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Abstract

Growing data volumes present a mounting challenge to relational joins. GPUs have
gained widespread adoption as database accelerators for operators such as joins
due to their high instruction throughput and memory bandwidth. Most published
GPU-accelerated joins are single-GPU algorithms that do not leverage multi-GPU
platforms with high-speed P2P interconnects e�ectively. The few proposed multi-
GPU joins either fail to exploit the fast P2P interconnects or lack support for large
out-of-core data. In this thesis, we present a heterogeneous multi-GPU sort-merge
join composed of three phases: a merge- or radix partitioning-based P2P-enabled
multi-GPU sort phase, a parallel CPU-based multiway merge phase, and a hybrid
join phase that combines a CPU merge path partition with a binary search-based
multi-GPU join strategy. We evaluate our novel multi-GPU join on two platforms
with fast NVLink- and NVSwitch-based P2P interconnects. We show that our join
outperforms state-of-the-art CPU and GPU baselines regardless of the workload.
It outperforms parallel CPU sort-merge and radix-hash joins up to 5.5◊ and 3.3◊,
respectively. Compared to non-P2P-enabled multi-GPU joins, it achieves speedups
of 5.9◊ (sort-merge) and 2.5◊ (hybrid-radix). We measure that our join’s hybrid
join phase with overlapped copy and compute operations contributes as little as
24% to its end-to-end runtime. If the input relations are pre-sorted, it is 14.4◊
faster than the hybrid-radix join. Our join scales well with the number of GPUs
and benefits from data skew with up to 12% shorter join durations.





Zusammenfassung

Wachsende Datenmengen stellen eine zunehmende Herausforderung für relationale
Joins dar. GPUs haben aufgrund ihrer hohen Befehlsdurchsatzrate und Speicher-
bandbreite weite Verbreitung als Datenbankbeschleuniger für Operatoren wie
Joins gefunden. Die meisten verö�entlichten GPU-beschleunigten Joins sind Single-
GPU-Algorithmen, welche Multi-GPU-Systeme mit schnellen P2P-Verbindungen
zwischen den GPUs nicht e�ektiv auslasten. Die wenigen vorgeschlagenen Multi-
GPU-Joins nutzen entweder die Hochgeschwindigkeits-P2P-Verbindungen nicht
oder unterstützen keine die GPU-Speicherkapazität übersteigenden Datenmengen.
In dieser Arbeit präsentieren wir einen heterogenen Multi-GPU-Sort-Merge-Join, der
aus drei Phasen besteht: einer P2P-fähigen und auf Mischung oder Fachverteilung
beruhenden Multi-GPU-Sortierphase, einer hochparallelen CPU-basierten Misch-
phase und einer hybriden Verbundphase, die eine CPU-Mischpfad-Partitionierung
mit einer auf binärer Suche aufbauenden Multi-GPU-Verbundstrategie kombiniert.
Wir evaluieren unseren Multi-GPU-Join auf zwei Systemen mit schnellen NVLink-
und NVSwitch-basierten P2P-Verbindungen. Wir zeigen, dass unser Sort-Merge-
Join die Leistung moderner CPU- und GPU-Referenzalgorithmen unabhängig von
der Arbeitsbelastung übertri�t. Er schneidet 5.5◊ beziehungsweise 3.3◊ besser ab
als nebenläufige CPU-basierte Sort-Merge- und Radix-Hash-Joins. Im Vergleich zu
nicht-P2P-fähigen Multi-GPU-Joins erzielt er Beschleunigungen von 5.9◊ (Sort-
Merge) und 2.5◊ (Hybrid-Radix). Wir messen, dass die hybride Verbundphase mit
überlappten Kopier- und Berechnungsvorgängen lediglich 24% zur Gesamtlaufzeit
unseres Joins beiträgt. Wenn die Eingaberelationen vorsortiert sind, ist er 14.4◊
schneller als der Hybrid-Radix-Join. Unser Join skaliert gut mit der Zahl der GPUs
und profitiert von Datenschiefe mit um bis zu 12% kürzeren Laufzeiten.
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1 Introduction

The join is one of the fundamental operators of any relational database system.
Unprecedented amounts of data make it increasingly challenging to process relational
joins e�ciently [35]. Therefore, researchers and engineers continuously adapt join
algorithms to harness the latest advances in hardware technology [7, 12, 13, 39,
57]. Modern multi-core architectures led to sophisticated workload partitioning
strategies, cache optimization techniques, and single instruction, multiple data
(SIMD) operations for relational joins [8, 9, 14, 59, 68, 92]. Similarly, the rise of
many-core graphics processing units (GPUs) inspired numerous GPU-accelerated
joins [34, 48, 88, 98, 107]. Due to the high instruction throughput and memory
bandwidth of GPUs [77, 79], these algorithms often outperform parallel CPU joins
by an order of magnitude [98, 107]. Most of the published GPU-accelerated joins are
single-GPU approaches that leave the potential performance gain of joining across
multiple GPUs connected via high-speed peer-to-peer (P2P) interconnects entirely
untapped. Moreover, they assume that the input relations and all intermediate
results fit completely into GPU memory. Although the on-chip GPU memory has
increased over the past few years up to 80 GB [77, 79], it still sets an upper limit
on the size of the input relations that a single-GPU join can process.

Only very few multi-GPU approaches have been proposed. Paul et al. describe a
partitioned multi-GPU hash join based on an adaptive multi-hop routing strategy
for e�cient P2P data transfers between connected GPUs [89]. By evenly distributing
the input relations and processing the relational join across multiple GPUs, the
authors fully utilize the GPUs’ compute power and P2P interconnect bandwidth but
only soften the upper ceiling on the amount of data that can be processed. Rui et al.
present two multi-GPU join algorithms for large out-of-core data: a sort-merge join
and a hybrid-radix join [97]. The sort-merge join operates in two phases. First, it
sorts chunks of the input relations that fit into GPU memory on the GPUs, partitions
the sorted chunks through a parallel merge path partitioning in main memory, and
merges the partitions concurrently across the GPUs. Second, it partitions the sorted
input relations again and joins the partitions on the GPUs. Consequently, the
sort-merge join transfers the data over two times via the CPU-GPU interconnects.
The hybrid-radix join partitions the input relations into disjoint buckets through
radix partitioning and joins the buckets on the GPUs. Although both out-of-core
joins break the upper limit on the input relation sizes, neither harnesses the high-
bandwidth P2P interconnects between the GPUs, which facilitate reducing the
data transfers over the typically slower CPU-GPU interconnects [61, 62, 67]. Hence,
the imperative arises to develop novel multi-GPU join algorithms that fully exploit
modern multi-GPU systems with fast interconnects.
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In this master thesis, we explore the design space of e�cient GPU-accelerated join
algorithms. We propose a heterogeneous multi-GPU sort-merge join for large out-
of-core data that utilizes the high-speed P2P interconnects of modern multi-GPU
platforms. It comprises a merge- or radix partitioning-based multi-GPU sort phase,
a parallel CPU merge phase, and a hybrid join phase that employs a CPU merge
path partition strategy and executes a binary search-based merge-join kernel across
multiple GPUs. Our implementation features various data transfer optimizations
and utilizes state-of-the-art CPU and on-GPU sort, merge, and partition primitives
determined through micro-benchmarks. We evaluate the performance of our multi-
GPU sort-merge join on high-performance computing (HPC) systems with fast
NVLink 2.0, NVLink 3.0, and NVSwitch interconnects such as the IBM AC922
and NVIDIA DGX A100 [49, 82]. We compare its total runtime for two workloads
against that of state-of-the-art CPU and GPU baselines: the multi-threaded CPU
sort-merge and radix-hash joins by Balkesen et al. and Rui et al.’s non-P2P-enabled
multi-GPU sort-merge and hybrid-radix join, respectively [7, 97]. We also study
the impact of our heterogeneous multi-GPU join’s three algorithm phases on its
execution time and analyze its scalability for increasing numbers of GPUs and
robustness against di�erent selectivity and data skew factors.

We show that our novel heterogeneous multi-GPU sort-merge join (HMG SMJ)
consistently outperforms the CPU and GPU baselines. On the IBM AC922, it is up
to 5.9◊ and 2.5◊ faster than the sort-merge join and hybrid-radix join by Rui et al.
(see Figure 1a). On the NVIDIA DGX A100, it achieves up to 5.0◊ (sort-merge)
and 2.0◊ (hybrid-radix) shorter join durations than the multi-GPU baselines (see
Figure 1b). Compared to Balkesen et al.’s CPU sort-merge and radix-hash join,
respectively, it yields speedups of 5.5◊ and 3.3◊. We measure that our multi-GPU
join’s sort phase contributes as much as 76% to its execution time. We observe that
the radix partitioning-based sort strategy is between 15% and 20% more e�cient
than the merge-based strategy. Once either of the two input relations exceeds the
combined GPU memory capacity, we notice a performance cli� as the CPU merge
phase saturates the main memory bandwidth. Our join surpasses the fastest CPU
and GPU baseline’s performance even with a parallel CPU merge phase up to 2.0◊
and 1.2◊, respectively. We find that the join phase has as little as 24% impact on
our join’s runtime. If both of the input relations are pre-sorted, it reaches speedups
of 14.4◊ (IBM AC922) and 9.2◊ (NVIDIA DGX A100) over the hybrid-radix join.
We demonstrate that our sort-merge join scales well with the number of GPUs and
benefits from skew with up to 12% shorter join durations. Thus, it is an excellent
fit as an operator for GPU-accelerated database systems.
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Figure 1: Join comparison for input relations with 16-byte tuples

With this thesis, we make the following contributions.

1. We propose a novel heterogeneous multi-GPU sort-merge join that harnesses
the fast P2P interconnects of modern multi-GPU accelerator platforms and
natively supports handling large out-of-core data.

2. We publish our high-performance implementation that utilizes state-of-the-art
CPU and single-GPU sort, merge, and partition primitives.

3. We conduct in-depth experiments for two workloads to study our sort-merge
join’s e�ciency in joining large input relations on modern multi-GPU systems
with high-bandwidth interconnects.

The remainder of this master thesis is structured as follows. In Section 2, we outline
the fundamental concepts of GPU architectures, GPU interconnects, the CUDA
programming model, and the canonical sort-merge join algorithm. Section 3 explains
the sort, merge, and join phases of our heterogeneous multi-GPU sort-merge join.
In Section 4, we evaluate the end-to-end performance of our multi-GPU-accelerated
join on modern multi-GPU systems with fast P2P interconnects. Section 5 discusses
the findings of our evaluation, while Section 6 provides an overview of the related
work. In Section 7, we conclude our research e�ort.
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2 Background

In this section, we provide information about GPU architectures, GPU interconnects,
the CUDA programming model, and the sort-merge join.

2.1 GPU Architectures

GPUs o�er massively parallel compute capabilities. Unlike CPUs that are designed
to simultaneously execute a few tens of threads as fast as possible and hide the
memory access latency through data caches and control flows, GPUs are optimized
to run thousands of threads in parallel with lower single-thread performance but
considerably higher instruction throughput than CPUs [85]. By way of illustration,
the two top-of-the-line GPUs, NVIDIA V100 (Volta) and NVIDIA A100 (Ampere),
achieve 32/64-bit floating-point throughput rates of up to 15.7/7.8 TFLOPS and
19.5/9.7 TFLOPS, respectively [77, 79]. GPUs are built around an array of multi-
threaded streaming multiprocessors (SMs), as depicted in Figure 2. The NVIDIA
V100 and NVIDIA A100 comprise 80 and 108 SMs, each containing 64 INT32
and FP32 as well as 32 INT64 and FP64 cores [74, 76]. SMs employ the single
instruction, multiple threads (SIMT) architecture. Instructions are pipelined to
leverage instruction-level parallelism (ILP) within a single thread and thread-level
parallelism (TLP) through simultaneous multithreading. SMs execute threads in
groups of 32 parallel threads called warps [63].

In addition to a many-core compute architecture, GPUs o�er a high-bandwidth
memory hierarchy comprising o�-chip and on-chip memory [85]. O�-chip memory
consists primarily of global high-bandwidth memory (HBM). In the case of the
NVIDIA V100 and NVIDIA A100, the maximum bandwidth rate of global memory
is 900 GB/s and 1555 GB/s, respectively [77, 79]. Usually, the capacity of global
memory is orders of magnitude smaller than that of main memory (e.g., 32 GB for
the NVIDIA V100 and 40 GB for the NVIDIA A100). Since global memory is only
accessible via aligned 32-, 64-, or 128-byte memory transactions, warps coalesce
adjacent memory accesses from parallel threads into as few memory transactions as
possible to improve transfer e�ciency [44]. The L2 cache further hides the access
latency of global memory by caching loads and stores to it. On the NVIDIA V100, its
capacity is 6 MB, while on the NVIDIA A100, it is 40 MB [74, 76]. On-chip memory
per SM includes low-latency shared memory as well as the L1 cache and the register
file (see Figure 2). Typically, shared memory serves as user-managed scratchpad
memory, while the L1 cache transparently hides the global memory access latency
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2.2 GPU Interconnects
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Figure 2: GPU hardware architecture

of all parallel threads executed by the SM [45]. On the NVIDIA V100 and NVIDIA
A100, shared memory and the L1 cache are physically combined on each SM with a
total capacity of 128 KB and 196 KB, respectively [19, 60]. Moreover, the register
file size per SM is 256 KB on both data center GPUs.

2.2 GPU Interconnects

GPUs are attached to the main memory controller via CPU-GPU interconnects.
Modern high-performance computing (HPC) systems have multiple GPUs connected
through peer-to-peer (P2P) interconnects. The interconnect topology greatly a�ects
the performance of GPU-accelerated applications [61, 62, 90].

Traditionally, PCIe has been the standard CPU-GPU and P2P interconnect. It is
a serial communication bus composed of up to 16 bi-directional lanes per link [69].
PCIe 3.0 lanes o�er data transfers at a rate of 1 GB/s. One PCIe 3.0 link reaches,
therefore, a theoretical bandwidth of 16 GB/s per direction. PCIe 4.0 lanes provide
a peak throughput of 2 GB/s. The uni-directional bandwidth of one PCIe 4.0 link
is 32 GB/s. If multiple GPUs are connected to the same PCIe link via a switch, the
total bandwidth is shared between the GPUs during concurrent data transfers [69].
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2.2 GPU Interconnects

In recent years, hardware vendors have introduced high-bandwidth interconnects
to enable faster CPU-GPU and P2P communication. NVLink is a bi-directional
point-to-point interconnect by NVIDIA [73]. NVLink 2.0 achieves a data transfer
rate of 25 GB/s per link in each direction [74]. NVLink 2.0-enabled GPUs (e.g.,
NVIDIA V100) support up to six links. Consequently, the peak bandwidth of P2P
data transfers between two NVIDIA V100 is 150 GB/s per direction. NVLink 3.0
has a uni-directional bandwidth of 50 GB/s per link [76]. NVLink 3.0-powered
GPUs (e.g., NVIDIA A100) feature twelve NVLink 3.0 links and o�er P2P data
transfer rates of up to 300 GB/s between two GPUs. Although the technology
is commonly utilized for P2P interconnects between GPUs [20], the IBM AC922
harnesses NVLink 2.0 also for its CPU-GPU interconnects [49]. NVSwitch is an
NVLink-based switch for non-blocking, all-to-all P2P communication between up
to 16 GPUs by NVIDIA [75]. NVLink 2.0- and NVLink 3.0-powered NVSwitch
enables a peak bandwidth of 150 GB/s and 300 GB/s, respectively, between any
two GPUs of a multi-GPU system simultaneously [54]. The NVIDIA DGX A100
employs NVLink 3.0-based NVSwitch for its P2P interconnects [82].

Most multi-GPU accelerators are dual-socket non-uniform memory access (NUMA)
systems with equally many GPUs connected to each socket. On such platforms, data
transfers between the local NUMA node and the GPUs of the remote NUMA node
involve traversing the CPU-CPU interconnect [66]. In a process called staging, the
data is moved from local to remote main memory via the CPU-CPU interconnect
and, subsequently, from remote main memory to GPU memory via the CPU-GPU
interconnect [55]. Copying data between GPUs without P2P interconnects attached
to di�erent NUMA nodes entails staging as well. Commercially available CPU-CPU
interconnect technologies include IBM X-Bus (XB), AMD Infinity Fabric (IF), and
Ultra Path Interconnect (UPI) by Intel [3, 5, 17, 52].

In times when PCIe was state of the art in interconnect technology, researchers
suggested that GPU-accelerated database operations cannot e�ciently scale to
large out-of-core data due to the data transfer bottleneck caused by low-bandwidth,
high-latency CPU-GPU interconnects [23, 30, 105, 117]. Since fast interconnects
such as NVLink and NVSwitch have emerged, GPU-based join algorithms that
significantly outperform their CPU baselines for large input relations have been
proposed [64, 65]. Nevertheless, considering the interconnect topology in the design
of GPU-accelerated database operations is crucial, especially on dual-socket multi-
GPU systems with heterogeneous CPU-CPU, CPU-GPU, and P2P interconnects.
On such systems, utilizing the compute power of both multi-core CPUs and many-
core GPUs can mitigate the data transfer bottleneck [26, 31, 91, 107].

6



2.3 CUDA Programming Model

2.3 CUDA Programming Model

CUDA is a general-purpose GPU programming model and interface by NVIDIA [85].
At its core, CUDA provides abstractions as C++ language extensions and a runtime
library for writing scalable GPU-accelerated applications.

The CUDA programming model regards threads as the lowest level of abstraction
for performing a GPU computation or memory operation and assumes that they
are executed on a physically separate device (GPU) that operates as a co-processor
to the host (CPU). CUDA extends the core C++ language with kernels. A kernel
is a device function that is executed in parallel by multiple threads. Up to 1024
threads are grouped into a one-, two-, or three-dimensional block that shares the
limited on-chip memory of a single SM core [19, 60]. However, multiple equally
shaped thread blocks may run a kernel concurrently and independently on di�erent
SM cores. Besides that, thread blocks are organized into a one-, two-, or three-
dimensional grid, as illustrated in Figure 3. The execution configuration syntax
allows for specifying the total number of threads that run a kernel (i.e., threads per
block times blocks per grid) [46]. During the execution of a kernel, each thread is
uniquely identifiable via the built-in 3-component variables: blockIdx, blockDim,
and threadIdx. If a kernel operates on a one-dimensional vector, the kernel-wide
unique thread identifiers, commonly used to partition the data equally across all
threads [40], are calculated through blockIdx.x * blockDim.x + threadIdx.x.
The threads comprising a block may cooperate by exchanging data through shared
memory and synchronizing their kernel execution via the intrinsic barrier function

syncthreads. All threads have access to linear global memory.

The CUDA toolkit includes the nvcc compiler to translate kernels into host- and
device-compatible binary code. Moreover, it provides a C++ runtime library
that exposes host functions for allocating, deallocating, and copying between host
and device memory, managing multiple devices attached to the same host, and
executing host and device operations asynchronously. CUDA manages concurrent
operations through sequences of commands called streams. Although the commands
issued on a stream are executed in order, the commands of di�erent streams may
get executed out of order. CUDA o�ers synchronization primitives to ensure the
successful completion of all commands issued on a stream [47]. Since many GPUs
support the concurrent execution of copy and compute operations, a well-known
performance optimization is to overlap streams [42].

7



2.4 Sort-Merge Join
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Figure 3: CUDA thread hierarchy

2.4 Sort-Merge Join

Given two input relations R and S, the join of R and S is defined as R ÛÙ r(a) ◊ s(b) S,
where r(a) ◊ s(b) denotes the join predicate [72]. ◊ is the condition that must hold
between the attributes a and b of R and S, respectively. Generally, the ◊ operator
can be {=, ”=, <,>,Æ,Ø}. If ◊ is the equality operator, the join is referred to as
an equi-join, whose output relation Q is defined as Q = {t | t = rs · r œ R · s œ
S · t(a) = t(b)}. Put di�erently, Q contains tuples t consisting of two parts, r and
s, where r is a tuple in R and s is a tuple in S. Furthermore, for each tuple t, the
values of the join attributes t(a) from r and t(b) from s are equal.

One technique to implement an equi-join is the sort-merge join [118]. It consists
of two stages: sort and merge (see Algorithm 1). In the sort stage, the algorithm
sorts the input relations R and S based on the values of the join attributes a and b

to e�ciently locate groups of tuples with identical join attribute values (Lines 2
and 3). In the merge stage, the algorithm scans the two input relations R and S

sequentially while looking for qualifying tuples r and s with equal join attribute
values r(a) and s(b). It starts the two scans at the first tuples of each input relation
(Lines 6 and 7) and advances the scan of R as long as the current R tuple’s value
of the join attribute a is less than its counterpart of the S tuple currently under
consideration (Lines 9 and 10). Analogously, the algorithm advances the scan of S
while the value of the join attribute b in the current S tuple is less than that in the
current R tuple (Lines 11 and 12). It alternates between the R and S scans until
it finds a tuple r, belonging to R, and a tuple s, belonging to S, with r(a) = s(b).
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2.4 Sort-Merge Join

Algorithm 1: Canonical sort-merge join
1: function Sort Merge Join(R, S, a, b)
2: sort(R, a)
3: sort(S, b)
4:
5: QΩ ÿ
6: r Ω first(R)
7: sΩ s

Õ Ω first(S)
8: while r ”= eof · s ”= eof do
9: while r(a) < s

Õ(b) do
10: r Ω next(R, r)
11: while r(a) > s

Õ(b) do
12: s

Õ Ω next(S, sÕ)
13: sΩ s

Õ

14: while r(a) = s
Õ(b) do

15: sΩ s
Õ

16: while r(a) = s(b) do
17: insert(Q, rs)
18: sΩ next(S, s)
19: r Ω next(R, r)
20: s

Õ Ω s

21:
22: return Q

In that case, the algorithm inserts the concatenated tuple rs into the output relation
Q (Line 17). However, several tuples of R might have the same join attribute value
as the currently considered R tuple r (i.e., belong to the same r group). Similarly,
multiple S tuples can belong to the current s group. Thus, the algorithm matches
all R tuples of the r group with all S tuples of the s group before resuming the R
and S scans at the tuples following the r and s groups (Lines 13 to 20).

Over the past decades, parallel adaptations of the canonical sort-merge join have
been proposed to exploit the thread- and data-level parallelism of modern multi-
socket, multi-core CPU architectures with vectorized SIMD instructions [2, 6, 59].
Several GPU-accelerated sort-merge joins have been published [32, 48, 98]. Besides,
researchers have periodically re-evaluated the relative performance between the sort-
merge join and the hash join – often with contradictory findings [6, 27, 59, 103]. In
a real-world database system, sort-merge joins are particularly useful for harnessing
and preserving interesting orders during query execution [106].
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3 Algorithm

In this section, we present a novel heterogeneous multi-GPU sort-merge join for large
out-of-core data exceeding the combined GPU memory capacity. Our algorithm
comprises a multi-GPU-accelerated merge- or radix partitioning-based sort phase
(see Section 3.1), a parallel CPU-based multiway merge phase (see Section 3.2), and
a hybrid join phase that combines a CPU merge path partitioning approach with a
multi-GPU-accelerated join processing approach (see Section 3.3). It harnesses the
high-speed P2P interconnects of modern multi-GPU systems for e�cient inter-GPU
communication and their multi-core CPU and many-core GPU compute capabilities
to mitigate the data transfer bottleneck. It works as follows.

Sort Phase. Our multi-GPU join partitions the tuples (i.e., key-value pairs) of the
two input relations R and S into chunksets that fit into the combined GPU memory
of all g GPUs and splits each of the kR and kS chunksets into g equal-sized chunks.
After that, for each chunkset, it copies the individual chunks to the GPUs, brings
their tuples in globally ascending order by key across the g GPUs through a merge-
or radix partitioning-based sort algorithm, and copies them back into main memory.
In the merge-based sort approach, the chunks’ tuples are sorted locally by key on
each GPU and merged recursively across the g GPUs in multiple stages that entail
selecting pivots and swapping blocks of tuples between subsets of all GPUs over
the P2P interconnects. In the radix partitioning-based sort approach, each GPU
partitions its chunk’s tuples based on their key’s most significant bits into buckets,
exchanges select buckets with other GPUs in an all-to-all P2P bucket exchange,
and sorts all buckets locally by key. Our multi-GPU sort-merge join overlaps the
data transfers to and from the GPUs to saturate the CPU-GPU interconnects’
bi-directional bandwidth regardless of the sort strategy.

Merge Phase. Once R and S reside kR- and kS-sorted (i.e., sorted within each of
the kR and kS chunksets) in main memory, it merges the chunksets of each input
relation. More specifically, it constructs a zero-copy zip iterator for the keys and
values of each chunkset in R and S, respectively, and brings the elements of the zip
iterators in ascending order by key through a highly parallel CPU-based multiway
merge algorithm. If kR = 1 or kS = 1 (i.e., R or S consists of only one chunkset),
the merge phase for the corresponding input relation is skipped.

Join Phase. Our heterogeneous multi-GPU join then divides the fully sorted input
relations R and S into g correlated partitions that can be joined independently
via a CPU-assisted merge path partition strategy. Since the size of the partition
pairs might exceed the GPUs’ global memory capacity, they are further divided
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into smaller correlated subpartitions. Subsequently, our multi-GPU-accelerated
algorithm joins the keys of the disjoint subpartition pairs for each of the g correlated
partitions across all g GPUs. It employs a pipelined copy-compute strategy that
entails simultaneously copying the keys of a subpartition pair into global memory,
executing the binary search-based in-core merge join on the keys of a subpartition
pair to produce matching key ranges, and copying a set of matching key ranges back
into main memory. Once all correlated partitions have been joined independently
across the g GPUs, the join tuples of R and S are materialized in parallel on the
CPU based on the previously identified matching key ranges.

3.1 Sort Phase

In this subsection, we describe our sort-merge join’s multi-GPU-accelerated sort
phase. It orders the tuples of the two input relations R and S by key in chunksets
comprised of equal-sized chunks that are sorted across the g GPUs via a merge- or
radix partitioning-based sort algorithm. Although both sort strategies utilize the
high-speed P2P interconnects of modern multi-GPU platforms for inter-GPU data
exchanges, they di�er in how the data are exchanged between the GPUs. While the
merge-based approach repeatedly shu�es blocks of tuples between pairwise subsets
of all GPUs, the radix partitioning-based approach swaps all tuples simultaneously
among all g GPUs. Common to both multi-GPU sort algorithms is the mechanism
to partition R and S into kR and kS chunksets, respectively, consisting of g equal-
sized chunks that fit into the global GPU memory of any of the g GPUs. Moreover,
the two sort strategies share the logic to interleave data transfers of chunks to and
from the GPUs with in-core compute operations on chunks utilizing two separate
bu�ers for the keys and values of R and S, respectively.

3.1.1 Multi-GPU Merge Sort

The merge-based multi-GPU sort approach extends the algorithm by Tanasic et al.
with support for key-value pairs and large out-of-core data [110]. Once the chunks
constituting a chunkset have been copied to the g GPUs, they are sorted locally by
key on each GPU through a state-of-the-art single-GPU sort primitive. Afterward,
they are merged globally by key across all g GPUs in a sequence of pivot selections,
block exchanges, and comparison-based single-GPU merge primitive executions.
Finally, the sorted chunks are copied back into main memory.
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3.1 Sort Phase

GPU 0 GPU 1
!0–– 7 11 12 16 2 9 13 15 ––!17 11 2 9 12 16 13 152 7 9 11 12 13 15 16

Figure 4: Block shu�ing for g = 2 GPUs

On-GPU Chunk Sorting. A high-performance, low-overhead single-GPU sort
primitive is required for e�ciently sorting the chunks’ tuples locally by key. Most
on-GPU sort algorithms are parallel adaptations of either merge sort with a time
complexity of O(n ú log(n)) or radix sort with a time complexity of O(n), where n
denotes the number of tuples to sort [71, 101, 109]. Over the past decade, radix sort
has established itself as the fastest algorithm, as its traditionally high demand for
memory bandwidth has been reduced by algorithmic improvements and mitigated
by the ever increasing GPU memory bandwidth [1, 70, 74, 76, 102, 109].

We evaluate two state-of-the-art on-GPU sort primitives on two multi-GPU systems
for two billion 64-bit tuples with 32-bit keys and 32-bit values: a load-balanced
merge sort from the accelerated CUDA C++ primitives library mgpu and a least-
significant bit (LSB) radix sort from the parallel CUDA C++ algorithms library
thrust [78, 84]. Our micro-benchmark shows that thrust::sort by key outper-
forms mgpu::mergesort up to 4.1◊ on the IBM AC922 and 5.2◊ on the NVIDIA
DGX A100. We, therefore, utilize it as the single-GPU sort primitive in our multi-
GPU merge sort implementation. The space complexity of the out-of-place LSB
radix sort from the thrust library is O(n) as it needs a secondary bu�er for the
key-value pairs and comes with an overhead of up to 128 MB. Since dynamic GPU
memory allocations are very expensive [85], we pass our stack allocator operating
on pre-allocated global memory to the on-GPU sort primitive.

Multi-GPU P2P Block Shu�ing. Bringing the locally sorted chunks in globally
ascending order by key across g = 2 GPUs requires a merge stage consisting of a
pivot selection, a block exchange, and an on-GPU merge step (see Figure 4). In the
pivot selection, we calculate a key-based pivot position p in the chunk C1 and its
mirrored position p

Õ in the chunk C0, where pÕ = |C0|≠ p, so that the first pÕ keys
in C0 and the first p keys in C1 are less than or equal to the last p keys in C0 and
the last pÕ keys in C1. Our implementation uses an adapted binary search kernel

12



3.1 Sort Phase

GPU 0 GPU 1
1 Keys Values Keys Values ––!"

2 Keys Values Keys Values ––!#
Figure 5: P2P data transfers

that operates on the keys of two sorted chunks via O(log(n)) remote P2P memory
reads, where n signifies the chunk size. It chooses the leftmost pivot position p and,
by extension, its rightmost counterpart pÕ to minimize the number of key-value
pairs that must be exchanged via the P2P interconnects.

After determining the optimal pivot positions, we swap the first p key-value pairs
in C1 with the last p key-value pairs in C0. Since we exchange blocks of consecutive
keys and values, respectively, their by-key order is preserved. Our implementation
uses asynchronous bi-directional P2P data transfers to swap the equal-sized key
and value blocks of C0 and C1 between the two GPUs. It copies the blocks from
the primary bu�ers (Bp) to the secondary bu�ers (Bs) to avoid blocking stream
synchronization, as portrayed in Figure 5. Copying the misplaced key and value
blocks of C0 and C1 between the two GPUs occurs asynchronously on the default
streams. Moving the remaining key and value blocks into their secondary bu�er on
each GPU occurs concurrently in high-bandwidth device memory on other streams.
Once all operations have been completed, C0 and C1 each contain two by-key sorted
key and value blocks that are merged in the final on-GPU merge step.

Merging the sorted chunks across g Ø 4 GPUs with g = 2h and h > 1 requires
multiple merge stages (see Figure 6). We follow a recursive divide-and-conquer
approach for merging c chunks by bringing the left and right half of the chunks
into ascending order by key before and after each recursion tree level. If c = 2, we
merge each of the g/2 chunk pairs at the recursion tree’s leaf level across two GPUs
(e.g., C0 with C1 and C2 with C3 in stage 1 and stage 3 ). If c > 2, we merge
each of the g/c chunk groups via a pivot selection and block exchange between
multiple GPUs, followed by an on-GPU merge step (e.g., C0 + C1 with C2 + C3 in
stage 2 ). Our implementation merges the g/c chunk groups in each merge stage
simultaneously, coordinated by parallel CPU threads.
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GPU 0 GPU 1 GPU 2 GPU 3
1 !0 !1 !2 !3

2
2 7 9 11 12 13 15 16 1 3 4 5 6 8 10 142 7 6 8 1 3 4 5 12 13 15 16 9 11 10 142 6 7 8 1 3 4 5 12 13 15 16 9 10 11 14

3 !0 !1 !2 !3

Figure 6: Block shu�ing for g = 4 GPUs

On-GPU Chunk Merging. A fast on-GPU merge primitive is needed to e�ciently
merge two correlated and by-key sorted key-value pair blocks constituting a chunk.
The two single-GPU merge primitives mgpu::merge and thrust::merge by key
are based upon GPU merge path – a load-balanced tile partitioning strategy with a
time complexity of O(n/p + log(n)), where n and p are the total number of tuples
to merge and processors, respectively [29, 78, 84].

We evaluate the performance of the two single-GPU merge primitives on modern
multi-GPU platforms for two billion 64-bit tuples with 32-bit keys and 32-bit values.
Our micro-benchmark shows that thrust::merge by key is up to 1.1◊ faster than
mgpu::mergesort on the IBM AC922. On the NVIDIA DGX A100, it outperforms
its counterpart from the mgpu library 1.2◊. We use thrust::merge by key as the
on-GPU merge primitive in our multi-GPU merge sort implementation. Since the
out-of-place algorithm from the thrust library operates on auxiliary key and value
bu�ers and has a memory overhead of up to 64 MB, we pass our stack allocator
managing pre-allocated global memory to the merge primitive.
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3.1.2 Multi-GPU Radix Sort

The radix partitioning-based multi-GPU sort approach adds support for key-value
pairs and data exceeding the combined GPU memory capacity to the sort algorithm
by Ilic et al. [50]. After the chunks have been transferred to the g GPUs, they are
locally partitioned by key into buckets through most significant bit (MSB) radix
partitioning passes. The buckets are then re-distributed between the GPUs in an
all-to-all P2P bucket exchange so that, based on the most significant bits, the keys
of GPU Gi are less than or equal to the keys of GPU Gj with j > i. Finally, the
buckets are sorted locally and copied back into main memory.

On-GPU Chunk Partitioning. Once the keys and values of each chunk reside in
one of the g GPUs’ global memory, each GPU Gi partitions its chunk into buckets,
ensuring that the keys of bucket Ba,i precede those of bucket Bb,i with b > a.
First, we compute a device-local histogram with 2m buckets over the keys’ m most
significant bits. Instead of reading the keys and atomically incrementing the 2m

with m = 8 zero-initialized buckets in global memory, our implementation divides
the keys across all thread blocks, computes block-local histograms in considerably
faster shared memory, and aggregates the block-local histograms with warp-aligned
pre-aggregations into the device-local histogram. Second, we calculate the prefix
sum of the device-local histogram to determine the write o�sets for the 2m buckets.
Our implementation utilizes cub::DeviceScan::ExclusiveScan to calculate the
histogram’s prefix sum. The single-pass on-GPU prefix scan primitive employs a
decoupled look-back strategy to dissociate the latency of local prefix computation
from global prefix propagation and is part of the high-performance CUDA C++
library for cooperative warp-, block-, and device-wide primitives called cub [70, 80].
Finally, we scatter the keys and the corresponding values into the buckets based
on the prefix sum. To avoid blocking synchronization, our implementation scatters
the key-value pairs into the secondary bu�ers. To avoid random writes to global
memory, it pre-scatters the keys and values simultaneously within each thread
block into the block-local buckets in fast shared memory and copies the block-local
key-value buckets sequentially back to global memory.

After each of the g GPUs has partitioned its chunk locally, it sends its device-local
histogram to all other GPUs via the P2P interconnects. We compute the logical
bucket distribution D to determine whether each device-local bucket fits into the
memory of its designated GPU. Multiple device-local buckets Ba,0, Ba,1, ..., Ba,g≠1
belonging to the same global bucket Ba form a spanning bucket if their keys and
values do not fit into the global GPU memory of their assigned GPU. We refine
spanning buckets through repeated MSB radix partitioning passes on the next m
most significant bits until no spanning buckets are left. To avoid treating slightly
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GPU 0 GPU 1 GPU 2 GPU 3
1 0,0 1,0 0,1 3,1 0,2 3,2 0,3 2,3 ––!",#

0 0 0 0 1 2 3 3 ––$(!")
2 0:0,0 0:1,0 1,0 0:0,1 0:1,1 3,1 0:1,2 0:3,2 3,2 0:0,3 0:2,3 2,3 ––!",#

0:0 0:0 0:0 0:1 0:1 0:1 0:2 0:3 1 2 3 3 ––$(!")
Figure 7: Chunk partitioning

overflowing buckets as spanning buckets and, thus, minimize the number of MSB
radix partitioning passes, we define a padding threshold ‘ = 0.5% relative to the
chunk size, allowing select GPUs to host slightly more key-value pairs.

Figure 7 illustrates the on-GPU chunk partitioning strategy for tuples with 32-bit
keys and 32-bit values on g = 4 GPUs. It depicts only the keys and the global
buckets B0, B1, ..., B3 for simplicity. In pass 1 , each GPU partitions its chunk
locally based on the keys’ m = 8 most significant bits [32..24) and exchanges its
histogram with all other GPUs. The device-local buckets B0,0, B0,1, ..., B0,3 form a
spanning bucket and require additional MSB radix partitioning passes. In pass 2 ,
each GPU partitions its device-local bucket belonging to the global bucket B0
on the next m = 8 bits [24..16) into smaller buckets (e.g., B0:0,0 and B0:1,0 on
GPU G0). The device-local histogram exchange between all GPUs reveals that the
spanning bucket B0,0, B0,1, ..., B0,3 has been eliminated. Since the on-GPU chunk
partitioning strategy enforces only nearly perfect load balancing via the ‘ padding
threshold, the global bucket B0:2 is not a spanning bucket.

Multi-GPU P2P Bucket Swapping. Based on the logical bucket distribution,
the GPUs swap misplaced key-value buckets with each other in a non-blocking all-to-
all P2P bucket exchange (see Figure 8). Our implementation uses the secondary key
and value bu�ers for the P2P bucket swapping to avoid stream synchronization. If a
device-local bucket’s source and destination GPUs di�er, it issues two asynchronous
copy operations (one for the keys and one for the values) over the P2P interconnects
on the default stream. If a device-local bucket already resides on the target GPU,
it copies the keys and values in high-bandwidth device memory on another stream.
The CUDA runtime coalesces the asynchronous memory copy operations for the
keys and values of adjacent buckets into one memory transaction.
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GPU 0 GPU 1 GPU 2 GPU 3
0:0,0 0:1,0 1,0 0:0,1 0:1,1 3,1 0:1,2 0:3,2 3,2 0:0,3 0:2,3 2,3 ––!",#

0:0,0 0:0,1 0:0,3 0:1,0 0:1,1 0:1,2 0:2,3 0:3,2 1,0 2,3 3,1 3,2 ––!",#
Figure 8: Bucket swapping

On-GPU Chunk Sorting. Once the g GPUs contain only buckets of distinct
key ranges with respect to the (pBa + 1) úm most significant bits, where pBa is
the number of MSB radix partitioning passes of the global bucket Ba, each GPU
sorts the buckets of its chunk locally by key and transfers them back into main
memory. Our implementation utilizes the out-of-place single-GPU LSB radix sort
primitive cub::DeviceRadixSort::SortPairs to sort the key-value pairs in each
bucket based on the keys’ unsorted w ≠ (pBa + 1) úm least significant bits, where
w is the width of the key type [1, 80]. To reduce the total number of buckets to
sort and, by extension, minimize the accumulated kernel launch overhead of the
on-GPU sort primitive, our implementation fuses small neighboring buckets with
the same number of MSB radix partitioning passes whose combined size is less than
the experimentally determined fusing threshold “ = 1.0% relative to the chunk size.
Sorting the fused buckets occurs on the default stream. Transferring the sorted
buckets back into main memory takes place concurrently on a dedicated stream to
facilitate overlapped copy and compute operations [42].

3.1.3 Out-Of-Core Data Handling

Since the input relations R and S might exceed the combined global GPU memory
capacity of all g GPUs, they are sorted in chunksets. First, we split R and S into kR

and kS chunksets, each composed of g equal-sized chunks that fit into the g GPUs’
global memory. Our implementation queries the CUDA device properties and
dimensions the chunksets under a memory utilization limit of 80% to leave space for
auxiliary data structures [43]. Second, we sort the kR and kS chunksets sequentially
across all g GPUs through the merge- or radix partitioning-based multi-GPU sort
strategy. Our implementation allocates two chunk-sized key and value bu�ers in
device memory. It transfers the chunks of a chunkset into the primary bu�ers (Bp),
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CPU GPU 0 GPU 1
1 !0 !1 … !2 ∗ # − 1 !0 !1 ––%&/'
2 !0 !1 … !2 ∗ # − 1 Sort !0 Sort !1 ––%&/'
3 !0 !1 … !2 ∗ # − 1 !0 !2 !1 !3 ––%&/'
4 !0 !1 … !2 ∗ # − 1 Sort !2 Sort !3 ––%&/'

Figure 9: Sort pipeline for large out-of-core data

sorts their tuples by key across all g GPUs utilizing the secondary bu�ers (Bs),
and transfers them back into main memory while copying the chunks of the next
chunkset into the flipped primary bu�ers, as illustrated in Figure 9. It harnesses
two non-blocking streams to overlap the data transfers to and from the GPUs and,
thus, saturate the bi-directional CPU-GPU interconnect bandwidth.

Due to the high latency and implicit stream synchronization of dynamic CUDA
memory allocations [25, 114, 115], the multi-GPU sort implementations operate
exclusively on pre-allocated host and device memory. Our C++ stack allocator
template with self-defragmentation capabilities makes one physical allocation and,
subsequently, issues byte-aligned virtual allocations. It tracks its allocations (i.e.,
begin pointer and byte-aligned size pairs) with a doubly linked list. Upon memory
allocations, it calculates the begin pointer of the virtual allocation based on the
zero-initialized relative o�set to the physical allocation, increases the relative o�set
by the byte-aligned size, and inserts the allocation as the last node into the linked
list. During deallocations, it searches for the allocation in reverse, removes it from
the doubly linked list, and lowers the relative o�set to the accumulated allocation
sizes if it was the last node. Our C++ allocator template has two specializations:
the host allocator allocates 16-byte-aligned pinned (i.e., page-locked) main memory
to facilitate high-bandwidth data transfers and the device allocator allocates 128-
byte-aligned global GPU memory [41]. We use a single host allocator and g device
allocators for all memory allocations, including those via on-GPU sort, merge, and
scan primitives, in our multi-GPU sort implementations.
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3.2 Merge Phase

In this subsection, we explain the CPU-assisted merge phase of our heterogeneous
multi-GPU sort-merge join. It merges the tuples of the sorted kR and kS chunksets
by key through a parallel CPU multiway merge algorithm to bring the two input
relations R and S into fully sorted order in main memory. If either of the input
relations comprises only one chunkset (i.e., kR = 1 or kS = 1), it is already fully
sorted by key and requires no merge phase. The CPU multiway merge primitive
operates on zero-copy zip iterators to merge the keys and values of the kR and kS

chunksets in lockstep. Thus, it avoids copying the keys and values of R and S into
temporary key-value pairs during the merge phase. Since the merge primitive is an
out-of-place algorithm, it uses a pre-allocated key-value bu�er of size max(|R|, |S|)
for merging the chunksets of R and S in sequence.

3.2.1 CPU Multiway Merge

Merging the tuples of the kR and kS chunksets belonging to R and S, respectively,
requires a CPU multiway merge primitive. The best conceivable time complexity of
any comparison-based multiway merge algorithm is O(n ú log(k)), where n denotes
the total number of tuples and k is the number of sorted sublists (i.e., chunksets).
Both in-place algorithms and out-of-place algorithms with a space complexity of
O(n) have been published [16, 51, 99]. gnu parallel::multiway merge included
in the libstdc++ parallel mode is a runtime-optimal multi-threaded CPU multiway
merge primitive [21, 22]. It uses a register-optimized merge strategy with unrolled
loops for k œ {2, 3, 4} and a generic loser tree-based strategy for k Ø 5 [100].
CPU multiway merge algorithms are typically memory bandwidth-bound [16, 51].
Maltenberger et al. measure that gnu parallel::multiway merge saturates the
main memory bandwidth of modern high-performance computing platforms [67].
We harness the primitive in our multi-GPU join implementation.

3.2.2 Zero-Copy Zip Iterator Handling

The multi-threaded CPU merge primitive gnu parallel::multiway merge lacks
native support for tuples. Instead of copying the separately stored keys and values
of R and S into and out of temporary key-value pairs with an overloaded key-based
< operator to employ the CPU multiway merge primitive as is, albeit with time and
space overheads of O(n), we adapt its implementation to operate on pointer-based
zip iterators and construct key-value zip iterators for the keys and values of the
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kR and kS chunksets. By internally storing tuples of sequence pointers, as well as
dereferencing and applying permutations to the sequence pointers simultaneously,
the zero-copy zip iterators allow for merging chunksets of R and S by key without
any space overhead. We evaluate the performance of our zip iterator optimization
for gnu parallel::multiway merge with eight billion 8-byte tuples (i.e., 32-bit
keys and 32-bit values) split into three sublists. On the IBM AC922, the speedup
over the workaround using temporary key-value pairs is 5.6◊ (of which 64% is due
to eliminating dynamic memory allocations). On the NVIDIA DGX A100, utilizing
zero-copy zip iterators is 21.3◊ faster than relying upon temporary key-value pairs,
where 86% is caused by avoiding memory allocations.

3.3 Join Phase

In this subsection, we outline our join’s multi-GPU-accelerated join phase. It splits
the by-key sorted input relations R and S into g correlated partitions composed of
smaller correlated subpartitions via a CPU-assisted merge path partition strategy
and joins the disjoint subpartition pairs independently by key across the g GPUs. Its
pipelined execution model allows for transferring the keys of a disjoint subpartition
pair to global memory, running the binary search-based merge join kernel on the
keys of a subpartition pair to produce a set of matching key ranges, and transferring
a set of matching key ranges back into main memory concurrently on each GPU.
It fully saturates the bi-directional bandwidth of the CPU-GPU interconnects and
maximizes the GPUs’ streaming multiprocessor utilization.

3.3.1 CPU Merge Path Partition

Once the tuples of R and S reside by-key sorted in main memory, they are divided
into g equal-sized correlated partitions, each containing at least three correlated
subpartitions whose keys fit into the g GPUs’ global memory. We determine the
disjoint partition and subpartition boundaries through a key-based two-step merge
path partitioning [87]. First, we split R and S into g equal-sized disjoint partition
pairs (R0, S0), ..., (Rg≠1, Sg≠1) that can be merged independently across g GPUs.
Second, we split each disjoint partition pair (e.g., (R0, S0)) into a minimum of three
disjoint subpartition pairs (e.g., (R0,0, S0,0), ..., (R0,3, S0,3)) that can be merged fully
independently across s = 3 streams on a single GPU. Our implementation utilizes
mgpu::merge path from the CUDA C++ primitives library mgpu in parallel CPU
threads to find the merge path in both steps [78].
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Figure 10: Merge path of R and S

Figure 10 illustrates the merge path of the keys in R and S. It is the traversal path
in a merge matrix from the upper left to the lower right corner while moving only
rightward (if the key in S is smaller than that of R) or downward (if the key in S is
greater than or equal to that of R). The cells in the merge matrix have a value of 1
to the left bottom and 0 to the right top of the merge path (see Figure 10a). The
i-th point on the merge path lies on the i-th cross diagonal in the merge matrix
(see Figure 10b). Partitioning a merge path into p equal-sized contiguous segments
(i.e., finding its intersection with the p≠ 1 equidistant cross diagonals in the merge
matrix) distributes the workload for merging R and S equally among p processors.
In the example, the merge path partitioning of the input relations’ keys produces
p = 4 equal-sized partition pairs (e.g., R0 = (2) with S0 = (1, 2, 3)).

Since equal keys in R and S might end up in di�erent partition pairs, merge path
partitioning yields no valid distribution of the workload for joining R and S across p
processors. In the example, the key 9 occurs in one partition of R (i.e., R1 = (7, 9))
but in two partitions of S (i.e., S1 = (5, 9) and S2 = (9, 10)). We, therefore, conduct
a boundary validation after each merge path partitioning step. If the last key in
partition Ri (or Si) is equal to the first key in partition Si+1 (or Ri+1), we compute
the key ranges in both partitions via adapted binary searches, exclude the key from
both partitions, and store the matching key ranges prematurely.
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Partition 0 Partition 1 Partition 2
a 2 7 9 9 9 9 9 9 9 9 9 11 ––!1 9 9 9 10 14 ––"
b 2 7 9 9 9 11 13 13 13 13 13 15 ––!1 5 9 13 13 14 ––"

Figure 11: Skewed partition pairs

Figure 11 exemplifies the merge path partitioning of the keys in R and S for p = 3
with skewed partition pairs. In both examples, the partition R1 contains keys that
start in the previous (R0) or end in the next (R2) partition, while its counterpart S1
is empty. We eliminate skewed partition pairs in the boundary validation after each
merge path partitioning step. If Ri (or Si) contains keys but Si (or Ri) is empty,
we check if the first key equals the last key in Ri (or Si). If yes (see Figure 11a),
we compute the key’s entire range in R and S, exclude it from both input relations,
and save the matching key ranges prematurely. If no (see Figure 11b), we apply
the same logic with the ranges of the first and last key, respectively.

3.3.2 Multi-GPU Merge Join

After the two input relations R and S have been split into g equal-sized correlated
partitions comprising at least three correlated subpartitions, each of the g GPUs
joins its disjoint subpartition pairs entirely independently by key in a three-stream
join pipeline. First, we distribute the keys of the three or more subpartition pairs
evenly among s = 3 non-blocking streams in a round-robin fashion for each of the g
GPUs. On the host (in main memory), we allocate g resizable bu�ers for the GPUs’
matching key ranges. On the device (in global memory), we allocate s subpartition-
sized key bu�ers on each GPU. Our implementation utilizes our stack allocators
operating on pre-allocated memory while enforcing a self-defragmentation strategy
during the entire multi-GPU merge join execution to avoid dynamic memory
allocations (see Section 3.1.3). Second, we schedule g join pipelines with s concurrent
streams. Each stream transfers the keys of a subpartition pair into its key bu�er in
global memory, executes the join kernel on the keys to produce a set of matching
key ranges, and transfers the set back into its key-range bu�er in main memory.
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Stream 0––– Subpartition 0 Subpartition 3 Subpartition 6HtoD Join DtoH HtoD Join DtoH HtoD Join DtoH
Stream 1––– Subpartition 1 Subpartition 4HtoD Join DtoH HtoD Join DtoH
Stream 2––– Subpartition 2 Subpartition 5HtoD Join DtoH HtoD Join DtoH

Figure 12: Join pipeline for s = 3 streams

Each pipeline performs all three actions simultaneously, as depicted in Figure 12.
Unlike our multi-GPU-accelerated sort algorithms, for which overlapping the host-
to-device and device-to-host data transfers with the compute operations yields no
performance gain as the g GPUs sort cooperatively with explicit synchronization
points (e.g., block shu�ing and bucket swapping) [67], it enhances the performance
for the multi-GPU merge join as the g GPUs join independently [11, 56, 108, 113].
Finally, we materialize the join tuples of R and S on the CPU based on the matching
key ranges ([iR, jR], [iS, jS]) with jR Ø iR and jS Ø iS. Our implementation allocates
contiguous main memory for the q(jR ≠ iR + 1) ú (jS ≠ iS + 1) join tuples of the
output relation and materializes the tuples comprising the matched key and the
corresponding values of R and S, respectively, in parallel CPU threads.

3.3.3 In-Core Join Processing

Once the keys of two correlated subpartitions of R and S have been copied into a
stream’s key bu�er in global memory, they are joined via a binary search-based
merge join kernel. Suppose, without loss of generality, |R| Æ |S|, for each unique
key at index iR in the subpartition of R, we conduct three binary searches to find
the key’s ranges in the correlated subpartitions of R and S. In jR, we store the last
index in the subpartition of R, whose key is equal to that of index iR. In iS and jS,
we store the first and last index in the subpartition of S, respectively, whose key is
equal to that of index iR. The matching key range is denoted by ([iR, jR], [iS, jS]).
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2 7 7 7 9 11 12 12 12 13 15 16 ––!

2 2 5 7 7 10 12 13 13 14 14 16 ––"
Figure 13: Range search for R and S

Figure 13 shows the range search for the keys of two correlated subpartitions of R
and S. The key 2 at index iR = 0 occurs once in the subpartition of R (i.e., jR = 0)
and twice in the subpartition of S at index iS = 0 and index jS = 1, resulting in
the key range ([0, 0], [0, 1]). The key 7 at index iR = 1 occurs three times in the
subpartition of R (i.e., jR = 3) and two times in the subpartition of S ranging
from the first index iS = 3 to the last index jS = 4, resulting in the key range
([1, 3], [3, 4]). The key 9 at index iR = 4 produces no matching key range. After
finding the key’s ranges in the correlated subpartitions of R and S, we atomically
add (jR≠ iR + 1) ú (jS≠ iS + 1) to the zero-initialized join counter shared among all
s = 3 streams in the same join pipeline and asynchronously transfer the matching
key range ([iR, jR], [iS, jS]) into the key range bu�er in main memory.

Our implementation launches the merge join kernel with up to 128 blocks per grid
and 256 threads per block. It specifies the optimal number of resident blocks per
streaming multiprocessor in the kernel’s launch bounds through recursive C++
templates and, thus, maximizes the occupancy (i.e., ratio of active warps to possible
active warps) of each streaming multiprocessor [18, 46]. It registers a 32-byte L2
cache fetch granularity for the join kernel to read eight 32-bit or four 64-bit keys at
once from global memory during the binary search-based range searches and, as a
consequence, hide its latency [81]. Since the number of matching key ranges for two
correlated subpartitions of R and S is unknown in advance, our implementation
maps the key range bu�er residing in pinned (i.e., page-locked) main memory into
the device address space and transfers each matching key range back concurrently
from the merge join kernel to avoid allocating a fixed-size key range bu�er in device
memory that might remain entirely unused [85].
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4 Evaluation

In this section, we evaluate the performance of our heterogeneous multi-GPU sort-
merge join implementation.1 In Section 4.1, we elaborate on our experimental setup.
In Section 4.2, we compare the end-to-end runtime of our multi-GPU sort-merge
join with that of state-of-the-art CPU-based and GPU-accelerated join algorithms.
After that, we analyze our multi-GPU join’s execution breakdown (see Section 4.3)
and scalability for increasing numbers of GPUs (see Section 4.4). Finally, we study
its robustness against varying selectivity and data skew (see Section 4.5).

4.1 Experimental Setup

In this subsection, we provide details of the multi-GPU systems and the methodology
used in our performance benchmarks. Furthermore, we describe our join workloads
and our CPU- and GPU-based join algorithm baselines.

4.1.1 Hardware Platforms

We evaluate our novel heterogeneous multi-GPU sort-merge join on two dual-socket
multi-GPU systems with state-of-the-art interconnects: IBM AC922 and NVIDIA
DGX A100 (see Table 1). The IBM AC922 features four NVIDIA V100 GPUs (with
32 GB of global high-bandwidth memory) equally distributed across both NUMA
nodes [49]. Its CPU-GPU and P2P interconnects are based on three high-speed
NVLink 2.0 links with a uni-directional bandwidth of 75 GB/s. Its X-Bus-powered
CPU-CPU interconnect has a theoretical bandwidth of 64 GB/s per direction. The
NVIDIA DGX A100 has eight NVIDIA A100 GPUs (with 40 GB of GPU memory)
and non-blocking all-to-all NVLink 3.0-based NVSwitch P2P interconnects o�ering
uni-directional inter-GPU data transfer rates up to 300 GB/s [82]. The platform
harnesses PCIe 4.0 for the CPU-GPU interconnects and Infinity Fabric with a peak
bandwidth of 102 GB/s per direction as CPU-CPU interconnect between the two
NUMA nodes. Adjacent pairs of NVIDIA A100 GPUs share a PCIe 4.0 link and,
thus, its uni-directional bandwidth of 32 GB/s, through a switch.

1http://github.com/hpides/multi-gpu-sort-merge-join
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4.1 Experimental Setup

Table 1: Multi-GPU accelerator platforms

(a) IBM AC922 (b) NVIDIA DGX A100

––– NVLink 2.0    ––– X-Bus
75 GB/s 75 GB/s

75 GB/s75 GB/s 75 GB/s75 GB/s
GPU 1GPU 0 GPU 3GPU 2

Memory Memory
CPU 0 CPU 164 GB/s170 GB/s 170 GB/s

––– NVLink 3.0    ––– PCIe 4.0    ––– IF32 GB/s

32 GB/s 32 GB/s

32 GB/s300 GB/s
NVSwitch

Memory
CPU 0

Memory
CPU 1

GPU 3
GPU 1 GPU 0 GPU 4

GPU 7
GPU 5

GPU 2 GPU 6

102 GB/s204 GB/s 204 GB/s

2x IBM POWER9 (16x 2.7 GHz) 2x AMD EPYC 7742 (64x 2.3 GHz)
4x NVIDIA V100 SXM2 32 GB 8x NVIDIA A100 SXM4 40 GB

2x 256 GB DDR4 2x 512 GB DDR4
RHEL 8.2, ppc64-le Ubuntu 20.04, x86-64

CUDA 11.8, GCC 10.2.1 CUDA 11.4, GCC 9.3.0

4.1.2 Benchmark Methodology

We measure the end-to-end duration of joining the input relations R and S without
materializing the tuples in all performance benchmarks to facilitate comparability
with related work [2, 6, 12, 59, 97, 98, 107]. We repeat every benchmark three times
and report the arithmetic mean of the measured durations across all repetitions,
resulting in a standard error of less than 3%. The input relations R and S reside
in main memory on the first NUMA node. The GPU-accelerated join baselines and
our heterogeneous multi-GPU sort-merge join operate on pre-allocated pinned host
memory and global device memory. On each multi-GPU platform, we assume that
the GPUs are used exclusively as database accelerators and choose the optimal
(i.e., fastest) GPU set Ĝg for performance benchmarks involving g GPUs based on
the platform’s interconnect topology (e.g., Ĝ2 = {0, 1} on the IBM AC922 as well
as Ĝ2 = {0, 2} and Ĝ

4 = {0, 2, 4, 6} on the NVIDIA DGX A100).

26



4.1 Experimental Setup

Table 2: Workloads for scale factors f

A B
#key/#value 4/4 bytes 8/8 bytes

|R| f ú 1/10 ú 109 tuples f ú 109 tuples
|S| f ú 109 tuples f ú 109 tuples
#R f ú 800 MB f ú 16 GB
#S f ú 8 GB f ú 16 GB

4.1.3 Join Workloads

We generate synthetic input relations R and S with narrow tuples (i.e., key-value
pairs) in a column-oriented fashion to align with related work [2, 7, 89, 97, 104, 116].
Unless specified otherwise, the keys in R and S are uniformly distributed integers
over the entire 32- or 64-bit range that follow a foreign key relationship (i.e., every
key in S has exactly one matching key in R). We study two workloads for di�erent
scale factors f (see Table 2). In workload A, R and S contain 8-byte tuples with
32-bit keys and 32-bit values, where 10 ú |R| = |S|. In workload B, R and S with
|R| = |S| comprise 16-byte tuples with 64-bit keys and 64-bit values.

4.1.4 Join Baselines

We compare the performance of our novel multi-GPU sort-merge join against that
of state-of-the-art CPU and GPU joins. Our CPU baselines are the highly parallel
NUMA-aware multiway sort-merge join and radix-hash join by Balkesen et al. [7].
Both algorithms utilize 256-bit SIMD instructions while employing multi-threaded
and cache-conscious workload partitioning and processing strategies. Since the two
CPU joins rely upon the Advanced Vector Extensions (AVX) to the x86 instruction
set architecture [4, 53], we evaluate their performance solely on the x86-64-based
NVIDIA DGX A100. Both algorithms have been used extensively as baselines for
hardware-accelerated joins [15, 38, 58, 65, 97, 98, 111, 112]. Our GPU baselines are
the multi-GPU-accelerated sort-merge join and hybrid-radix join by Rui et al. [97].
Both GPU joins support large out-of-core data, but leave the high-bandwidth P2P
interconnects of modern multi-GPU systems entirely unused.
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4.2 Baseline Comparison
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Figure 14: Join baseline comparison on the IBM AC922

4.2 Baseline Comparison

In this section, we compare the runtime of our novel multi-GPU join with that of
our CPU and GPU baselines for the two workloads A and B.

On the IBM AC922, the optimal GPU set for our multi-GPU join with the radix
partitioning-based sort strategy is Ĝ2 = {0, 1} (see Section 4.3 and Section 4.4). The
multi-GPU-based sort-merge and hybrid-radix join by Rui et al. achieve the shortest
join durations with g = 2 and g = 4 GPUs, respectively [97]. Figure 14a shows the
baseline comparison for workload A with f œ [0, 10]. Our heterogeneous multi-GPU
sort-merge join (HMG SMJ) scales linearly with |S| up to 3B tuples, outperforming
the GPU baselines 5.9◊ (sort-merge) and 2.5◊ (hybrid-radix). In that cardinality
range, our heterogeneous multi-GPU join requires no CPU-based merge phase as S
fits into the combined GPU memory of g = 2 GPUs (64 GB) with a chunk size of
1.5B tuples. In the following cardinality range, S exceeds the GPU memory capacity
of g = 2 GPUs and requires a CPU-based merge phase involving kS = 2 (3B to 6B),
kS = 3 (6B to 9B), and kS = 4 (9B to 10B) chunksets. On the IBM AC922, the
performance of the CPU merge primitive gnu parallel::multiway merge may
deteriorate for increasing numbers of sublists (i.e., chunksets) k œ [2, 5], depending
on the total number of tuples. Once S contains more than 9B tuples, the speedups
over the baselines reduce to 2.8◊ (sort-merge) and 1.1◊ (hybrid-radix). Figure 14b
depicts the join comparison for workload B with f œ [0, 5]. Our multi-GPU join
exhibits a similar performance pattern when R and S comprise 16-byte tuples. It
outperforms the join baselines 4.2◊ (sort-merge) and 2.5◊ (hybrid-radix) for up to
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Figure 15: Join baseline comparison on the NVIDIA DGX A100

1.5B tuples in S. Once |S| is greater than 1.5B 16-byte tuples, the speedups over
the multi-GPU-based sort-merge and hybrid-radix join are 2.4◊ and 1.1◊ to 1.2◊,
respectively. Unlike workload A, for which only S requires a parallel CPU merge
phase, R and S need a CPU merge phase for workload B.

On the NVIDIA DGX A100, our multi-GPU join achieves the fastest runtime
with the radix partitioning-based sort strategy and all g = 8 GPUs (see Section 4.3
and Section 4.4). The multi-threaded CPU joins by Balkesen et al. e�ciently utilize
the platform’s 128 cores distributed between two NUMA nodes [7]. The fastest GPU
sets for the sort-merge and hybrid-radix join by Rui et al. are Ĝ4 = {0, 2, 4, 6} and
Ĝ

8 with all g = 8 GPUs [97]. For workload A with 8-byte tuples and 10 ú |R| = |S|,
our heterogeneous multi-GPU sort-merge join (HMG SMJ) scales linearly with
|S| up to 16B tuples, as illustrated in Figure 15a. It is 5.5◊ faster than the CPU
sort-merge join and 3.3◊ faster than the CPU radix-hash join. It outperforms the
GPU baselines 5.0◊ (sort-merge) and 2.0◊ (hybrid-radix) when the input relation
S fits into the GPU memory of all g = 8 GPUs (320 GB). When |S| is greater than
16B tuples, the speedups over the fastest CPU and GPU joins reduce to 2.0◊ and
1.2◊ as a CPU merge phase with kS = 2 chunksets is required. For workload B with
16-byte tuples and |R| = |S|, our join outperforms the CPU sort-merge join 5.2◊
and radix-hash join 3.3◊ for up to 8B tuples in S, as illustrated in Figure 15b. It is
4.8◊ (sort-merge) and 1.9◊ (hybrid-radix) faster than the GPU joins. Although the
sort-merge join by Balkesen et al. uses AVX instructions only for 8-byte tuples [7],
it performs proportionally similar for 16-byte tuples.
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4.3 Execution Breakdown
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Figure 16: Join execution breakdown on the IBM AC922

4.3 Execution Breakdown

In this section, we analyze the impact of our heterogeneous multi-GPU join’s three
phases (i.e., sort, merge, and join) on its end-to-end runtime for the P2P merge-
and radix partitioning-based multi-GPU sort strategies.

On the IBM AC922, we study the execution of our sort-merge join for workload B
with f = 1.5 on g œ {1, 2, 4} GPUs with Ĝ

1 = {0} and Ĝ
2 = {0, 1}. We conduct

our analysis for workload B with |R| = |S| equal to 1.5B tuples to fill the combined
GPU memory of the system’s overall best GPU set Ĝ2 (see Section 4.4).

Figure 16a illustrates the end-to-end join duration breakdown with the merge-
based multi-GPU sort strategy. Relative to the total execution time of 5.89 s for
g = 1 GPU, the sort, merge, and join operations amount to 34%, 24%, and 21%,
respectively. Since our heterogeneous sort-merge join operates on a chunk size of
750M tuples for 16-byte key-values pairs, R and S exceed the global GPU memory
capacity (32 GB) and require a CPU merge phase involving kR = kS = 2 chunksets,
each composed of a single chunk. Our join interleaves the host-to-device (HtoD)
transfer for the second chunkset of R and S with the device-to-host (DtoH) transfer
for the first chunkset. It executes the HtoD copy operation for the first chunkset
(7%) and the DtoH copy operation for the second chunkset (6%) sequentially. On
g = 2 GPUs, our multi-GPU join achieves a runtime of 2.89 s, outperforming the
single-GPU setup 2.0◊. Since R and S each fit fully into the combined global GPU
memory of g = 2 GPUs (64 GB), no parallel CPU-based merge phase is required.
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4.3 Execution Breakdown

The sort (0.99 s) and join (0.63 s) times halve in absolute numbers for g = 1 æ 2
GPUs. The P2P block shu�ing makes up for only 9% of the total execution time
due to the fast NVLink 2.0 P2P interconnects with a uni-directional bandwidth
of 75 GB/s. Since the NVLink 2.0-based CPU-GPU interconnects are not shared
between the GPUs, our multi-GPU join copies the chunkset of R and S, respectively,
into global memory (HtoD) and main memory (DtoH) in half the time for g = 1 æ 2
GPUs. On g = 4 GPUs, our join performs 20% worse than on g = 2 GPUs (3.46 s
vs. 2.89 s). Although the sort (0.40 s) and join (0.44 s) durations roughly halve for
g = 2 æ 4 GPUs, the P2P block shu�ing between g = 4 GPUs is 3.5◊ slower than
between g = 2 GPUs due to the limited and rarely attainable X-Bus CPU-CPU
interconnect bandwidth of 64 GB/s per direction [67]. The X-Bus also slows down
the HtoD (24%) and DtoH (26%) data transfers on g = 4 GPUs.

Figure 16b shows the execution breakdown with the radix partitioning-based sort
strategy. On g = 1 GPU, the performance of our sort-merge join is independent of
the sort strategy as neither P2P block shu�ing (merge) nor P2P bucket swapping
(radix) occurs. However, employing the multi-GPU radix sort for g > 1 yields 20%
(g = 2) and 17% (g = 4) faster join durations compared to using the multi-GPU
merge sort. When g = 2 GPUs are utilized, our join spends 15% of its runtime on
P2P bucket swapping and 36% on interleaved sorting and copying buckets back
into main memory (DtoH). Since GPUs attached to di�erent NUMA nodes lack
high-speed NVLink 2.0 P2P interconnects, the P2P bucket swapping is 2.1◊ slower
on four GPUs compared to two GPUs. Simultaneously sorting and transferring
buckets back into main memory (DtoH) takes roughly the same time for g = 2 æ 4
GPUs because the compute operations are twice as fast, but the copy operations
are twice as slow with g = 4 GPUs. Our join’s runtime is always on par or better
with radix sort than merge sort on the IBM AC922.

On the NVIDIA DGX A100, we dissect our novel multi-GPU join’s execution
for workload B with f = 8 across g œ {1, 2, 4, 8} GPUs. The fastest GPU sets for
g < 8 are Ĝ1 = {0}, Ĝ2 = {0, 2}, and Ĝ

4 = {0, 2, 4, 6}. By choosing a cardinality of
8B tuples for R and S, we maximize the GPU memory utilization for the platform’s
overall optimal GPU set Ĝ8 (see Section 4.4).

With the merge-based multi-GPU sort strategy (see Figure 17a), the performance
of our join improves for increasing numbers of GPUs g œ {1, 2, 4, 8} from 31.62 s
(g = 1) to 9.04 s (g = 8) up to 3.5◊. Until four GPUs, R and S exceed the GPU
memory capacity of g = 1 (40 GB), g = 2 (80 GB), and g = 4 (160 GB) GPUs and
require a parallel CPU merge phase. Since our multi-GPU join works with a chunk
size of 1B tuples for 16-byte key-value pairs, the CPU-based merge phase for each
input relation comprises eight (g = 1), four (g = 2), and two (g = 4) chunksets.
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Figure 17: Join execution breakdown on the NVIDIA DGX A100

On the NVIDIA DGX A100, the CPU primitive gnu parallel::multiway merge
runs equally fast for di�erent numbers of sublists (i.e., chunksets) k œ [2, 5]. Until
four GPUs, the absolute execution times of the sort, join, and overlapped HtoD
and DtoH copy operations halve for g æ 2 ú g as the PCIe 4.0-based CPU-GPU
interconnects’ bandwidth is not shared between any GPUs in the optimal GPU
sets Ĝ1, Ĝ2, and Ĝ

4. On g = 8 GPUs, adjacent pairs of GPUs (e.g., G0 and G1
or G4 and G5) share a single PCIe 4.0 link and, consequently, its uni-directional
maximum bandwidth of 32 GB/s, through a switch. The accumulated runtime of
the (partially interleaved) HtoD and DtoH copy operations is, therefore, almost
identical for g = 4 and g = 8 GPUs. It amounts to 59% of the total join duration
with g = 8 GPUs. The impact of the join operation on the execution time is only
20%, while the remaining 21% are split between on-GPU chunk sorting and P2P
block shu�ing. No CPU merge phase is required on g = 8 GPUs.

With the radix partitioning-based sort strategy (see Figure 17b), utilizing g = 8
GPUs (7.72 s) yields 4.1◊ shorter join durations than using g = 1 GPU (31.50 s).
Our sort-merge join’s performance for g œ {2, 4, 8} GPUs is always better with
multi-GPU radix sort than multi-GPU merge sort (3% to 15%) due to the e�cient
all-to-all P2P bucket swapping instead of the multi-stage P2P block shu�ing
and overlapped sorting and copying buckets back into main memory (DtoH). On
g = 8 GPUs, the impact of the sort, join, and P2P data transfer operation on the
execution time is 6%, 24%, and 7%, respectively.
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Figure 18: Join scalability for di�erent GPU counts

4.4 Scalability Analysis

In this section, we evaluate the performance of our multi-GPU sort-merge join for
increasing numbers of GPUs with workload B, where |R| = |S|.

On the IBM AC922 with f œ [0, 5] (see Figure 18a), our heterogeneous join scales
linearly to 3B tuples in S for g = 1 GPU (G0) despite employing CPU-based merge
phases for R and S with kR = kS œ {2, 3, 4} chunksets across the cardinality range.
Once |S| exceeds 3B 16-byte tuples, its relative performance deteriorates slightly
when gnu parallel::multiway merge employs its loser tree-based strategy for
merging kR = kS Ø 5 chunksets, each comprising a single chunk with 750M tuples.
Our multi-GPU join’s runtime reduces for g = 1 æ 2 GPUs (G0 and G1) 2.6◊ if
R and S fit into the combined GPU memory of g = 2 GPUs (up to 1.5B tuples)
and roughly 1.4◊ otherwise. Utilizing g = 4 instead of g = 2 GPUs yields shorter
join durations (30%) only in the range of S from 1.5B to 3B tuples, where a CPU
merge phase with kR = kS = 2 chunksets is necessary for two but not four GPUs.
The overall fastest GPU set on the IBM AC922 is, thus, Ĝ2 = {0, 1}.

On the NVIDIA DGX A100 with f œ [0, 10] (see Figure 18b), our join exhibits
linear scaling behavior over the entire cardinality range of S for g = 1 GPU (G0).
With g = 2 GPUs (G0 and G1), its performance enhances 2.2◊ up to 2B tuples in
S and 1.6◊ in the out-of-core range. With g = 4 GPUs (G0, G2, G4, and G6), its
runtime reduces 3.7◊ until |S| equals 4B tuples and 2.2◊ beyond. Our multi-GPU
join is fastest on g = 8 GPUs with speedups of up to 4.2◊ (g = 1), 2.7◊ (g = 2),
and 1.9◊ (g = 4). Ĝ8 is the overall optimal GPU set.
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Figure 19: Join robustness against varying selectivity and skew

4.5 Robustness Analysis

In this section, we study the impact of selectivity and data skew on our multi-GPU
join using workload B with |R| = |S| equal to 1.5B tuples on the IBM AC922 (Ĝ2)
in Figure 19a and 8B on the NVIDIA DGX A100 (Ĝ8) in Figure 19b.

Selectivity Analysis. We soften the foreign key relationship constraint between
R and S when scaling the selectivity factor ‡ œ [0, 1] so that every key in S has at
most one matching key in R [36, 37]. For ‡ = 0 æ 1, our join’s sort phase remains
stable while its join phase slows down 3.4◊ (IBM AC922) and 1.2◊ (NVIDIA DGX
A100) as more and more keys in R entail three instead of two binary searches (to
find their last index in R, first index in S, and last index in S) and atomically
incrementing the shared join counter as well as asynchronously copying a matching
key range into main memory (see Section 3.3.3). Our join’s end-to-end runtime
increases by 28% and 4% on the IBM AC922 and NVIDIA DGX A100, respectively.
In previous experiments, we assume the worst case ‡ = 1.

Skew Analysis. We sample the non-unique keys of S from R according to a Zipf
distribution when increasing the skew factor ◊ œ [0, 1[ as per Gray et al. [28]. For
◊ = 0 æ 1, our multi-GPU join’s execution time decreases by 12% and 3% on the
IBM AC922 and NVIDIA DGX A100, respectively. Its sort phase becomes up to
9% and 1% slower as the number of MSB radix partitioning passes increases [50].
Its join phase, however, becomes up to 2.5◊ and 1.2◊ faster as increasingly larger
key ranges in S are eliminated for some of the unique keys in R (see Section 3.3.3).
In earlier performance benchmarks, we assume the worst case ◊ = 0.

34



5 Discussion

Our heterogeneous multi-GPU sort-merge join outperforms state-of-the-art CPU
and GPU joins on modern multi-GPU platforms with high-speed interconnects for
large input relations. On the IBM AC922, it achieves speedups of 5.9◊ and 2.5◊
over Rui et al.’s multi-GPU sort-merge join and hybrid-radix join, respectively [97].
On the NVIDIA DGX A100, it is up to 5.0◊ (sort-merge) and 2.0◊ (hybrid-radix)
faster than the GPU baselines and yields 5.5◊ and 3.3◊ shorter runtimes than the
CPU sort-merge and radix-hash joins by Balkesen et al. [7]. Our join is, therefore,
eminently suitable as an operator for GPU-accelerated database systems.

Out of its three algorithm phases (i.e., sort, merge, and join), the multi-GPU sort
phase impacts our join’s total execution time the most, with as much as 72% on the
IBM AC922 and 76% on the NVIDIA DGX A100. The radix partitioning-based
sort strategy is 15% to 20% faster than the merge-based strategy with the optimal
GPU sets, primarily due to all-to-all P2P bucket swapping instead of multi-stage
P2P block shu�ing. Thus, the findings by Ilic et al. hold for sorting tuples [50].
The CPU merge phase, which is required if an input relation exceeds the combined
GPU memory capacity of all GPUs, causes a performance cli� as the CPU merge
primitive saturates the main memory bandwidth of 170 GB/s on the IBM AC922
as well as 204 GB/s on the NVIDIA DGX A100 (see Table 1). Lutz et al. propose a
GPU-partitioned join strategy that eliminates the performance cli� stemming from
large out-of-core data [65]. However, the authors’ strategy is only applicable to the
IBM AC922 with fast NVLink 2.0-based CPU-GPU interconnects and not to other
bleeding-edge HPC systems such as the NVIDIA DGX A100 and H100 [49, 82, 83].
The hybrid join phase with overlapped copy and compute operations impacts our
multi-GPU join’s runtime the least, with as little as 28% on the IBM AC922 and
24% on the NVIDIA DGX A100. If both input relations are pre-sorted (e.g., due
to prior group-by, order-by, or tree-based index scan operators), our sort-merge
join has to execute only the join phase, while radix-based joins fail to exploit the
interesting (tuple) orders [106]. In that case, it is 14.4◊ (IBM AC922) and 9.2◊
(NVIDIA DGX A100) faster than the hybrid-radix join.

Although increasing the number of GPUs yields consistently faster join phases, it
occasionally results in slower sort phases. On the IBM AC922, the optimal GPU set
is Ĝ2 albeit the system has four GPUs. It outperforms the single-GPU setup 2.6◊.
On the NVIDIA DGX A100, the optimal GPU set Ĝ8 involves all eight GPUs and
is 4.2◊ faster than the single-GPU setup. Hence, interconnect topology awareness
is crucial. Our join benefits from data skew with up to 12% shorter join durations.
It is a robust GPU-accelerated database operator.
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6 Related Work

In this section, we classify related research e�orts on CPU-based, GPU-accelerated,
and distributed join algorithms for relational database systems.

6.1 CPU Joins

Over the past decades, researchers have thoroughly studied parallel CPU-based
joins for in-memory query processing. Kim et al. and Polychroniou et al. propose
SIMD-optimized sort-merge and hash joins to exploit the data-level parallelism
capabilities of modern CPUs [59, 92]. After studying various hash joins, Blanas
et al. conclude that simple hardware-oblivious hash joins with a shared and non-
partitioned hash table outperform complex hardware-conscious hash joins [12].
Balkesen et al. draw the opposite conclusion after evaluating their parallel radix-
hash join that incorporates the bucket chaining method by Manegold et al. [7, 68].
In addition to that, Balkesen et al. revisit the classic performance debate on sort-
merge vs. hash joins and claim that for most workloads, the hash join is faster than
the sort-merge join, although the relative performance gap narrows considerably for
large input relations [6]. In contrast to these research e�orts on parallel CPU-based
joins, we focus on multi-GPU-accelerated joins.

6.2 Single-GPU Joins

Most published GPU-based joins are in-core single-GPU algorithms that expect
both input relations to reside in GPU memory. Rui and Tu propose two GPU-
accelerated joins: a radix-partitioned GPU hash join utilizing shared histograms
and a merge path-partitioned GPU sort-merge join [98]. More recently, Sioulas et al.
outline an e�cient GPU hash join harnessing a bucket chaining method to avoid the
need to build histograms [107]. He et al. study joins in the context of CPU-GPU co-
processing [48]. Several experimental studies compare the performance of CPU- and
GPU-based joins and show the superiority of GPU-based joins [57, 96]. However,
prior publications on GPU-accelerated joins rarely address the case of large out-of-
core data where the size of the input relations exceeds the GPU memory capacity.
Only Guo and Chen and Lutz et al. describe mechanisms for joining large input
relations [32, 65]. Guo and Chen utilize a CPU-assisted radix partitioning strategy
and an in-core GPU sort-merge join for large out-of-core data. Lutz et al. harness
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6.3 Multi-GPU Joins

fast interconnects that provide GPUs with high-bandwidth, cache-coherent access to
main memory to handle large out-of-core data. Unlike these single-GPU algorithms,
our multi-GPU sort-merge join utilizes the compute power and memory bandwidth
of all GPUs that modern multi-GPU platforms o�er.

6.3 Multi-GPU Joins

Regarding multi-GPU-based join processing, Paul et al. propose a radix-partitioned
hash join for parallel multi-GPU architectures that follows an adaptive multi-hop
routing protocol for the P2P data transfers to minimize data transfer congestion [89].
In contrast to our multi-GPU sort-merge join, the multi-GPU join by Paul et al.
cannot natively handle large out-of-core data. Besides, the recent trend towards
symmetric switch-based P2P interconnects (e.g., NVLink 3.0-based NVSwitch)
between the GPUs of modern multi-GPU platforms makes their adaptive routing
protocol obsolete [75]. Rui et al. design two out-of-core multi-GPU joins: a sort-
merge join and a hybrid-radix join [97]. Neither of the two algorithms utilizes P2P
interconnects for inter-GPU communication, though. Our novel multi-GPU join
harnesses the high-bandwidth P2P interconnects between the GPUs.

6.4 Distributed Joins

Unlike CPU- and GPU-based single-node joins, distributed joins operate on multiple
nodes across high-speed networks that often feature remote direct memory access
(RDMA) [93, 94, 95]. Barthels et al. propose a distributed and massively parallel
CPU-based radix-hash and sort-merge join utilizing fast one-sided RDMA memory
operations [10]. Based on the initial features of GPUDirect RDMA [86], Guo et al.
explore the performance of distributed joins in multi-node multi-GPU clusters with
subsequent data shu�ing and GPU execution phases [33]. Thostrup et al. propose
a pipelined GPU hash join that overlaps its data shu�ing with its multi-GPU-based
build and probe phases over fast GPUDirect RDMA-capable networks [111]. Gao
and Sakharnykh present a distributed hash join for multi-GPU clusters utilizing a
GPU-friendly compression scheme to minimize network tra�c [24]. While these
distributed joins are designed for multi-node clusters, our heterogeneous multi-GPU
sort-merge join targets single-node multi-GPU systems.
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7 Conclusion

In this master thesis, we present a heterogeneous multi-GPU sort-merge join for large
input relations to tackle the challenge of joining unprecedented amounts of data.
Our algorithm harnesses the high-bandwidth P2P interconnects of modern multi-
GPU systems (e.g., NVLink 2.0, NVLink 3.0, and NVSwitch) to minimize the data
transfers via the typically considerably slower CPU-GPU interconnects. It is, thus,
to the best of our knowledge, the first P2P-enabled multi-GPU join that supports
large out-of-core data exceeding the combined GPU memory capacity. Comprising
a merge- or radix partitioning-based multi-GPU sort phase, a parallel CPU-based
merge phase, and a hybrid join phase that combines a CPU merge path partition
and a binary search-based GPU-accelerated join strategy, our heterogeneous join
exploits the compute power of multi-core CPUs and many-core GPUs. We publish
our CUDA implementation that overlaps copy and compute operations and utilizes
state-of-the-art on-GPU sort, merge, and partition primitives.

We show that our multi-GPU join outperforms up-to-date CPU and GPU baselines
regardless of the workload on modern multi-GPU platforms. It is up to 5.5◊ and
3.3◊ faster than the multi-threaded CPU sort-merge and radix-hash join baselines.
Compared to the multi-GPU sort-merge and hybrid-radix join, it yields speedups
of up to 5.9◊ and 2.5◊, respectively. Our multi-GPU join’s sort phase impacts
its total execution time as much as 76%. The radix partitioning-based multi-GPU
sort strategy is 15% to 20% faster than the merge-based strategy, primarily due to
utilizing the high-speed P2P interconnects more e�ciently. The CPU multiway
merge phase saturates the main memory bandwidth on modern high-performance
computing systems and negatively impacts our join’s performance. Our sort-merge
join’s hybrid join phase has the least impact on its end-to-end runtime (as little as
24%). If either or both of the two input relations are pre-sorted, it reaches speedups
of 14.4◊ over the multi-GPU hybrid-radix join baseline. We demonstrate that our
join scales with increasing numbers of GPUs based on the interconnect topology,
although it eventually hits low-bandwidth CPU-CPU and shared-bandwidth CPU-
GPU interconnect bottlenecks. It benefits from data skew with up to 12% shorter
join durations. We conclude that our multi-GPU join e�ciently joins large input
relations and is, thus, applicable in GPU-accelerated database systems.

Beyond this thesis, future work should investigate whether a CPU-assisted (radix)
partition phase before the sort phase instead of the CPU-based merge phase after
the sort phase enhances our join’s performance. Furthermore, it should extend our
multi-GPU join with a NUMA-aware workload distribution strategy to mitigate
the e�ects of low-bandwidth CPU-CPU interconnects.
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