Making DataFrames Get A Move On DBMS Support for DataFrame Operations

Stefan Hagedorn TU Ilmenau **Steffen Kläbe** Actian / TU Ilmenau Kai-Uwe Sattler TU Ilmenau

FG DB Spring Symposium March 2022 *Challenges and Opportunities in the Data Cloud* HPI Potsdam

TECHNISCHE UNIVERSITÄT

importing the multiprocessing module import multiprocessing

def print_cube(num):
"""
function to print cube of given num

Parallel Processingat(num * num * num))

def print_square(num):
"""
function to print square of given num
"""
print("Square: {}".format(num * num))

if __name__ == "__main__":
creating processes
p1 = multiprocessing.Process(target=
p2 = multiprocessing.Process(target=

Join Algorithmsocess 1

p1.start() # starting process 2 p2.start()

wait until process 1 is finished
p1.join()
wait until process 2 is finished
p2.join()

class RingBuffer:
 """ class that implements a not-yet-full buffer """
 def _ _init_ _(self,size_max):
 self.max = size_max
 self.data = []

class __Full: """ class that implements a full buffer """ propend(self, x): an element overwriting the oldest one. """ an element overwriting the oldest one. """

> ts in correct order """ +self.data[:self.cur]

Buffer Management

end of the buffer"""

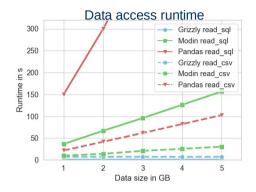
Aggregation Implementation

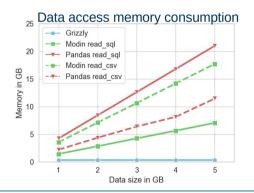
ange self's class from non-full to full = self. Full

st of elements from the oldest to the newest. """

Pandas

- eager execution of operations limited possibilities for optimizations
- Operations create copies of intermediate results
 high memory pressure, limited scalability
- Data is transferred to the client machine (if stored in a DBMS)
 - High transfer costs
 - DBMS only acts for data delivery
 - weak client hardware





Goal

• drop-in replacement for Pandas

import pandas as pd ----> import grizzly as pd

- Idea: "hollow" DataFrame replacement
 - contains metadata, no real data
- solve Panda's scalability issues
 - lazy query evaluation enable query optimization
 - In-DBMS query execution exploit database capabilities
 - only transfer results to client reduce transfer costs

	Python Pandas	SQL SELECT a FROM SELECT a,b FROM		
Projection	df['A'] df[['A','B']]			
Selection	df[df['A'] == x]	SELECT * FROM WHERE a = x		
Join	<pre>pandas.merge(df1, df2, left_on='x', right_on='y', how='inner outer right left')</pre>	<pre>SELECT * FROM df1 inner outer right left join df ON df1.x = df2.y</pre>		
Grouping	df.groupby(['A','B'])	SELECT * FROM GROUP BY a,b		
Sorting	df.sort_values(by=['A','B'])	SELECT * FROM ORDER BY a,b		
Union	df1.append(df2)	SELECT * FROM df1 UNION ALL SELECT * FROM df2		
Intersection	<pre>pandas.merge(df1, df2, how='inner')</pre>	SELECT * FROM df1 INTERSECTION SELECT * FROM df2		
Aggregation	<pre>df['A'].min() max() mean() count() sum()</pre>	SELECT min(a) FROM max(a) avg(a) count(a) sum(a)		
	df['A'].value_counts()	SELECT a, count(a) FROM GROUP BY a		
Add column	df['new'] = df['a'] + df['b']	SELECT a + b AS new FROM		

Grizzly follows the Query-Shipping Paradigm,

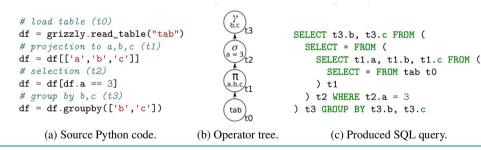
bringing the Python query to the database.

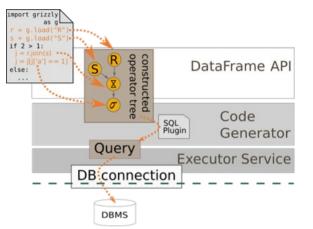
Grizzly architecture

- DataFrame operations are categorized as transformations and actions
- Transformations
 - are collected (lazy evaluation)
 - e.g. Scans, Filters, Projections, Joins, ...
- Actions

6

- trigger code generation for collected transformations
- e.g. print, execute
- Query is sent to the DBMS, results are fetched and sent to the client

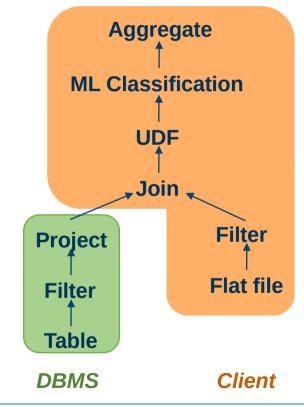




Grizzly: Extensions

- Modern data analytics consist of more than simple queries
- Problem: every unsupported operation is a "Pipeline breaker"
 - intermediate result needs to be materialized on the client
 - local processing (Pandas, manually)
- subsequent operations can't be executed in the DBMS

(although they could)



Heterogeneous Data Sources

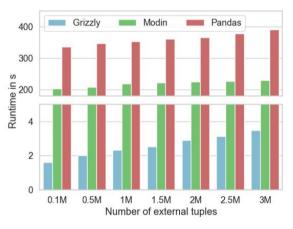
- process external data inside the DBMS without loading
- special load function in Grizzly
- DBMS provided connectors
 - PostgreSQL: foreign data wrappers
 - Actian Vector: *external table*
 - MonetDB: CREATE TABLE FROM LOADER
- vendor-specific code: "pre-query" added before actual SQL query
- WIP: client-local processing using DuckDB, MonetDB/e, Arrow, etc.

```
      Python:
      df = grizzly.read_external_files("filename.csv", colDefs=["a:int, b:str, c:float"], hasHeader=True, delimiter='|')

      SQL:
      DROP TABLE IF EXISTS temp_ext_tablet1;

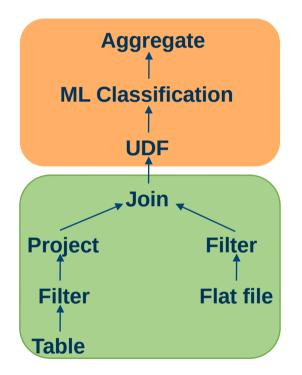
      CREATE EXTERNAL TABLE temp_ext_tablet1 (a int, b VARCHAR(1024), c float) USING SPARK WITH REFERENCE='filename.csv', OPTIONS=('delimiter'='|');

      SELECT * FROM temp_ext_tablet1 t1
      Query
```



Use Case Example: Join of table and external file & grouping

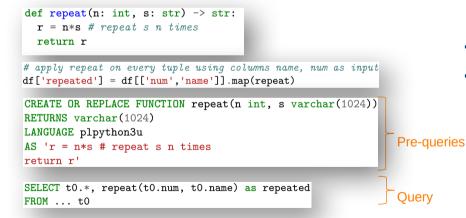
<u>Here:</u> Join customer data (table) with daily orders (flat file) and aggregate

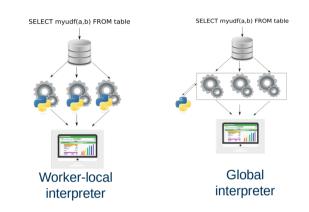


User-defined Functions

- create UDFs inside the DBMS using pre-queries
 - Some DBMS support Python
 - Compilation to
 - native code
 - PL/SQL (WIP)
- Python is weakly typed, SQL is strongly typed: type hints required

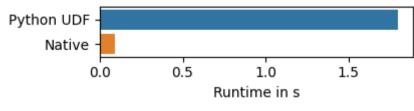
Python:





- per Query: isolation, no caching
- long running: weak isolation, but allows caching

UDFs: Optimization



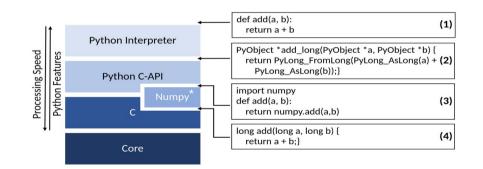
UDF vs. DBMS-native modulo operator on 8M tuples

Compilation:

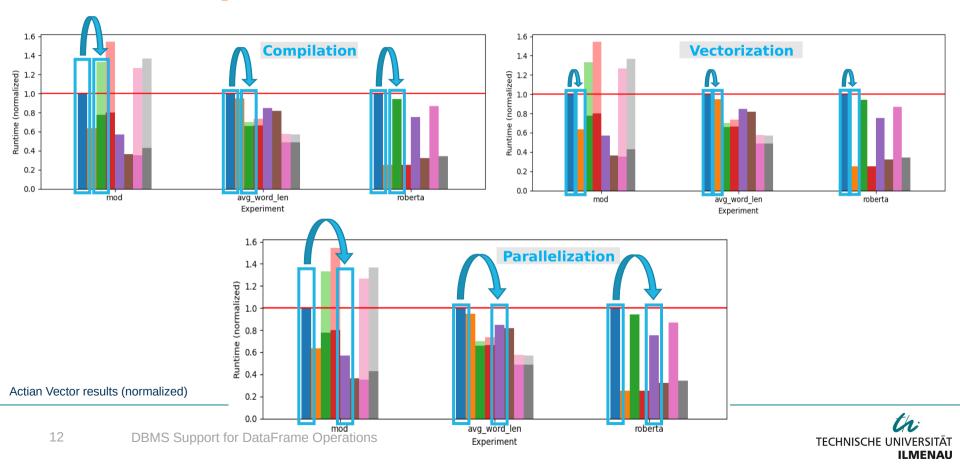
- dynamically integrate compiled code into running engine
- Challenges/requirements
 - transparent to user
 - external code/modules
 - types: SQL vs. Python
 - Safety: prevent insecure operations

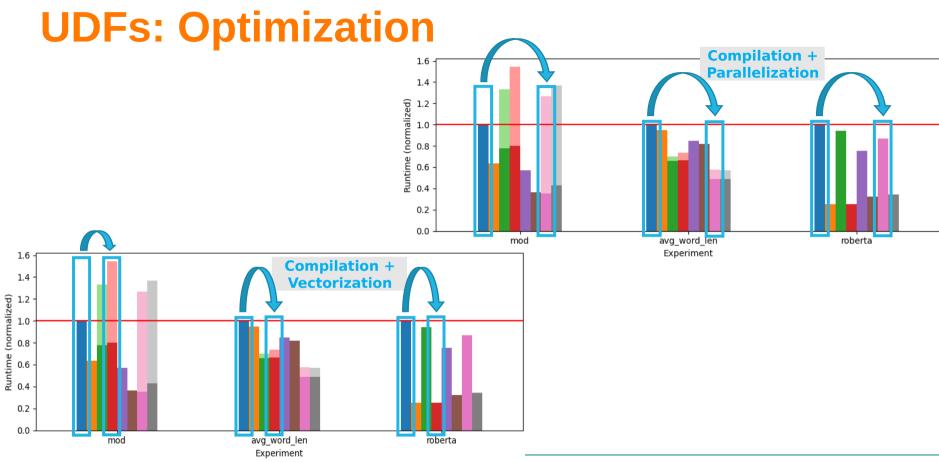
Opportunities for Optimizations

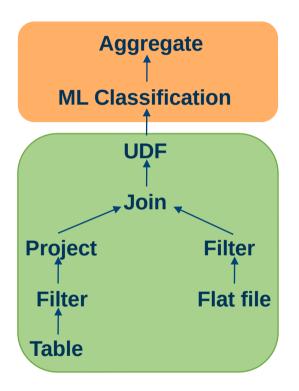
- · compile Python to native code
- · vectorized execution
- parallel execution



UDFs: Optimization

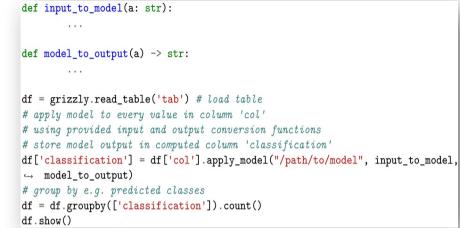


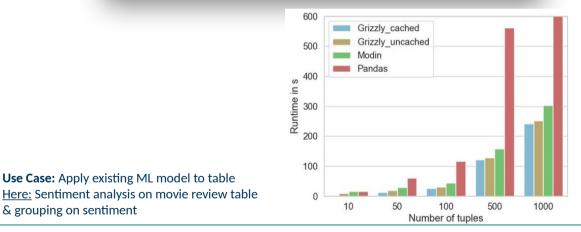




ML Model Join

- Apply pre-trained ML models on data inside DBMS
 - Focus on (deep) neural networks
- Supported model types: Tensorflow, PyTorch, ONNX
- Generate code for model loading and application . and ship as UDF
- Basic steps: .
 - 1. Load and cache model
 - Perform input conversions 2.
 - Run the model inference 3
 - 4. Apply output conversions





15 DBMS Support for DataFrame Operations

& grouping on sentiment

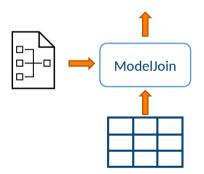
ML Model Join Improvements

- UDFs are quite slow
- Compilation difficult with external libraries
- Idea: native DBMS support for ML representation (Neural Networks)
 - feed-forward / dense layers
 - RNNs

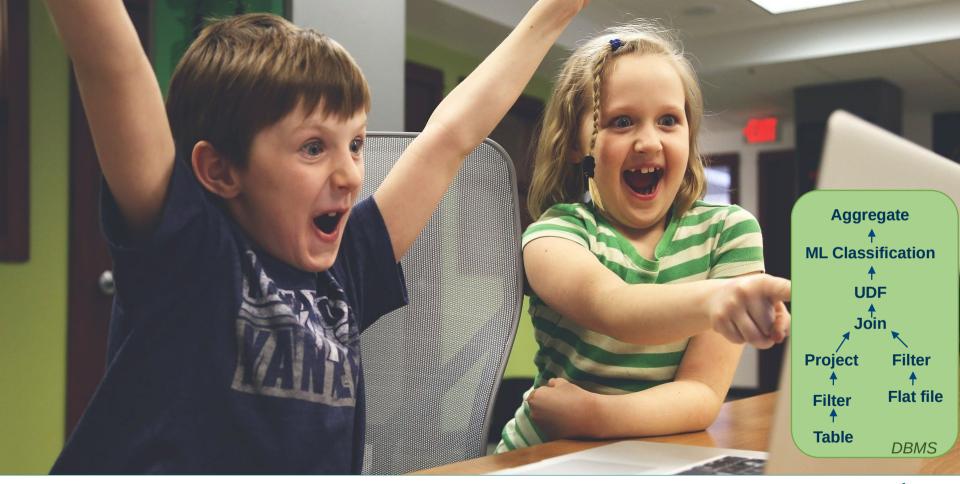
SELECT * FROM table t MODEL JOIN model m

Layer_in	Node_in	Layer	Node	Weight	Bias
1	0	2	0	0.3	0.1
1	1	2	0	0.2	0.1

Relational Representation: ML-to-SQL



Native ModelJoin operator



Summary & Current Work

- Grizzly transpiles DataFrame operations to SQL to fully leverage DBMS capabilities
- User-friendly DataFrame API extensions to push advanced analytics to the DBMS:
 - Flat file joins
 - User-defined functions
 - Model join with pretrained ML models

- Feature completeness: use Pandas for Fallback
- Connection to multiple DBMS
 - local in-memory DBMS/Arrow
 - Optimizer rules
- Handling of operations that cannot be expressed in SQL (fallback to UDFs)
- Deeper integration of ML models into query execution
- Materialize computed columns / results

https://github.com/dbis-ilm/grizzly

