
Elastic Query Processing on Function as a Service Platforms
Thomas Bodner

VLDB 2020 PhD Workshop
31 August 2020



Target Analytics Workloads
• Interactive ad-hoc analytics on cold data

• Interactive – require query latencies in seconds
• Ad-hoc

• Every query is different

• Infrequent query bursts

• Cold data – infrequently accessed data
• Example: Bring ERP and HCM data together to answer questions like „For every cost center,

how has the revenue per employee changed over time?“

2



Target Analytics Workloads
• Interactive ad-hoc analytics on cold data

• Interactive – require query latencies in seconds
• Ad-hoc

• Every query is different

• Infrequent query bursts

• Cold data – infrequently accessed data
• Example: Bring ERP and HCM data together to answer questions like „For every cost center,

how has the revenue per employee changed over time?“

• These dynamic workloads are hard to predict
• Difficult to provision infrastructure and to optimize query execution upfront
• Difficult to achieve adequate performance and cost efficiency

2



Target Analytics Workloads
• Interactive ad-hoc analytics on cold data

• Interactive – require query latencies in seconds
• Ad-hoc

• Every query is different

• Infrequent query bursts

• Cold data – infrequently accessed data
• Example: Bring ERP and HCM data together to answer questions like „For every cost center,

how has the revenue per employee changed over time?“

• These dynamic workloads are hard to predict
• Difficult to provision infrastructure and to optimize query execution upfront
• Difficult to achieve adequate performance and cost efficiency

▸ Database systems need to adapt to them quickly

2



Traditional Database Architectures
• Shared-everything

• Limited compute scalability

• Storage scalability via data tiering to larger/cheaper/slower storage until too slow

• Shared-nothing

• Expensive data shuffles and loads on workload changes

• Non-interactive performance during transition periods

• Shared-disk (with regular VMs)

• Separate compute and storage resources, matching modern cloud infrastructures

• Compute scalability via adding/removing nodes

• Configuring and launching VMs takes minutes at best, and cannot be part of interactive query response

3



Traditional Database Architectures
• Shared-everything

• Limited compute scalability

• Storage scalability via data tiering to larger/cheaper/slower storage until too slow

• Shared-nothing

• Expensive data shuffles and loads on workload changes

• Non-interactive performance during transition periods

• Shared-disk (with regular VMs)

• Separate compute and storage resources, matching modern cloud infrastructures

• Compute scalability via adding/removing nodes

• Configuring and launching VMs takes minutes at best, and cannot be part of interactive query response

▸ Current approaches do not scale fast enough and are prone to under- or over-provisioning

3



Function as a Service Platforms
• Allocate and bill fine-grained units of compute resources that launch in milliseconds

4



Function as a Service Platforms
• Allocate and bill fine-grained units of compute resources that launch in milliseconds

▸ Allocation fast enough to be part of interactive query response

4



Function as a Service Platforms
• Allocate and bill fine-grained units of compute resources that spawn in milliseconds

▸ Allocation fast enough to be part of interactive query response

• Let users write pieces of code in (almost) any programming language

• Run user code on tiny, short-lived, and stateless workers

• Transparently schedule, load balance, and scale user code across 10,000s of workers

4



Function as a Service Platforms
• Allocate and bill fine-grained units of compute resources that spawn in milliseconds

▸ Allocation fast enough to be part of interactive query response

• Let users write pieces of code in (almost) any programming language

• Run user code on tiny, short-lived, and stateless workers

• Transparently schedule, load balance, and scale user code across 10,000s of workers

▸ Combined performance high enough for large-scale query processing

4



Function as a Service Platforms
• Allocate and bill fine-grained units of compute resources that spawn in milliseconds

▸ Allocation fast enough to be part of interactive query response

• Let users write pieces of code in (almost) any programming language

• Run user code on tiny, short-lived, and stateless workers

• Transparently schedule, load balance, and scale user code across 10,000s of workers

▸ Combined performance high enough for large-scale query processing

• Economically viable for users, when moderately utilized (2-8X the costs of VMs)

4



Challenges in FaaS-based Query Execution: Cloud Functions

1. Tight resource limits (2 vCPUs, 3GB RAM and 15min runtime)

2. Launch overheads (potentially 10s of seconds)

• Invocation via web-based REST API

• Initialization including host provisioning, worker placement and runtime setup

3. Observability for blackbox cloud function services

4. Fault tolerance via transparent re-execution

5. Indirect communication due to disabled inbound network connections

5



Challenges in FaaS-based Query Execution: Object Storage

6. Inefficiencies

• High request latencies

• Significant per-request costs

7. Weak data consistency guarantees

• No read-your-own-write

• No multi-key write

6



Challenges in Query Optimization for FaaS-based Execution

8. Cost-awareness

• Cloud service pricing models

• Cost-performance tradeoffs

9. Parallel plans

• Exploit parallelism of underlying platform

• Avoid data shuffles

7



Disaggregated Storage FaaS-based Compute Relational OLAP Query Cost-Performance

FaaS-based Data Analysis Systems 

PyWren ✓ ✓ ✗ ✗

Flint ✓ ✓ ✗ ✗

Locus ✓ ✓ ✗ ✓

Cloud-based OLAP Database Systems 

Amazon Redshift ✗ ✗ ✓ ✗

Redshift Spectrum ✓ ✗* ✓ ✗

Snowflake ✓ ✗ ✓ ✗

FaaS-based OLAP Database Systems 

Lambada ✓ ✓ ✓ ✓
Starling ✓ ✓ ✓ ✓
Skyrise ✓ ✓ ✓ ✓

Cloud Data Analysis Systems

8



Skyrise Target Architecture
• FaaS-based, shared-disk architecture 

• Coordinator compiles SQL queries to optimized plans

• Optimization incorporates statistics and prices

• Coordinator schedules operators on function service

• Coordinator observes operator execution

• Operators interact with storage service

• Build on AWS cloud services

9

Pricing & Billing Services
(Price List & Cost Explorer)

Regular Compute Service 
(EC2)

Function Service
(Lambda)

Query Compiler

Object Storage Services
(S3 & ElastiCache)

Scheduler

Query Operators Intermediates

Tables

Plans
Monitoring Services
(CloudWatch & X-Ray)

Logs

PricesR▸

Coordinator

Worker

R▸

R▸

R ▾ R ▾



Skyrise Query Engine
• Query operators

• C++ for efficient resource management

• Minimal deployment package for fast launches

• Idempotence for correct behavior under failure

• Scheduler

• Parallel function invocation

• Function pre-warming

10



Skyrise Query Engine II
• Operator communication

• Operator collocation

• Interleaved and late materialization

• Access to Persistent and Intermediate Data

• Columnar and compressed file formats

• Statistics-based pruning

• Wait for convergence of eventual consistent storage

• Metadata layer for MVCC

11



Skyrise Query Optimizer
• FaaS-based execution: Limits and degrees of freedom

• Query cost-performance: Multi-objective optimization

• Parallel plans: Maximize parallelism and minize data exchange

• Parallel optimization: Cope with complex cost function and large search space

12



Conclusion
• Interactive ad-hoc analytics on cold data require elastic query processing capabilities

• Modern cloud infrastructure (i.e., FaaS platforms) represents a promising foundation

• We identify challenges of building a query processing system on FaaS platforms

• We propose approaches to address these challenges

• We report on our progress towards building these concepts into our research prototype

• We further provide an outlook of what is still planned in this thread of research

13



Thank you.
Questions?


