paradis::sort’s constant computational complexity, it sorts 32 billion
keys almost 3.5× faster than gnu-parallel::sort. Similar to the IBM AC922, we
measure that paradis::sort needs more than two billion keys to fully maximize its
achieved memory throughput, and saturate the system’s main memory bandwidth.
This is why the speedup factor of RMG sort over paradis::sort is lower for 32
billion than for two billion keys. Still, the speedup of RMG sort over paradis::sort
is significant.

5.3 Radix-Partitioning vs. Sort-Merge

For many previous single-GPU and multi-GPU sorting algorithms, researchers
reported significant speedup factors compared to CPU-only algorithms. In the next
section, we compare our radix-partitioning-based multi-GPU sorting algorithm to
two state-of-the-art merge-based multi-GPU sorting algorithms from the literature.
By comparison, we evaluate which algorithm achieves the best performance.

5.3.1 Sort-Merge-based Multi-GPU Sorting Algorithms

First, we explain the two state-of-the-art merge-based multi-GPU sorting algo-
rithms that we use for comparison.

The P2P-based multi-GPU merge sort (P2P merge sort) by Tanasic et al. sorts
chunks of data with multiple GPUs and merges the sorted chunks on the GPUs
utilizing inter-GPU communication [64]. It benefits from high-bandwidth P2P in-
terconnects, such as NVLink 2.0 and NVLink 3.0. By selecting a pivot element
within the sorted chunks of a GPU pair, blocks of keys are swapped so that af-
terwards, the first GPU contains keys that are all less than or equal to the keys
of the second GPU. Merging the two blocks of keys on each GPU locally brings
the data across both GPUs into the globally sorted output order. The algorithm
sorts on more than two GPUs using multiple subsequent P2P key swaps and GPU-
local merge steps. The number of P2P transfers scales linearly with the number
of GPUs g. Due to the recursive nature of the merge phase, P2P merge sort can
only sort on g GPUs when g = 2k for k ∈ N. RMG sort can utilize any number of
GPUs g.

The heterogeneous multi-GPU merge sort (HET merge sort) by Gowanlock et al.
sorts chunks of data on multiple GPUs and merges the sorted chunks on the CPU
in main memory [18]. After the sorted chunks are copied back to main memory,
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a parallel multiway merge algorithm is used to produce the sorted output. Out
of the three multi-GPU sorting algorithms, it is the only one that is not limited
by the combined GPU memory capacity. Since our proposed algorithm only sorts
data sets that fit into the combined GPU memory, we disregard the evaluation of
large out-of-core data sets.

5.3.2 Multi-GPU Sorting Algorithm Comparison

Both merge-based multi-GPU sorting algorithms have recently been evaluated on
the IBM AC922 and the DGX A100 by Maltenberger et al. [34]. We perform
benchmark experiments for our proposed RMG sort and compare its performance
with the evaluation results reported by Maltenberger et al. Since we use the same
experimental methodology, assumptions, and hardware systems as Maltenberger
at al. (see Section 5.1), our algorithm performance comparison is as representative
and as precise as an evaluation with measured results for all three algorithms.

In Figure 15, we depict the sort duration of RMG sort, P2P merge sort, and HET
merge sort for the CPU-local GPU pair (0, 1) and increasing numbers of 32-bit
integer keys with uniform distribution on the IBM AC922. We observe that RMG
sort scales best to the input size n, sorting faster than the two merge-based multi-
GPU sorting algorithms. RMG sort outperforms P2P merge sort by 17%, and
HET merge sort 1.7× for four billion keys.
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Figure 15: Algorithm comparison: 2 GPUs sorting
increasing numbers of keys on the IBM AC922

In Figure 16, we show the sorting durations for the three multi-GPU sorting al-
gorithms for increasing input sizes on eight GPUs on the DGX A100. We again
find that RMG sort achieves the best sorting performance. Compared to P2P
merge sort, RMG sort is faster up to 1.26× while outperforming HET merge sort
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up to 1.8×. Moreover, we observe that RMG sort is the faster algorithm option
for any number of input keys n, as is the case on the IBM AC922. In the follow-
ing plots and experiments, we analyze why RMG sort outperforms the other two
merge-based algorithms.
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Figure 16: Algorithm comparison: 8 GPUs sorting
increasing numbers of keys on the NVIDIA DGX A100

To explain the performance differences between RMG sort and the merge-based
algorithms, we break down the total sort duration of each algorithm into its indi-
vidual algorithm phases.

All three algorithms start with the initial host-to-device (HtoD) copy where chunks
of the input data are distributed to the involved g GPUs. For RGM sort, the
remaining phases are the radix partitioning phase, the P2P key swap, and the
bucket sorting phase which is interleaved with copying the sorted buckets back to
the host. For P2P merge sort, we break down the sort duration into the HtoD
copy, the sort phase, the P2P merge phase on the GPUs, and the device-to-host
copy (DtoH). In its sort phase, the entire chunk of each GPU is sorted using
Thrust’s single-GPU radix sort primitive. HET merge sort entails similar phases
except for the merge phase. Instead of the GPU-based P2P merge phase, it uses
a CPU-based multiway merge.

Sort Duration Breakdown on the IBM AC922. In Figure 17, we depict the
sort duration breakdown of RMG sort for an input size of two billion uniformly
distributed keys on the IBM AC922. We show the sorting time breakdown for the
single-GPU baseline, the GPU pair (0, 1), and all four GPUs of the system.

We observe that the radix partitioning phase achieves the shortest time duration
out of all algorithm phases. On two GPUs it makes up only 11% of the total sort
duration with 22.8ms, while it takes four GPUs half that time (11.4ms). Because
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the total sort duration on four GPUs is disproportionately higher, this constitutes
only 3% of the total sort duration. Nonetheless, we observe linear scaling of our
radix partitioning phase to the number of keys (i.e. the GPU chunk size). Twice
as many GPUs partition a fixed total input size twice as fast.

For the GPU pair (0, 1), the second shortest time duration is the P2P key swap.
Powered by NVLink 2.0 interconnects for a bandwidth rate of 75 GB/s, the P2P
bucket transfers take 35.8ms, which is 16% of the total sort duration.

While the HtoD copy is halved compared to the single-GPU baseline, we observe
that the ”Sort Buckets & DtoH Copy” phase makes up 47% of the total sort
duration. Maltenberger et al. find that the DtoH copy throughput decreases
for parallel transfers from multiple GPUs to the same NUMA node from a peak
throughput of 145 GB/s in the HtoD direction down to 110 GB/s [34].
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Figure 17: Sort duration breakdown for RMG sort: Sorting
two billion 32-bit integer keys on the IBM AC922

In addition to this anomaly, we measure that the sort-copy-overlap comes with a
slight performance overhead since the time duration of the ”Sort Buckets & DtoH
Copy” phase is not equal to the time duration of a simple parallel DtoH copy
(i.e., what would be the case if the sorting computation was perfectly hidden).
Instead, we measure it to take 43% longer. Still, overlapping the sorting compu-
tation with the DtoH copy improves the total sort duration, saving 50% of the
bucket sorting time duration (32ms) when sorting with two GPUs on this system.
This equals to 24% of the time it would take the GPUs to sort all buckets and
copy them back without overlap.

Figure 17 also shows why four GPUs perform worse than two on the IBM AC922.
The CPU-interconnect X-Bus is the system’s data transfer bottleneck. The X-Bus
bandwidth has previously been evaluated to achieve only 41 GB/s of the theoretical
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peak bandwidth of 64 GB/s [51, 34]. As a consequence, the slow CPU-GPU data
transfers (HtoD and DtoH copies) to and from the remote GPUs 2 and 3 decrease
the total sort duration for four GPUs. Also, the throughput of the P2P key swap
suffers from the low X-Bus bandwidth, which is why the P2P key swap phase takes
3× longer when sorting with four GPUs compared to two.

In total, RMG sort achieves a speedup of 1.6× over the single-GPU baseline for
sorting two billion integer keys with two GPUs on the IBM AC922. On four GPUs,
RMG sort performs 7% slower compared to one GPU.
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Figure 18: Sort duration breakdown: Sorting two billion
32-bit integer keys on the IBM AC922

Figure 18 shows the sort duration breakdown of P2P merge sort and HET merge
sort on the IBM AC922. We compare RMG sort’s performance with the two
merge-based algorithms.

In Figure 18a (P2P merge sort), we observe that the time duration for sorting
each GPU chunk gets halved every time we double the number of GPUs. Since
the number of P2P transfers performed in the GPU-based merge phase scales
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linearly with the number of GPUs g, the merge phase overhead is minimal when
sorting with two GPUs. In fact, on two GPUs, P2P merge sort requires only a
single P2P key swap and is in that case similar to RMG sort. For two GPUs, we
measure the P2P transfer times to be nearly identical between RMG sort and P2P
merge sort.

We find that, compared to the combined time duration of the radix partitioning
phase and the P2P key swap of RMG sort, the merge phase of P2P merge sort
is 33% faster (=14.5ms) on two GPUs. Given that the P2P-based merge sort
algorithm swaps one consecutive block of sorted keys between the GPUs, the
algorithm’s final step is to locally merge on each GPU. For this, P2P merge sort
utilizes thrust::merge which, on the Tesla V100 GPU, takes less time (11ms)
than our histogram computation and the key scattering step combined (22.8ms).
However, since we overlap the sorting computation with the DtoH copy in our
algorithm, RMG sort outperforms P2P merge sort on two GPUs by 11% for an
input size of two billion 32-bit integer keys.

On four GPUs, we measure that the combined time duration of the radix parti-
tioning phase and the P2P key swap of RMG sort executes 33% faster than the
P2P merge phase. This is because the P2P merge phase takes longer the more
GPUs are involved, scaling linearly with the number of GPUs g. This explains
why the speedup of RMG sort over P2P merge sort increases from two to four
GPUs (20%).

When comparing RMG sort with HET merge sort (see Figure 18b), we observe
that the CPU-based multiway merge phase is significantly slower compared to our
GPU-based partitioning approach. On two GPUs, it takes RMG sort to partition
and swap the keys via P2P transfers 2.7× less time than it takes the CPU to
merge the two sorted GPU chunks. On four GPUs, the P2P key swap throughput
of RMG sort is significantly reduced. Still, the combined time duration for the
radix partitioning phase and the P2P key swap is 44% lower than the CPU-based
merge phase. In total, RMG sort outperforms HET merge sort 1.6× on two GPUs,
and 1.2× on four GPUs when sorting two billion keys on the IBM AC922.

We conclude that on GPUs with high-bandwidth P2P interconnects, GPU-only
sorting approaches are superior to the CPU-based multiway merge. Both, RMG
sort and P2P merge sort heavily rely on high-bandwidth P2P interconnects. Be-
cause the two-GPU-set (0, 1) is the system’s optimal GPU set, RMG sort does not
benefit from its reduced inter-GPU communication which only applies for more
than two GPUs. Still, RMG sort outperforms P2P merge sort because we overlap
the sorting computation of buckets with the DtoH copy – an algorithmic optimiza-
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tion that results from our MSB radix partitioning approach. The P2P merge sort
algorithm is required to wait for each GPU’s last key to be merged until the DtoH
copy can start.

Sort Duration Breakdown on the DGX A100. Figure 19 shows the sort
duration breakdown of RMG sort for sorting two billion uniformly distributed keys
on the NVIDIA DGX A100. We evaluate the optimal GPU sets (0, 2), (0, 2, 4, 6),
and (0, 1, 2, 3, 4, 5, 6, 7).

First, we note that the HtoD and DtoH copy phases take significantly longer on
this system due to the low bandwidth of PCIe 4.0, compared to the three links of
NVLink 2.0. Furthermore, we observe that our radix partitioning phase scales very
well to increasing numbers of GPUs. The time duration of the radix partitioning
phase equals 14.4ms on two GPUs, 7.2ms on four GPUs, and 3.6ms on eight GPUs,
which constitutes 4%, 3%, and 2% of the total sort duration, respectively.

Figure 19 also shows that the P2P key swap time duration stays constant, inde-
pendent of the number of GPUs g, because our radix partitioning phase is designed
to enable a single all-to-all bucket exchange step. Also, the P2P key swap bene-
fits from the NVLink 3.0-based NVSwitch P2P interconnects that allow the DGX
A100 to achieve fast transfers between all eight GPUs. We measure the P2P key
swap phase to take from 14-17ms for sorting with two, four, and eight GPUs, not
exceeding 8% of the total sort duration. Similar to our radix partitioning phase,
the time duration of the sorting computation gets halved whenever the number
of GPUs is doubled. However, the time it takes an NVIDIA A100 GPU to sort
the buckets of its chunk is rather insignificant compared to the HtoD and DtoH
copy phases combined. On the DGX A100, we furthermore observe that the sort-
copy-overlap introduces close to no overhead as the sorting computation is almost
completely hidden.

On this system, the CPU-GPU transfers are the only performance bottleneck.
Still, we observe RMG sort to scale comparatively well from one to eight GPUs.
Compared to the single-GPU baseline, RMG sort achieves speedups of 1.9× with
two GPUs, 3.2× with four GPUs, and 3.5× with eight GPUs. We can not expect
the speedup factor to become significantly higher on eight GPUs, because of the
shared bandwidth effects that result from the system’s limited number of PCIe
switches. When performing parallel CPU-GPU transfers, each pair of neighbour-
ing GPUs shares the respective bandwidth of the PCIe 4.0 interconnects (see Table
4). We cannot avoid this hardware limitation when using all GPUs of the system.
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Figure 19: Sort duration breakdown for RMG sort: Sorting
two billion 32-bit integer keys on the DGX A100

The reason why RMG sort is about 20ms faster with eight than with four GPUs
despite the shared PCIe switches is that 1) the radix partitioning time duration
is halved and, 2) the HtoD and DtoH copy throughput does increase slightly
compared to the CPU-GPU transfers on four GPUs (see [34]).

In Figure 20, we show the sort duration breakdown for the two merge-based sorting
algorithms for the NVIDIA DGX A100. For consistency, we again sort a total of
two billion uniformly distributed 32-bit integer keys.

In contrast to the time duration of RMG sort’s P2P key swap phase, the P2P merge
phase time of P2P merge sort (depicted in Figure 20a) increases with the number
of GPUs. We measure it to take almost 4× longer when eight GPUs merge their
chunks compared to two GPUs. This explains why RMG sort’s speedup factor
over P2P merge sort increases with the number of GPUs: g = 2 GPUs: 3%, g = 4
GPUs: 10%, g = 8 GPUs: 17%. When sorting with RMG sort on eight GPUs,
the radix partitioning phase and the P2P key swap combine for a time duration of
20ms, which is 2.7× less than the P2P merge phase takes. The comparatively slow
HtoD and DtoH copy phases reduce the relative impact of those algorithm phases
on the total sort duration, limiting RMG sort’s speedup factors over P2P merge
sort. Still, we demonstrate the potential speedup that RMG sort could achieve if
the system included high-bandwidth CPU-GPU interconnects.

We depict the sort duration breakdown of HET merge sort for the DGX A100
in Figure 20b. Similar to the IBM AC922, we observe that the limiting factor of
HET merge sort is the CPU’s merging performance. Compared to the combined
time duration of RMG sort’s radix partitioning phase and its P2P key swap, the
CPU multiway merge phase takes 6.6× longer on two GPUs, 7.9× longer on four
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Figure 20: Sort duration breakdown: Sorting two billion
32-bit integer keys on the DGX A100

GPUs, and 9.2× longer on eight GPUs. Consequently, RMG sort outperforms
HET merge sort significantly; up to 1.8× for eight GPUs.

Having evaluated RMG sort and two state-of-the-art merge-based multi-GPU sort-
ing algorithms on the DGX A100, we confirm that, on modern accelerator plat-
forms, P2P-based multi-GPU approaches sort significantly faster than the hetero-
geneous CPU-based merging approach.

We conclude that, compared to P2P merge sort, RMG sort more efficiently utilizes
the NVLink-based NVSwitch interconnects of the DGX A100. RMG sort scales
linearly with the number of GPUs g in the radix partitioning phase and keeps
a constant P2P key swap time duration, independent of how many GPUs we
sort with. RMG sort uses the non-blocking all-to-all P2P transfer capability of
NVSwitch systems to the fullest extent.
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5.4 RMG Sort Performance Analysis

In this section, we evaluate the performance of RMG sort for varying data and
distribution types, especially for skewed data distributions, to analyze the perfor-
mance characteristics and bottlenecks of RMG sort.

5.4.1 Sorting Different Data Distributions

In Figure 21, we show the sorting duration of RMG sort for different data distri-
butions of the input keys. We sort 32-bit unsigned integer keys using the optimal
GPU set (0, 1) on the IBM AC922. We observe significant performance differences
for different distribution types. We use the sort duration for uniformly distributed
keys as this experiment’s baseline since we performed all previous experiments of
our evaluation using the uniform distribution (see Figures 11, and 17).

In the best case, all keys of the input data set are of the same value which we
refer to as the zero entropy distribution. We measure the sort duration of the zero
distribution to be reduced by 30% (165.9ms) compared to the uniform distribution
(217ms) because of multiple reasons. First, no P2P transfers are necessary because
all keys belong to the same last pass spanning bucket. Since we distribute each
last pass spanning bucket in such a way that we achieve perfect load balancing, the
distribution of keys exactly corresponds to the initial data chunks of each GPU.
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Figure 21: RMG sort’s performance for different data
distributions (2 billion keys, 2 GPUs, IBM AC922)

Moreover, we do not scatter any keys during the entire radix partitioning phase.
Given that all n keys form one big spanning bucket that spans all g GPUs, we
need all p = 4 partitioning passes. In each partitioning pass, we only compute
the histogram and skip the ScatterKeys kernel launch because, for each GPU, all
of its keys belong to the same bucket. The histogram computation takes only
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6ms on the Tesla V100 GPU, while the key scattering step takes 16ms. Thus,
skipping the ScatterKeys kernel for skewed distributions like the zero distribution
improves RMG sort’s performance significantly. Furthermore, RMG sort does not
sort any bucket since we have already taken all keys’ k = 32 bits into account
during the radix partitioning phase. Thus, the DtoH copy is performed without
the performance overhead that comes with overlapping the sorting computation
with the data transfer.

For nearly-sorted distributions, we generate a uniformly distributed data set, sort
its keys, and add a small, normally distributed (Gaussian) noise e ∼ N(0, σ2) to
each value to introduce keys that break the sort order. For both nearly-sorted and
fully sorted input data, we observe that no P2P key swaps are necessary. Since
we generate both distributions from uniform data sets, one partitioning pass is
sufficient, before each GPU sorts its buckets and copies them back to the host.
Thus, the performance gain corresponds to the time duration of the skipped P2P
key swap, resulting in a performance improvement of 12%.

We observe that RMG sort sorts normally distributed data equally as fast as
uniform distributions with two GPUs on the IBM AC922. The sort duration
difference is less than 1%.

For reverse-sorted data, the P2P key swap time duration increases because we
implement our bucket-to-destination-GPU mapping in such a way that the small
buckets are transferred to GPU 0. In the case of reverse-sorted data, the input
keys are copied (HtoD) to the GPUs in the mirrored way, i.e. the biggest key
values reside on GPU 0. Thus, the two GPUs swap all of their buckets between
each other in the P2P key swap, and the total sort duration increases by 11% up
to 240.5ms.

We propose to optimize RMG sort for these kinds of distributions as part of future
work. A check could determine whether our computed bucket-to-destination-GPU
mapping would swap all buckets of each GPU i with the buckets of its mirrored
GPU j = g− i. If so, we can completely skip the P2P key swap as we do for sorted
and nearly-sorted distributions. We simply adjust the DtoH copies from the GPUs
to main memory to correctly return the chunks in the globally sorted order.

In Figure 22, we show the sorting duration of RMG sort for different data dis-
tributions on the DGX A100 with eight GPUs. We find that the performance
differences between input keys of varying distribution types are less significant
than on the IBM AC922. This is because the CPU-GPU data transfers, which are
independent of the data distribution, make up the majority of the total sort dura-
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tion on the DGX A100, as evaluated in our sort duration breakdown experiments
in Section 5.3.

We find that beneficial distributions reduce the overall sorting time by 13% for
zero distributions, 8% for sorted data, and 7% for nearly-sorted distributions.
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Figure 22: RMG sort’s performance for different data
distributions (2 billion keys, 8 GPUs, DGX A100)

Interestingly, reverse-sorted key distributions benefit the sort duration of RMG sort
on the DGX A100. The total amount of data transferred between the GPUs is the
same on the IBM AC922 and the DGX A100 given that we sort two billion keys
on both systems. However, the reduced chunk size when sorting with eight GPUs
decreases the P2P key swap duration because the system’s P2P interconnects
support multiple, concurrent, bidirectional transfers.

Additionally, we observe that the mirrored bucket distribution across eight GPUs
is well suited for the NVLink-based NVSwitch interconnect topology of the DGX
A100. For uniform distributions, every GPU contains buckets that need to be
transferred to every other GPU. Given reverse-sorted data, the P2P key swaps are
performed only between pairs of mirrored GPUs. We measure that this copy pat-
tern allows each bucket swap to achieve a significantly higher P2P copy throughput
(1.3−4.7×). With the two effects combined, we sort reverse-sorted data 6% faster
than uniformly distributed data with eight GPUs on this system.

We further find that eight GPUs sort normal distributions significantly slower than
uniform distributions. Also, normally distributed input data requires two parti-
tioning passes when sorting with eight GPUs. This results in a slightly increased
P2P key swap time and explains the sort duration increase of 4%.
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Bit Entropy. We evaluate RMG sort’s performance for a skewed, parameterized
data distribution, whose skew is determined by the bit entropy. We define the bit
entropy to specify how many least significant bits of the entire bit range of the
32-bit keys we fill randomly. For a bit entropy value of 32, all k = 32 bits of the
keys follow a uniform distribution, i.e. the data set is uniformly distributed. For a
bit entropy value b of 0 < b < k, the most significant k − b bits are zero for all n
keys. If the bit entropy value is zero, the data distribution is the same as the zero
distribution from Figure 21 where all keys are of the same value.

In Figure 23, we show the sort duration of RMG sort, depending on the bit entropy,
when sorting with the two GPUs (0, 1) on the IBM AC922.

We observe that the sort duration peaks at those bit entropy values that corre-
spond to a low total number of buckets after the partitioning phase. Since our
MSB radix partitioning phase considers c = 8 bits per partitioning pass, this case
occurs at regular intervals, i.e. for bit entropy values b ∈ L = {26, 25, 18, 17, 10, 9}.
If the bit entropy value is equal to 26, the first partitioning pass considers the
most significant bits [32..24), and finds that all keys of each GPU chunk fall
into 28−(32−26) = 4 possible buckets: [0] ∼ 00000000, [1] ∼ 00000001, [2] ∼
00000010, [3] ∼ 00000011.
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Figure 23: RMG sort’s performance for a varying bit entropy
(2 billion keys, 2GPUs, IBM AC922)

Similarly, a bit entropy of 25 results in only two possible buckets. For a bit entropy
of 10, the first two partitioning passes on the bit ranges [32..24) and [24..16)
determine spanning buckets across all g GPUs, until the third and completing
partitioning pass on the bits [16..8) generates four buckets. In all cases where
b ∈ L, the number of buckets is less than or equal to MINSCO, which is too low
to efficiently overlap the sorting computation with the DtoH copy (see Table 2
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and Section 4.4). This explains the performance decrease for these skewed data
distributions.

We also observe that the sort duration gradually increases up to each peak (x-axis
read from right to left) for the bit entropy values b ∈ K = {28, 27, 20, 19, 11}. This
is because even though the number of buckets is greater than MINSCO, and we
turn on the sort-copy-overlap optimization, the achieved DtoH copy throughput
decreases compared to higher numbers of buckets (e.g. for uniform distributions).

Generally, we observe that with more partitioning passes performed during the
radix partitioning phase, the total sort duration increases. However, since we skip
the key scattering step for those partitioning passes that find one non-empty bucket
only (see Section 4.2), we keep the resulting performance overhead to a minimum.
For example, when the bit entropy is equal to 10, the first two partitioning passes
execute the histogram computation for a combined runtime of 12ms.

On the other hand, with more partitioning passes, the sorting computation is
accelerated because we reduce the bit range by c = 8 for each pass (see Section 4.4).
For the same example as above, where the bit entropy is 10 and three partitioning
passes are required, the bucket sorting phase is almost 2× as fast as it takes the
GPU to sort on all 32 bits. The two optimizations combined (i.e skipping the
key scattering step and reducing the bit range) mitigate the sorting performance
decrease for increasing numbers of partitioning passes. As a result, the observed
sort duration increases are most significant for low numbers of buckets generated
by highly skewed data, i.e. for bit entropy values b ∈ L ∪K, which do not allow
the sort-copy-overlap to be efficient.

We measure the total sort duration to increase up to 18% across all sub-optimal
bit entropy values. Compared to P2P merge sort by Tanasic et al. [64], RMG sort
is up to 6% slower for worst-case bit entropy values. Still, RMG sort outperforms
HET sort 1.4× for worst-case bit entropy values. We evaluate both merge-based
multi-GPU sorting algorithms to be stable for varying bit entropy values, with no
significant performance difference.

As part of future work, we propose to mitigate the negative performance impact
of these skewed distributions by dynamically adjusting the bit range on which we
partition the keys in our radix partitioning phase. When the completing partition-
ing pass finds that there are ≤ MINSCO buckets, performing another partitioning
pass on a small number of subsequent bits might show promising results, given
that it would increase the total number of buckets, and thereby the throughput of
the interleaved sorting and copy operations.
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For bit entropy values below 8, we do not sort any buckets given that the partition-
ing phase took all 32 bits into account already. For bit entropy values b ∈ [8..1],
the sort duration reduces by up to 9%. As explained for Figure 21 for the zero
distribution, i.e. a bit entropy value of b = 0, we additionally do not need any
P2P key swaps, which explains the steep sort duration decrease by 30% compared
to the uniform distribution.

In Figure 24, we show the results of our bit entropy experiment on the DGX A100
when sorting with eight GPUs.
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Figure 24: RMG sort’s performance for a varying bit entropy
(2 billion keys, 8 GPUs, DGX A100)

We note that the performance difference between different bit entropy values is
much less significant. Compared to sorting uniformly distributed data, the sort
duration of RMG sort varies between +5% and −2% for bit entropy values b ∈
[32..9). For bit entropy values b ∈ [8..1], the sort duration of RMG sort is reduced
by up to 6% because we do not perform the bucket sorting step.

The main reason why the performance impact of the bit entropy is less significant
on eight GPUs on the DGX A100, compared to two GPUs on the IBM AC922, is
again the low CPU-GPU interconnect bandwidth. The comparatively slow HtoD
and DtoH copies via PCIe 4.0 make up the majority of the total sort duration.
Moreover, the time duration of the bucket sorting computation is significantly
smaller on the DGX A100 because 1) each GPU sorts fewer keys in total as the
input data is divided onto eight GPUs, and 2) the NVIDIA A100 sorts almost twice
as fast as its predecessor, the NVIDIA Tesla V100. Thus, not being able to overlap
the sorting computation with the DtoH copy has less of a negative performance
impact on this hardware system.

Consequently, RMG sort outperforms P2P merge sort with eight GPUs on the
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5.4 RMG Sort Performance Analysis

DGX A100, even for skewed bit entropy distributions. In the worst case, RMG
sort still achieves a speedup of 12.5% over P2P merge sort, while being 1.7× faster
than HET merge sort.

Zipfian Distributions. To further evaluate the performance impact of data
skew, we analyze the sort duration of RMG sort for zipfian distributions, i.e.
distributions with varying zipf exponents. A zipf exponent of 0 generates the
default uniform distribution. For increasing zipf exponents, the probability of a
key belonging to one of only a few highly frequent keys increases. Given two billion
keys and a zipf exponent of 1.0, the probability that a key’s value is equal to one of
the top-1000 most occurring key values is 34%. The same probability is at 97.5%
for a zipf exponent of 1.5.

At the same time, the remaining less frequent keys are scattered across increasing
numbers of increasingly small buckets. Thus, zipfian distributions help us to an-
alyze how RMG sort performs for distributions where certain GPUs end up with
very few big buckets, while others handle large numbers of small buckets.

In Figure 25, we depict the sort duration of RMG sort, depending on the zipf
exponent, for the two-GPU set (0, 1) on the IBM AC922. We sort two billion
32-bit integer keys.

We observe that the sort duration increases for zipf exponents greater than zero,
measuring the peak sort duration for an exponent of 1.5. At the peak, the sort
duration reaches 273ms, which is an increase of 26% over the sorting time of
the uniform distribution. The sort duration steadily decreases for zipf exponents
greater than 1.5, almost dropping down to the initial, uniform sort duration.

For a zipf exponent of 0.5, one partitioning pass is sufficient for the radix partition-
ing phase to complete. We measure average execution times for the key scattering
and the histogram computation kernels. However, we find that the number of
buckets on the second GPU is greater than MAXBRS (see Table 2), despite our
optimization to fuse small neighbouring buckets. For numbers of buckets greater
than MAXBRS, we sort the entire GPU chunk at once, instead of sorting individual
buckets to avoid the overhead of too many kernel launches. As a result, we cannot
overlap the sorting computation with the DtoH copy, which explains why the sort
duration increases by about 30ms.

Interestingly, for zipf exponents e, with 0.5 < e ≤ 1.5, the many buckets that
result from the less frequent key values of the zipfian distribution become so small
that our approach of fusing neighbouring buckets achieves a significant reduction.
For some cases, we reduce the total number of buckets from up to 575 down to 90.
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Figure 25: RMG sort’s performance for a varying zipf exponent
(2 billion keys, 2 GPUs, IBM AC922)

Thus, for zipf exponents e ≥ 0.75, our optimization of fusing small buckets allows
us to perform the sort-copy-overlap at peak DtoH copy throughput rates. With
this, the bottleneck shifts to the radix partitioning phase.

For zipf exponents e, with 0.5 < e ≤ 1.5, the data distribution becomes more
skewed, and more spanning buckets need to be resolved. For a zipf exponent
of 1.0, three partitioning passes are necessary, while the exponent 1.5 requires
all p = 4 partitioning passes to be performed. For zipfian distributions, and in
contrast to the bit entropy experiments, each partitioning pass finds more than one
non-empty bucket. Consequently, we have to execute the ScatterKeys kernel in
each partitioning pass. As a result, we have little to no sorting computation left to
perform in those cases, given that the radix partitioning phase considered (almost)
all bits. However, the time duration of multiple ScatterKeys kernel executions adds
up to a significant performance overhead on each of the two GPUs of this system,
especially because the shard memory atomic operations load of the ScatterKeys

kernel increases for skewed data. We measure the time of one ScatterKeys kernel
execution to increase up to 20ms (+25%). This adds 40-70ms to the total sort
duration for zipf exponents of 1.0-1.5.

For zipf exponents beyond 1.5, the sort duration decreases. With such high expo-
nents, almost all keys belong to the same few buckets, and the zipfian distribution
approaches the zero bit entropy distribution. For these zipf exponents, we can
increasingly skip the ScatterKeys kernel executions during the partitioning passes
as the number of total buckets decreases.
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5.4 RMG Sort Performance Analysis

We evaluate the sort duration of P2P merge sort and HET merge sort to be
independent of the zipf exponent. We evaluate RMG sort to be up to 13% slower
than P2P merge sort on the IBM AC922. Compared to HET merge sort, we still
achieve a speedup of 1.3× for the wort case zipf exponent of 1.5.
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Figure 26: RMG sort’s performance for a varying zipf exponent
(2 billion keys, 8 GPUs, DGX A100)

In Figure 26, we depict the sort duration of RMG sort for varying zipf exponents
on the DGX A100, when sorting with all eight GPUs of the system.

Similar to the bit entropy experiments, we measure significantly fewer differences
in the sort duration of varying zipf exponents on the DGX A100. We observe
the peak sort duration to be at 217ms for zipf exponents of 1.0. This constitutes
a 6% increase compared to the sort duration of uniformly distributed keys. The
reason for the performance drop is again the increased time duration of the radix
partitioning phase as a result of multiple partitioning passes.

Overall, the low CPU-GPU interconnect bandwidth of the DGX A100 is one reason
why the performance impact of the zipf exponent is less significant on this system,
compared to sorting on two GPUs on the IBM AC922. Furthermore, the total
number of buckets that each GPU sorts after the P2P key swap is less likely to
exceed MAXBRS. Because we distribute the buckets across eight GPUs, each GPU
handles fewer buckets. Similarly, the accumulated time duration of all histogram
computations and key scattering kernel executions during the radix partitioning
phase is less than it is on the AC922 because 1) the NVIDIA A100 GPU has a
higher global memory bandwidth and improved atomic operations performance,
and 2) each individual GPU processes fewer keys.
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5.4 RMG Sort Performance Analysis

We conclude that, for highly skewed zipfian data distributions, RMG sort still
outperforms P2P merge sort by at least 11%, and HET merge sort at least 1.7×,
using eight GPUs on the DGX A100.

5.4.2 Sorting Varying Data Types

We evaluate RMG sort for different data types. We analyze its sorting performance
for unsigned integer (uint) and floating-point (float) keys in their 32-bit and 64-
bit variant. As outlined in Section 1.2, we only sort positive key values. Even
though there is no dedicated unsigned floating-point data type, we only generate
positive values for any data distribution.

We explain how the binary representation of floating-point numbers affects radix
sort algorithms in Section 2.3. We sort uniformly distributed integer keys and
floating-point keys whose values follow a zipfian distribution with an exponent
of 1.0 on the entire floating-point value range. In that way, the k bits of the
floating-point keys are distributed similarly to the uniform integer distribution.
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Figure 27: RMG sort’s performance for varying data types
(2 billion keys, 2 GPUs, IBM AC922)

In Figure 27, we show the sort duration of RMG sort for different data types when
sorting 2 billion keys with two GPUs on the IBM AC922. As expected, we observe
that the sort duration of 32-bit types is approximately the same, given that RMG
sort’s total sort duration depends on the number of bits per key k.

However, on the IBM AC922, the sort duration of 64-bit data types is 2.2× higher
than for 32-bit types. Similar to the finding of Maltenberger et al. [34], we measure
that our single-GPU radix sorting primitive cub::DeviceRadixSort performs dis-
proportionately better for 32-bit than for 64-bit keys on the NVIDIA Tesla V100
GPU.
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Figure 28: RMG sort’s performance for varying data types
(2 billion keys, 8 GPUs, DGX A100)

In Figure 28, we show the results of the same experiment performed on the DGX
A100, with eight GPUs. We do not observe the performance discrepancy of
cub::DeviceRadixSort on the latest NVIDIA A100 GPU. Sorting 64-bit data types
takes exactly 2× longer than sorting their 32-bit counterparts, which is expected
for any radix sort algorithm.
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6 Discussion

In this section, we discuss the main findings of our experimental evaluation. We
show that RMG sort significantly outperforms state-of-the-art parallel CPU-only
sorting algorithms; up to 20× with two GPUs on the IBM AC922, and up to 9×
with eight GPUs on the DGX A100. RMG sort considerably accelerates sorting
for data sets of up to 32 billion keys.

Best Scaling Multi-GPU Sorting Algorithm. We demonstrate that, com-
pared to two state-of-the-art merge-based multi-GPU sorting algorithms, RMG
sort scales best to increasing numbers of GPUs. The radix partitioning phase of
RMG sort scales linearly with the number of keys n. The number of P2P transfers
performed in the P2P key swap phase is constant, as RMG sort requires only a
single all-to-all P2P exchange independent of the number of GPUs g. In contrast,
the time duration of the P2P-based merge phase of P2P merge sort grows linearly
when scaling to increasing numbers of GPUs. When sorting with eight GPUs, we
measure RMG sort’s radix partitioning phase combined with the following P2P
key swap to be 2.7× faster than the entire P2P-based merge phase of P2P merge
sort. Moreover, we find that the CPU’s merging performance of HET merge sort
can not compete with our P2P-based radix partitioning approach, as the main
memory bandwidth is orders of magnitude lower than that of the GPUs.

With RMG sort, we employ an MSB radix partitioning strategy which allows
us to interleave the sorting computation with the device-to-host copy. We sort
individual buckets while copying the sorted buckets back to main memory. As a
result, we already outperform the two merge-based multi-GPU sorting algorithms
for two GPUs, even though the benefit of RMG sort’s improved scaling does not
apply for g = 2. On two modern multi-GPU accelerator platforms that include up
to eight GPUs, we evaluate RMG sort to outperform P2P merge sort up to 1.26×
and HET merge up to 1.8×.

Performance Impact of Data Skew. Since the performance of radix-based
algorithms typically decreases when processing skewed data, we analyze RMG
sort’s performance for zipfian distributions and input keys of varying bit entropy
values. When sorting with two GPUs on the IBM AC922, we see that RMG
sort’s execution time increases considerably for zipfian distributions. Compared
to P2P merge sort, RMG sort becomes up to 13% slower for highly skewed input
keys, i.e. for zipf exponents of 1.5. However, we observe that scaling to increasing
numbers of GPUs mitigates this performance bottleneck because the time duration
of the radix partitioning phase reduces linearly. Thus, the performance of RMG
sort is significantly less affected by data skew when sorting with eight GPUs. On
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the DGX A100, RMG sort remains the fastest multi-GPU sorting algorithm for
all distribution types, with speedups of at least 11% compared to P2P merge sort,
and at least 1.7× over HET merge sort.

Future Work. Still, to mitigate the performance decrease for skewed data on
systems like the IBM AC922, we propose the following optimizations to be imple-
mented as part of future work: To ensures optimal numbers of buckets, the bit
range on which we partition the keys during the radix partitioning phase should
be dynamically adjusted. Thereby, the interleaved sorting and copy operations
achieve optimal throughput rates for any bit entropy. To mitigate the performance
overhead that results from zipfian distributions we propose to further optimize the
kernel functions of the radix partitioning phase. Both for the histogram computa-
tion and the key scattering, a reduction of the performed shared memory atomic
operations promises even further speedups.

To sort large out-of-core data, we suggest extending our multi-GPU sorting algo-
rithm by a preliminary partitioning step on the CPU which divides the input data
into chunks that are no bigger than the combined GPU memory. The partitioning
step also needs to ensure that the chunks contain keys of distinct value ranges.
Then, the entire data set can be sorted through subsequent, independent sorting
rounds using RMG sort as the in-core algorithm.
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7 Related Work

To the best of our knowledge, we propose the first multi-GPU sorting algorithm
that is based on radix-partitioning (RMG sort). Since we build upon prior re-
search on single-GPU sorting approaches, we discuss the recent research concern-
ing single-GPU sorting algorithms. With regards to multi-GPU acceleration, we
discuss related work not only for sorting but for joins as well. Both research ar-
eas contain valuable insights in terms of inter-GPU communication, multi-GPU
algorithm design, and performance optimizations. Finally, we give an overview of
today’s landscape of commercially available GPU-accelerated database manage-
ment systems.

7.1 GPU Sorting Algorithms

Various single-GPU sorting algorithms have been proposed [5, 8, 13, 17, 29, 30, 57,
58, 62]. The best performing approaches are radix sort algorithms [34, 23, 35, 44].

Ha et al. propose an LSB radix sort algorithm that considers two bits at a time and
performs a block-local key shuffle in shared memory to ensure coalesced writes [22].
Merrill et al. design an LSB radix sort algorithm that dynamically adjusts the
number of keys that a thread processes [36]. They also implement an analytical
performance model that determines the optimal radix length (i.e. number of bits
per partitioning pass c) to reduce the memory workload for any given target ar-
chitecture. Their approach has been integrated into NVIDIA’s high-performance
CUB library [41]. Stehle et al. publish an MSB radix sort algorithm that increases
the number of bits considered at a time to c = 8 [63]. In subsequent partitioning
passes, they partition the keys into smaller and smaller buckets until a local sort
algorithm sorts the buckets in on-chip memory.

Recently, Adinets et al. improve the performance of the LSB radix sort algorithm
provided in NVIDIA’s CUB library in release version 1.11.0 [41], making it the
fastest single-GPU sorting algorithm today [34]. Similar to Stehle et al., they
increase the number of bits per pass to c = 8. They further improve the alignment
of the global memory write-back phase and reduce the overall memory workload
from 3n to 2n by optimizing the parallel prefix scan computation [1].

These sorting algorithms are single-GPU approaches. We use the fastest single-
GPU sorting primitive, the LSB radix sort from the CUB library [41], as part of
our novel multi-GPU sorting algorithm implementation.

To the best of our knowledge, all previous multi-GPU sorting algorithms are merge-
based. Peters et al. propose a multi-GPU sorting algorithm that sorts and merges
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large-out-of-core data, i.e. data set sizes that exceed the combined GPU memory
capacity [52]. The authors use multiple GPUs to sort chunks that fit into the
GPU’s memory. After copying the sorted chunks back to main memory, the CPU
finds splitter elements across the sorted chunks to form disjoint data sets that in-
dividual GPUs can merge independently. To mitigate the overhead of transferring
data back and forth between the CPU and the GPUs, the authors overlap memory
transfers and computation. Gowanlock et al. publish a heterogeneous multi-GPU
sorting algorithm for large data as well. They sort data chunks using multiple
GPUs and merge them in one final multiway-merge phase on the CPU [18]. Simi-
lar to the approach by Stehle et al. [63], the authors overlap the GPU computation
with the data transfers when sorting out-of-core data in multiple sorting rounds.
They simultaneously sort the chunks of round i on the GPUs, copy the sorted
chunks of round i − 1 back to main memory, and transfer the chunks of round
i+ 1 to the GPUs. While both algorithms sort large-out-of-core data, neither one
utilizes inter-GPU communication. RMG sort is limited by the combined mem-
ory capacity of the GPUs. We sort in-memory data with g GPUs cooperatively
by exchanging keys between the GPUs via P2P interconnects. Thus, RMG sort
could improve the performance of an out-of-core sorting algorithm by reducing the
number of sorted chunks that need to be merged by a factor of g.

Tanasic et al. propose a merge-based multi-GPU sorting algorithm for data sets
that fit into the combined GPU memory [64]. After each GPU sorts its data chunk,
the GPUs cooperatively merge all chunks using P2P interconnects. The authors
design a multi-stage merge algorithm. In each stage, a pivot selection determines
which blocks of consecutive keys to exchange between pairs of GPUs. Because their
pivot selection can only merge two arrays at a time, multiple merge stages become
necessary for more than two GPUs. Thus, the merging workload and the P2P
transfers of their algorithm scale linearly with the number of GPUs. In contrast,
RMG sort requires only one P2P key swap between all GPUs, independent of the
number of GPUs.

7.2 Multi-GPU Query Processing

Recent work utilizes multiple GPUs with state-of-the-art interconnects to accel-
erate query processing operators. Mostly, multi-GPU join algorithms have been
proposed and evaluated. They contain valuable information about the efficient
design of multi-GPU algorithms.

Rui et al. implement and evaluate three multi-GPU join algorithms for large out-
of-core data on systems with NVLink interconnects. They analyze a nested-loop
join, a sort-merge join, and a hybrid join that uses radix partitioning [56]. The
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first step of their sort-merge join algorithm is to sort both relations using multiple
GPUs. For this, the authors first sort chunks of data that fit into the GPU
memory. The sorted chunks are copied back to main memory, where a merge path
partitioning algorithm partitions the chunks into subsets that are cooperatively
merged on the GPUs. Similar to the approach by Peters et al., the input data is
transferred over the CPU-GPU interconnects more than two times. To mitigate
the performance overhead of the data transfers, they overlap the copy and compute
operations. Their hybrid join uses radix partitioning to partition the input tuples
into disjoint buckets that the GPUs process using the sort-merge join as the in-
memory join algorithm. Since the authors evaluate their hybrid join to perform
best, we suggest that future research should evaluate the performance benefit of a
hybrid multi-GPU sorting algorithm. For example, if the radix partitioning phase
of RMG sort generates only a few big buckets due to data skew, these could be
split into multiple sub-buckets to increase the throughput of the sort-copy overlap.
Afterwards, the CPU can merge the sub-buckets in a repair phase.

Paul et al. publish a partitioned hash join for multiple GPUs and evaluate their
approach on NVIDIA’s DGX-1 platform [50]. Specific to their system’s intercon-
nect topology, they employ a multi-hop routing strategy where P2P data transfers
between GPUs are adaptively redirected based on the most efficient route. They
evaluate their join to achieve a high P2P interconnect bandwidth utilization. Gao
et al. design a multi-GPU hash join for GPU clusters with up to 1024 GPUs.
They harness NVLink interconnects within a node of eight GPUs and GPUDirect
RDMA for efficient out-of-node communication over Infiniband [15]. To reduce the
inter-GPU communication, they employ a GPU data compression strategy that
might benefit P2P-based multi-GPU sorting algorithms, such as RMG sort.

7.3 GPU-Accelerated Database Systems

Today, commercially available GPU-accelerated database systems are emerging.
BrytlytDB is a PostgreSQL-based database system that accelerates large-data an-
alytics with GPUs [7]. BlazingSQL offers a distributed SQL engine in Python
that processes raw data, scaling to thousands of GPUs [6]. Heavy.AI (formerly
OmniSciDB) provides data analytics and data visualization products and acceler-
ates both with multiple GPUs [24]. SQream DB is a GPU-based SQL database
system that leverages the massive parallelism of multi-GPU servers to accelerate
data analytics workloads [65]. We focus on accelerating a single database-relevant
operation, namely sorting, with modern multi-GPU platforms. GPU-accelerated
database systems might benefit from integrating a high-performance multi-GPU
sorting primitive, either as a stand-alone operation or as part of a sort-merge join.
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8 Conclusion

In this thesis, we designed, implemented, and evaluated a novel radix-partitioning-
based multi-GPU sorting algorithm (RMG sort). To the best of our knowledge,
RMG sort is the first multi-GPU sorting algorithm that employs radix partitioning,
while all previous approaches are sort-merge approaches. Our presented algorithm
sorts in-memory data, i.e. data sets that fit into the combined device memory of the
GPUs. We sort the input keys across the GPUs by utilizing modern, non-blocking,
all-to-all P2P interconnects, such as NVLink and NVSwitch, to their fullest extent.
For this, we designed an MSB radix partitioning strategy that scales linearly with
the input size and reduces the inter-GPU communication compared to prior merge-
based algorithms. By exchanging the radix partitions between all GPUs in parallel,
RMG sort requires only one all-to-all P2P key swap, independent of the number
of GPUs.

We implemented our multi-GPU sorting algorithm and presented our performance
optimizations in detail. To enable further research and reproducible evaluation
results, we published our source code and our automated benchmark scripts. We
evaluated RMG sort on modern accelerator platforms with up to eight GPUs and
high-bandwidth interconnects. We compared its performance to highly optimized
parallel CPU sorting algorithms and two state-of-the-art, merge-based, multi-GPU
sorting algorithms.

Our evaluation shows that RMG sort utilizes state-of-the-art high-speed P2P inter-
connects, such as NVLink 2.0, NVLink 3.0, and NVSwitch, more efficiently than
prior merge-based algorithms, especially for more than two GPUs. By overlap-
ping the sorting computation and the device-to-host transfers, we also outperform
the merge-based algorithms on two GPUs. We find that RMG sort significantly
outperforms parallel CPU-based sorting algorithms up to 20× and two state-of-
the-art merge-based multi-GPU sorting algorithms up to 1.26× and 1.8×. RMG
sort scales better with increasing numbers of GPUs compared to the merge-based
sorting algorithms. Thus, RMG sort further benefits from future accelerator plat-
forms given that hardware vendors continue to increase the number of GPUs and
the P2P interconnect bandwidth [47, 43, 48].
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