
Dataflow Engines for Scalable Cloud Applications:
a Maslow's Hammer or Natural Outcome?

Asterios Katsifodimos

@kasterios

Alternative title: an ode to stateful streaming dataflows.

How do people build scalable cloud applications today?
What are the main pain-points?
Is it a good idea to leverage dataflow processors for cloud apps?

Are current dataflow processors up to the task?

2

Table of Contents

Service
(stateless) layer

Database
(stateful) layer

Data
base

Cart
service

Payment
service

Stock
service

Data
base

Data
base

3

A tale of three Cloud services

To checkout: check & update stock, verify payment, checkout the cart. Atomically!

Services are stateless
Database does the heavy-lifting

High latency, costly state access

No guaranteed messaging

80% of code in the service layer is error checking.

Transactions:

Java XA or

SAGAs.

4

Services Architecture (1): Easiest Implem.

Cart
Business

Logic

Stock
Business

Logic

Payment
Business

Logic

DB

RPC Call

RPC Resp
onse

RPC Call
RPC Response

RPC Call

RPC Response

REST Call

RE
ST

 C
al

l

DB
DB

Low-latency access to local state

Service calls still expensive

Messaging still not guaranteed

Not obvious how to scale this out

Fault tolerance is hard!

5

Services Architecture (2): Embedded State/DB

Cart

DB

Business
Logic

Stock

DB

Business
Logic

Payment

DB

Business
Logic

REST Call

RE
ST

 C
al

l

Message exchange through an

event-log

Guaranteed at-least once

delivery!

Services are

asynchronous/reactive.

If we lose state, we replay the log

and rebuild it.

Time-travel debugging, audits, etc.

are easier.

Let’s scale this!

6

Services Architecture (3): Event Sourcing

Cart

DB

Business
Logic

Stock

DB

Business
Logic

Payment

DB

Business
Logic

REST Call

RE
ST

 C
al

l

event-log

event-log

7

Services Architecture (4): Scalable Deployment

RPC Calls

Subscribe for Responses

event-log

event-log
Cart 1

Business
Logic

Cart 2
Business

Logic

Cart 3
Business

Logic

Stock 1
Business

Logic

Stock 2
Business

Logic

Payment 1
Business

Logic

event-log

DB

DB

DB

DB

DB

DB

Domain
Knowledge

Business logic,
requirements, etc.

Scalable Cloud Application development is hard!

Cloud Computing Elasticity, costs, operations,
continuous deployment, storage, etc.

Scalability, parallelism, messaging
fault tolerance, consistency, etc.Distributed

systems
Programming

Debugging, clean code,
algorithms, data structures, etc.

Transactions, ACIDity, etc.

Database
Systems

*this Venn diagram does not represent set-sizes properly.

Domain
Knowledge

Cloud Computing

Scalable Cloud Application development is hard!

Programming

Elasticity, costs, operations,
continuous deployment, storage, etc.

Scalability, parallelism, messaging
fault tolerance, consistency, etc.Distributed

systems

Debugging, clean code,
algorithms, data structures, etc.

Database
Systems

People who can develop
scalable Cloud applications.

Transactions, ACIDity, etc.

Business logic,
requirements, etc.

Challenge: implement Stock, Order, Payment
microservices with tools of choice:

Goal: 10K per second order.checkout() in the Cloud!
Without losing money or stock.

Class runs 4 years (~50 5-person teams).
10

Meanwhile at the TU Delft campus…

Service/business Layer: Flask/Spring, AWS/Azure Lambdas, Akka,…

Persistence Layer: Postgres, CockroachDB, Mongo, Cassandra, Redis,…

Infra Layer: Docker+Kubernetes on Amazon or Google Cloud,…

during my MSc class, “Web-scale Data Management”

11

How to make stateful computations fault tolerant?

How do we (or should we) guarantee message delivery?

How do we consistently query the global state of a full system?

What abstractions should people use?

…

No team managed so far!
State management is hard,

and the current technology is primitive!
(or the students have learned nothing)

12

Building scalable Cloud
applications is like
programming assembly
before high-level langauges.

Just more complicated.

“Two-pizza” dev team in the year 2022.

13

Wait, what about serverless? That should work!

VM
Fn

Fn

Fn

VM
Fn

Fn

Fn

VM
Fn

Fn

Fn

Cloud database

Managed
Infrastructure
(autoscaling, no ops)

Function-based
programming
model

No State

Fn-to-fn calls

Transactions
No natural programming
model

Work in progress at TU Delft

14

15

Wait a minute! I have seen this before…

RPC Calls

Subscribe for Responses

event-log

event-logCart 1
Business

Logic

Cart 2
Business

Logic

Order 3
Business

Logic

Stock 1
Business

Logic

Stock 2
Business

Logic

Payment 1
Business

Logic

event-log

DB

DB

DB

DB

DB

DB

Devs nowadays are implementing parallel, stateful dataflow graphs!
By hand…

16

Business Logic

Managed State

Lo
gi

ca
l M

es
sa

ge
 In

bo
xe

s

O
ut

go
in

g
M

es
sa

ge
 R

ou
te

r

SVC1

SVC5

SVC2

SVC4

Input Message Queues

SVC3

Control Event (commit, prepare, snapshot marker, etc.) Message Managed Operator State

Output Message Queue

Time-travel debugging using
checkpoints and message
broker.

Guaranteed message delivery
and exactly-once execution.

Each operator executes a
(group of) microservices or
functions that share the same
state.

Operator-local state partitioned on key
input for scalability and fault-tolerance.

BUT data flow systems are
• Very rigid (e.g., redeployment

of complete graphs)
• Internal/invisible state
• Cumbersome programming model

for general applications

WiP @Delft: dataflow systems & abstractions for the Cloud

Global Application State
Querying and Consolidation

[ICDE 22]

Flexible fault-tolerance with
exactly-once messaging.

[SIGMOD 21]

Transactions
[ACM DEBS 21, Information

Systems 22, WiP]

High-level Programming
Models

[VLDB19, Arxiv, WiP]

Zen operations: auto-scaling,
migration, etc.

[WiP]

https://github.com/delftdata

https://github.com/delftdata

18

Fault Tolerance: Local-recovery with exactly-once

guarantees with causal logging

65&�������
������

&DXVDO�/RJ

7DVN���

6WDQGE\�7DVN���

�������
������

�������
�������
������

������

൓ 6,1.

�������
������

7DVN���

&DXVDO�/RJ

�
5HTXHVW�
/RJ

65& ı ^8')` ʌ
6WDQGE\�7DVN���

�
���25'(5���
���7,0(5�LG ;��
���+773�^�D���`�

/RJ����
�������
������

/RJ���

�
���&+.�53&�
���76���������
���76���������
���&+.�53&�
���76���������

/RJ���

,Q�)OLJKW�/RJ

+773
�
�

�

� �

2XWSXW�4XHXH

,Q�)OLJKW�/RJ

��

2XWSXW�4XHXH

�

��

6WDQGE\�7DVN���

7DVN���

7DVN���

6HULDOL]HU'H�
VHULDOL]HU

ı ^8')` ʌ
65&

&DXVDO�/RJ

&DXVDO�/RJ

6HULDOL]HU
'H�

VHULDOL]HU ൓ 6,1.

'H�
VHULDOL]HU

&DXVDO�6HUYLFHV

�

�

�

�

$FWLYDWH�
6WDQGE\

5HFRQILJXUH�
1HWZRUN

5HFRQILJXUH�
1HWZRUN

5HTXHVW�
,Q�)OLJKW�
5HFRUGV

,Q�)OLJKW�5HFRUGV

�
5HSOD\�
5HFRUGV ��

� 'HGXSOLFDWH

�

�������
�������
������

[SIGMOD 21] Clonos: Consistent Causal Recovery for Highly-Available Streaming Dataflows
Pedro Fortunato Silvestre, Marios Fragkoulis, Diomidis Spinellis, Asterios Katsifodimos.
ACM SIGMOD International Conference on the Management of Data 2021.

https://delftdata.github.io/clonos-web/

Ability to query live or
snapshotted
partitioned state with
SQL.

Different isolation
guarantees depending
on setting.

19

Querying Internal Operator State on the Fly

����6WDWH�VWRUH

���6WUHDP�3URFHVVRU
1RGH�=1RGH�$

6WDWHIXO�VWUHDP
RSHUDWRU�=
6WDWH�=

LG��
LG��

6QDSVKRW
VWDWH�$

LG��
LG��

6QDSVKRW
VWDWH�=

4XHU\�V\VWHP

64/
LQWHUIDFH

'LUHFW�REMHFW
LQWHUIDFH

/LYH�VWDWH
=

1RGH�%

�

/LYH�VWDWH
$

6WDWHIXO�VWUHDP
RSHUDWRU�%
6WDWH�%

6WDWHIXO�VWUHDP
RSHUDWRU�$
6WDWH�$

/LYH�VWDWH
%

LG��
LG��

6QDSVKRW
VWDWH�%

[ICDE 22] S-Query: Opening the Black Box of Internal Stream Processor State
Jim Verheijde, Vassilis Karakoidas, Marios Fragkoulis, Asterios Katsifodimos.
In the Proceedings of the 2022 IEEE 38th International Conference on Data Engineering (ICDE).

https://github.com/delftdata/s-query

20

WiP: From pure Python OO to Flink, Beam, Lambdas

Python Dataflow

Class Operator

Object State Operator State

Function Call Arguments Event (header)

Return Value Event (payload)

@entity
class User:

def __init__(self, username: str):
self.username: str = username
self.balance: int = 1

def __key__(self):
return self.username

@transactional
def buy_item(self, amount: int, item: Item) -> bool:

total_price = amount * item.price

if self.balance < total_price:
return False

Decrease the stock.
available_stock = item.update_stock(-amount)

if not available_stock:
item.update_stock(amount)
return False

self.balance -= total_price
return True

Program
Analysis

Intermediate
Representati

on

Compilation

@entity
class Item:

def __init__(self, item_name: str, price: int):
self.item_id: str = item_id
self.stock: int = 0
self.price: int = price

def __key__(self):
return self.item_id

def update_stock(self, amount: int) -> bool:
self.stock += amount
return stock>=0

Execution
Targets

Flink

Lambdas

…

https://arxiv.org/abs/2112.00710

[Arxiv] “Stateful Entities: Object-oriented Cloud Applications as Distributed Dataflows”
Wouter Zorgdrager, Kyriakos Psarakis, Marios Fragkoulis, Eelco Visser, Asterios Katsifodimos

https://github.com/delftdata/stateflow

Exactly-once
guarantees form
underlying runtime can
hide all failures from
the application.

Programmers code
business logic only.

Lambdas

Dataflow engines can be an excellent execution
engine for scalable and consistent, cloud-native
applications.

We still need to make them less rigid, auto-
scaling and Cloud-friendly.
And especially: programmable by normal folks.

*hiring postdocs!

22

Further Reading

[ICDE 22] S-Query: Opening the Black Box of Internal Stream Processor State
Jim Verheijde, Vassilis Karakoidas, Marios Fragkoulis, Asterios Katsifodimos.
In the Proceedings of the 2022 IEEE 38th International Conference on Data Engineering (ICDE).

[SIGMOD 21] Clonos: Consistent Causal Recovery for Highly-Available Streaming Dataflows
Pedro Fortunato Silvestre, Marios Fragkoulis, Diomidis Spinellis, Asterios Katsifodimos.
ACM SIGMOD International Conference on the Management of Data 2021.

[DEBS 21] Distributed Transactions on Serverless Stateful Functions
Martijn De Heus, Kyriakos Psarakis, Marios Fragkoulis, Asterios Katsifodimos.
ACM International Conference on Distributed and Event-based Systems (DEBS) 2021.

[SIGMOD 20] Beyond Analytics: The Evolution of Stream Processing Systems
Paris Carbone, Marios Fragkoulis, Vasiliki Kalavri, Asterios Katsifodimos.
ACM SIGMOD International Conference on Management of Data 2020 (tutorial).

[VLDB 19] Stateful Functions as a Service in Action
Adil Akhter, Marios Fragkoulis, Asterios Katsifodimos.
International Conference on Very Large Data Bases (VLDB) 2019 (demo).

[EDBT 19] Operational Stream Processing: Towards Scalable and Consistent Event-Driven Applications
Asterios Katsifodimos, Marios Fragkoulis.
International Conference on Extending Database Technology (EDBT) 2019.

