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Motivation

• Integrated Data Analysis Pipelines
• Open data formats, query processing
• Data preprocessing and cleaning
• ML model training and scoring
• HPC, custom codes, and simulations

• Hardware Challenges
• DM+ML+HPC share compilation

and runtime techniques / 
converging cluster hardware

• End of Dennard scaling:
P = α CFV2 (power density 1)

• End of Moore’s law
• Amdahl’s law: sp = 1/s
 Increasing Specialization
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 DAPHNE Overall Objective:
Open and extensible system infrastructure

Deployment Challenges

Different 
Systems/
Libraries

Dev Teams Programming Models

Resource 
Managers

Cluster
Under-

utilization

Data/File 
Exchange



Example Use Cases

• DLR Earth Observation
• ESA Sentinel-1/2 datasets  4PB/year
• Training of local climate zone classifiers on So2Sat LCZ42

(15 experts, 400K instances, 10 labels each, ~55GB HDF5)
• ML pipeline: preprocessing, 

ResNet-20, climate models

• IFAT Semiconductor Ion Beam Tuning

• KAI Semiconductor Material Degradation

• AVL Vehicle Development Process (ejector geometries, KPIs)

• ML-assisted simulations, data cleaning, augmentation
• Cleaning during exploratory query processing

[So2Sat LC42: https://mediatum.ub.tum.de/1454690] 

[Xiao Xiang Zhu et al: So2Sat LCZ42: A 
Benchmark Dataset for the Classification of 

Global Local Climate Zones. GRSM 8(3) 2020]

https://mediatum.ub.tum.de/1454690


System Architecture

LLVM

Python API w/ lazy evaluation MLIR Dialects,
Extension Catalog

(new data types, 
kernels, 

scheduling algs)

Sideways Entry, 
DSL-level 

constraints (data 
formats & data/op 

placement)

[Patrick Damme et al.: DAPHNE: An Open 
and Extensible System Infrastructure for 

Integrated Data Analysis Pipelines, CIDR 2022]



Language Abstractions

• Design Principles 
• Frame and Matrix Operations

(coarse-grained)
• Data Independence

(abstract data types)
• Extensibility

(data types, operations, HW)

• DSL Operations
• Basic built-in operations (RA, LA)
• High-level built-in operations 

(e.g., SQL, PS, map on frames/matrices)
• MLIR SCF (loops, branches)
• Typed and untyped functions

(hierarchy of composite primitives)
• UDFs and external libraries

dc = DaphneContext()
G = dc.from_numpy(npG)
G = (G != 0)
c = components(G, 100, True).compute()

Python API DaphneLib

def components(G, maxi, verbose) {
n = nrow(G);   // get the number of vertexes
maxi = 100;
c = seq(1, n); // init vertex IDs
diff = inf;    // init diff to +Infinity
iter = 1;
// iterative computation of connected components
while(diff>0 & iter<=maxi) {
u = max(rowMaxs(G * t(c)), c); // neighbor prop
diff = sum(u != c);    // # of changed vertexes
c = u;                 // update assignment
iter = iter + 1;

} 
}

Domain-specific Language DaphneDSL

Multiple dispatch of functions/kernels



Data Representations

• Data Types: Matrix, Frame, LLVM scalars, (Tensor, List)

• Value Types: e.g., I8, I32, I64, UI8, UI32, UI64, FP32, FP64

• Distributed/Multi-device Data: 

a) Distributed Collection of Tiles b) Federated Matrix/Frame

Matrix

GPU Array

CPU Array

Dense/
CSR



Vectorized (Tiled) Execution

Default Parallelization
Frame & Matrix Ops

Fused Operator Pipelines 
on Tiles/Scalars + Codegen

Locality-aware, 
Multi-device Scheduling



Vectorized (Tiled) Execution, cont.

• #1 Zero-copy Input Slicing
• Create view on sliced input (no-op)
• All kernels work on views

• #2 Sparse Intermediates
• Reuse dense/sparse kernels
• Sparse pipeline intermediates for free

• #3 Fine-grained Control
• Task sizes (dequeue, data access) vs data binding (cache-conscious ops)
• Scheduling for load balance (e.g., sparse operations)

• #4 Computational Storage
• Task queues connect eBPF programs, async I/O 

into buffers, and subsequent operator pipelines
FP32
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Distributed Vectorized Execution

• Federated matrices/frames + distribution primitives
• Hierarchical vectorized pipelines and scheduling

• Coordinator
(spawns distributed fused pipeline)

• #1 Prepare Inputs
(N/A, repartition, broadcasts,
slices broadcasts as necessary)

• #2 Coarse-grained Tasks
(tasks run vectorized pipeline)

• #3 Combine Outputs
(N/A, all-reduce, rbind/cbind)
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Experiments: Simple IDA Pipelines

Setup: Single node w/ 2x Intel Xeon Gold 6238 (112 vcores, 7.7 TFLOP/s), 
768 GB DDR4 RAM, 12x 2TB SSDs (data), NVIDIA T4 GPU (8.1 TFLOP/s, 16 GB), 
and Intel FPGA PAC D5005 (w/ Stratix 10SX FPGA, 32 GB) since Dec 29

P1: TPC-H SF10 csv, query processing 
+ linear regression training on CPUs

P2: So2Sat LCZ42 csv (testset), 
ResNet-20 scoring on GPU 



Experiments: Vectorized Execution

• Ongoing Experiments
• FPGA kernels on D5005, CPU+GPU vectorized pipelines
• Distributed sparse runtime operations on Vega supercomputer
• Sparse vectorized pipelines and scheduling algorithms

Linear Regression w/ 
varying Data Size and Vectorization

K-means Clustering w/ 
varying Data Size and Vectorization



Status and Next Steps

• Current Status
• System Architecture and Design
• Initial DSL and Python API
• MLIR-based Compiler and Runtime Prototype
• Vectorized Execution (fused pipelines, scheduling)
• GPU (and FPGA) Integration, BLAS/DNN Libraries
• Standalone Distributed Runtime

• Promising Progress and Preliminary Experiments

• DAPHNE OSS Announcement
• Public release by 03/2022
• Apache v2 license
• Towards an inclusive dev community
 Potential for collaboration in 2022-2024

 DAPHNE Overall Objective:
Open and extensible system 

infrastructure

Enable researchers to 
experiment with new 

prototypes and extensions

https://daphne-eu.eu/

DM + HPC + ML

https://daphne-eu.eu/
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