
Making DataFrames Get A Move On

DBMS Support for DataFrame Operations

Stefan Hagedorn
TU Ilmenau

FG DB Spring Symposium March 2022
Challenges and Opportunities in the Data Cloud
HPI Potsdam

Steffen Kläbe
Actian / TU Ilmenau

Kai-Uwe Sattler
TU Ilmenau

2 DBMS Support for DataFrame Operations

Parallel Processing

Join Algorithms

Buffer Management

Aggregation
Implementation

3

• eager execution of operations – limited possibilities for optimizations

• Operations create copies of intermediate results

– high memory pressure, limited scalability

• Data is transferred to the client machine (if stored in a DBMS)
• High transfer costs
• DBMS only acts for data delivery
• weak client hardware

Pandas

DBMS Support for DataFrame Operations

Data access runtime

Data access memory consumption

4

Goal

DBMS Support for DataFrame Operations

5

• drop-in replacement for Pandas

• Idea: "hollow" DataFrame replacement
• contains metadata, no real data

• solve Panda's scalability issues
• lazy query evaluation – enable query optimization
• In-DBMS query execution – exploit database capabilities
• only transfer results to client – reduce transfer costs

Grizzly

DBMS Support for DataFrame Operations

import pandas as pd import grizzly as pd

Grizzly follows the Query-Shipping Paradigm,

bringing the Python query to the database.

6

• DataFrame operations are categorized as
transformations and actions

• Transformations
• are collected (lazy evaluation)
• e.g. Scans, Filters, Projections, Joins, ...

• Actions
• trigger code generation for collected transformations
• e.g. print, execute

• Query is sent to the DBMS, results are fetched and sent to the client

Grizzly architecture

DBMS Support for DataFrame Operations

7

• Modern data analytics consist of more than simple queries

• Problem: every unsupported operation is a "Pipeline breaker"
• intermediate result needs to be materialized on the client
• local processing (Pandas, manually)

• subsequent operations can't be executed in the DBMS

(although they could)

Grizzly: Extensions

DBMS Support for DataFrame Operations

DBMS Client

Table

Flat fileFilter

Project Filter

Join

UDF

ML Classification

Aggregate

8

• process external data inside the DBMS without loading
• special load function in Grizzly
• DBMS provided connectors

• PostgreSQL: foreign data wrappers
• Actian Vector: external table
• MonetDB: CREATE TABLE FROM LOADER

• vendor-specific code: "pre-query" added before actual SQL query
• WIP: client-local processing using DuckDB, MonetDB/e, Arrow, etc.

Heterogeneous Data Sources

DBMS Support for DataFrame Operations

Python:

Pre-queries

Query

SQL: Use Case Example: Join of table and external file & grouping

Here: Join customer data (table) with
daily orders (flat file) and aggregate

9 DBMS Support for DataFrame Operations

Table

Flat fileFilter

Project Filter

Join

UDF

ML Classification

Aggregate

10

• create UDFs inside the DBMS using pre-queries
• Some DBMS support Python
• Compilation to

• native code
• PL/SQL (WIP)

• Python is weakly typed, SQL is strongly typed: type hints required

User-defined Functions

DBMS Support for DataFrame Operations

Python:

SQL:

Pre-queries

Query

Worker-local
interpreter

Global
interpreter

• per Query: isolation, no caching

• long running: weak isolation, but allows caching

11

UDFs: Optimization

DBMS Support for DataFrame Operations

* M. Raasveldt and H. Mühleisen. Vectorized UDFs in Column-Stores. SSDBM, 2016.

*

Opportunities for Optimizations
• compile Python to native code
• vectorized execution
• parallel execution

UDF vs. DBMS-native modulo operator on 8M tuples

Compilation:
• dynamically integrate compiled code into running engine
• Challenges/requirements

• transparent to user
• external code/modules
• types: SQL vs. Python
• Safety: prevent insecure operations

12

UDFs: Optimization

Actian Vector results (normalized)

Compilation Vectorization

Parallelization

DBMS Support for DataFrame Operations

13

UDFs: Optimization
Compilation +
Parallelization

Compilation +
Vectorization

DBMS Support for DataFrame Operations

14 DBMS Support for DataFrame Operations

Table

Flat fileFilter

Project Filter

Join

UDF

ML Classification

Aggregate

15

• Apply pre-trained ML models on data inside DBMS
• Focus on (deep) neural networks

• Supported model types: Tensorflow, PyTorch, ONNX

• Generate code for model loading and application
and ship as UDF

• Basic steps:
1. Load and cache model
2. Perform input conversions
3. Run the model inference
4. Apply output conversions

ML Model Join

DBMS Support for DataFrame Operations

Use Case: Apply existing ML model to table
Here: Sentiment analysis on movie review table
& grouping on sentiment

16

• UDFs are quite slow

• Compilation difficult with external libraries

• Idea: native DBMS support for ML representation (Neural Networks)
• feed-forward / dense layers
• RNNs

ML Model Join Improvements

Layer_in Node_in Layer Node Weight Bias

… … … … … …

1 0 2 0 0.3 0.1

1 1 2 0 0.2 0.1

Relational Representation: ML-to-SQL Native ModelJoin operator

ModelJoin

Currently Under Review

DBMS Support for DataFrame Operations

SELECT * FROM table t MODEL JOIN model m

17 DBMS Support for DataFrame Operations

Table

Flat fileFilter

Project Filter

Join

UDF

ML Classification

Aggregate

DBMS

18

• Feature completeness: use Pandas for Fallback

• Connection to multiple DBMS
• local in-memory DBMS/Arrow
• Optimizer rules

• Handling of operations that cannot be expressed in SQL
(fallback to UDFs)

• Deeper integration of ML models into query execution

• Materialize computed columns / results

Summary & Current Work

DBMS Support for DataFrame Operations

• Grizzly transpiles DataFrame operations to SQL
to fully leverage DBMS capabilities

• User-friendly DataFrame API extensions to push
advanced analytics to the DBMS:

• Flat file joins
• User-defined functions
• Model join with pretrained ML models

https://github.com/dbis-ilm/grizzly

https://github.com/dbis-ilm/grizzly

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

