
DAPHNE: An Open and Extensible
System Infrastructure for

Integrated Data Analysis Pipelines
Patrick Damme, Marius Birkenbach, Constantinos Bitsakos, Matthias Boehm, Philippe Bonnet, Florina Ciorba, Morten
Clausen, Dževad Ćoralić, Mark Dokter, Pawel Dowgiallo, Ahmed Eleliemy, Christian Faerber, Jonathan Giger, Georgios

Goumas, Dirk Habich, Niclas Hedam, Marlies Hofer, Wenjun Huang, Kevin Innerebner, Vasileios Karakostas, Roman Kern,
Tomaž Kosar, Thomas Krametter, Alexander Krause, Daniel Krems, Andreas Laber, Wolfgang Lehner, Eric Mier, Marcus

Paradies, Bernhard Peischl, Constantin Pestka, Gabrielle Poerwawinata, Stratos Psomadakis, Tilmann Rabl, Piotr Ratuszniak,
Pedro Silva, Nikolai Skuppin, Andreas Starzacher, Benjamin Steinwender, Nils Strassenburg, Ilin Tolovski, Pınar Tözün,

Wojciech Ulatowski, Aristotelis Vontzalidis, Yuanyuan Wang, Izajasz Wrosz, Aleš Zamuda, Ce Zhang, Xiao Xiang Zhu

Integrated Data Analysis Pipelines
for Large-scale Data Management,

HPC, and Machine Learning;
DAPHNE daughter of river god Peneus
(fountains, streams), chased by Apollo

The DAPHNE project is funded by the
European Union's Horizon 2020 research
and innovation program under grant
agreement number 957407 for the time
period from Dec/2020 through Nov/2024.

[Louvre, Paris]

FG DB Spring Symposium 2022; March 24/25, 2022

https://daphne-eu.eu/

https://daphne-eu.eu/

Motivation

• Integrated Data Analysis Pipelines
• Open data formats, query processing
• Data preprocessing and cleaning
• ML model training and scoring
• HPC, custom codes, and simulations

• Hardware Challenges
• DM+ML+HPC share compilation

and runtime techniques /
converging cluster hardware

• End of Dennard scaling:
P = α CFV2 (power density 1)

• End of Moore’s law
• Amdahl’s law: sp = 1/s
 Increasing Specialization

#1 Data
Representations

Sparsity Exploitation
from Algorithms to HW

dense

graph

sparse

compressed

#2 Data
Placement

Local vs distributed

CPUs/
NUMA

GPUs

FPGAs/
ASICs

#3 Data
(Value) Types

FP32, FP64, INT8,
INT32, INT64, UINT8,
BF16, TF32, FlexPoint

[NVIDIA
A100]

 DAPHNE Overall Objective:
Open and extensible system infrastructure

Deployment Challenges

Different
Systems/
Libraries

Dev Teams Programming Models

Resource
Managers

Cluster
Under-

utilization

Data/File
Exchange

Example Use Cases

• DLR Earth Observation
• ESA Sentinel-1/2 datasets  4PB/year
• Training of local climate zone classifiers on So2Sat LCZ42

(15 experts, 400K instances, 10 labels each, ~55GB HDF5)
• ML pipeline: preprocessing,

ResNet-20, climate models

• IFAT Semiconductor Ion Beam Tuning

• KAI Semiconductor Material Degradation

• AVL Vehicle Development Process (ejector geometries, KPIs)

• ML-assisted simulations, data cleaning, augmentation
• Cleaning during exploratory query processing

[So2Sat LC42: https://mediatum.ub.tum.de/1454690]

[Xiao Xiang Zhu et al: So2Sat LCZ42: A
Benchmark Dataset for the Classification of

Global Local Climate Zones. GRSM 8(3) 2020]

https://mediatum.ub.tum.de/1454690

System Architecture

LLVM

Python API w/ lazy evaluation MLIR Dialects,
Extension Catalog

(new data types,
kernels,

scheduling algs)

Sideways Entry,
DSL-level

constraints (data
formats & data/op

placement)

[Patrick Damme et al.: DAPHNE: An Open
and Extensible System Infrastructure for

Integrated Data Analysis Pipelines, CIDR 2022]

Language Abstractions

• Design Principles
• Frame and Matrix Operations

(coarse-grained)
• Data Independence

(abstract data types)
• Extensibility

(data types, operations, HW)

• DSL Operations
• Basic built-in operations (RA, LA)
• High-level built-in operations

(e.g., SQL, PS, map on frames/matrices)
• MLIR SCF (loops, branches)
• Typed and untyped functions

(hierarchy of composite primitives)
• UDFs and external libraries

dc = DaphneContext()
G = dc.from_numpy(npG)
G = (G != 0)
c = components(G, 100, True).compute()

Python API DaphneLib

def components(G, maxi, verbose) {
n = nrow(G); // get the number of vertexes
maxi = 100;
c = seq(1, n); // init vertex IDs
diff = inf; // init diff to +Infinity
iter = 1;
// iterative computation of connected components
while(diff>0 & iter<=maxi) {
u = max(rowMaxs(G * t(c)), c); // neighbor prop
diff = sum(u != c); // # of changed vertexes
c = u; // update assignment
iter = iter + 1;

}
}

Domain-specific Language DaphneDSL

Multiple dispatch of functions/kernels

Data Representations

• Data Types: Matrix, Frame, LLVM scalars, (Tensor, List)

• Value Types: e.g., I8, I32, I64, UI8, UI32, UI64, FP32, FP64

• Distributed/Multi-device Data:

a) Distributed Collection of Tiles b) Federated Matrix/Frame

Matrix

GPU Array

CPU Array

Dense/
CSR

Vectorized (Tiled) Execution

Default Parallelization
Frame & Matrix Ops

Fused Operator Pipelines
on Tiles/Scalars + Codegen

Locality-aware,
Multi-device Scheduling

Vectorized (Tiled) Execution, cont.

• #1 Zero-copy Input Slicing
• Create view on sliced input (no-op)
• All kernels work on views

• #2 Sparse Intermediates
• Reuse dense/sparse kernels
• Sparse pipeline intermediates for free

• #3 Fine-grained Control
• Task sizes (dequeue, data access) vs data binding (cache-conscious ops)
• Scheduling for load balance (e.g., sparse operations)

• #4 Computational Storage
• Task queues connect eBPF programs, async I/O

into buffers, and subsequent operator pipelines
FP32

FP32

FP32

FP32 FPGA

SSD ResNet-20
Scoring

UI8

y

Distributed Vectorized Execution

• Federated matrices/frames + distribution primitives
• Hierarchical vectorized pipelines and scheduling

• Coordinator
(spawns distributed fused pipeline)

• #1 Prepare Inputs
(N/A, repartition, broadcasts,
slices broadcasts as necessary)

• #2 Coarse-grained Tasks
(tasks run vectorized pipeline)

• #3 Combine Outputs
(N/A, all-reduce, rbind/cbind)

Node 1

X
[1:

100M]

Node 2

X
[100M:
200M]

colmu
colsd

y

y

(X)

XTX

XTy

Experiments: Simple IDA Pipelines

Setup: Single node w/ 2x Intel Xeon Gold 6238 (112 vcores, 7.7 TFLOP/s),
768 GB DDR4 RAM, 12x 2TB SSDs (data), NVIDIA T4 GPU (8.1 TFLOP/s, 16 GB),
and Intel FPGA PAC D5005 (w/ Stratix 10SX FPGA, 32 GB) since Dec 29

P1: TPC-H SF10 csv, query processing
+ linear regression training on CPUs

P2: So2Sat LCZ42 csv (testset),
ResNet-20 scoring on GPU

Experiments: Vectorized Execution

• Ongoing Experiments
• FPGA kernels on D5005, CPU+GPU vectorized pipelines
• Distributed sparse runtime operations on Vega supercomputer
• Sparse vectorized pipelines and scheduling algorithms

Linear Regression w/
varying Data Size and Vectorization

K-means Clustering w/
varying Data Size and Vectorization

Status and Next Steps

• Current Status
• System Architecture and Design
• Initial DSL and Python API
• MLIR-based Compiler and Runtime Prototype
• Vectorized Execution (fused pipelines, scheduling)
• GPU (and FPGA) Integration, BLAS/DNN Libraries
• Standalone Distributed Runtime

• Promising Progress and Preliminary Experiments

• DAPHNE OSS Announcement
• Public release by 03/2022
• Apache v2 license
• Towards an inclusive dev community
 Potential for collaboration in 2022-2024

 DAPHNE Overall Objective:
Open and extensible system

infrastructure

Enable researchers to
experiment with new

prototypes and extensions

https://daphne-eu.eu/

DM + HPC + ML

https://daphne-eu.eu/

	DAPHNE: An Open and Extensible �System Infrastructure for�Integrated Data Analysis Pipelines
	Motivation
	Example Use Cases
	System Architecture
	Language Abstractions
	Data Representations
	Vectorized (Tiled) Execution
	Vectorized (Tiled) Execution, cont.
	Distributed Vectorized Execution
	Experiments: Simple IDA Pipelines
	Experiments: Vectorized Execution
	Status and Next Steps

