Elastic Query Processing on Function as a Service Platforms
Thomas Bodner

VLDB 2020 PhD Workshop
31 August 2020

Target Analytics Workloads

* Interactive ad-hoc analytics on cold data
* Interactive — require query latencies in seconds
* Ad-hoc
* Every query is different
* Infrequent query bursts

* Cold data — infrequently accessed data

 Example: Bring ERP and HCM data together to answer questions like , For every cost center,
how has the revenue per employee changed over time?*

Hasso
Plattner
Institut

Target Analytics Workloads

* Interactive ad-hoc analytics on cold data

* Interactive — require query latencies in seconds
* Ad-hoc

* Every query is different

* Infrequent query bursts

* Cold data — infrequently accessed data

 Example: Bring ERP and HCM data together to answer questions like , For every cost center,
how has the revenue per employee changed over time?*

* These dynamic workloads are hard to predict

 Difficult to provision infrastructure and to optimize query execution upfront
 Difficult to achieve adequate performance and cost efficiency

Hasso
Plattner
Institut

Target Analytics Workloads

* Interactive ad-hoc analytics on cold data

* Interactive — require query latencies in seconds
* Ad-hoc

* Every query is different

* Infrequent query bursts

* Cold data — infrequently accessed data

 Example: Bring ERP and HCM data together to answer questions like , For every cost center,
how has the revenue per employee changed over time?*

* These dynamic workloads are hard to predict

 Difficult to provision infrastructure and to optimize query execution upfront
 Difficult to achieve adequate performance and cost efficiency

> Database systems need to adapt to them quickly

Hasso
Plattner
Institut

Traditional Database Architectures

e Shared-everything

* Limited compute scalability

» Storage scalability via data tiering to larger/cheaper/slower storage until too slow
* Shared-nothing

* Expensive data shuffles and loads on workload changes

* Non-interactive performance during transition periods

* Shared-disk (with regular VMs)

* Separate compute and storage resources, matching modern cloud infrastructures
* Compute scalability via adding/removing nodes

e Configuring and launching VMs takes minutes at best, and cannot be part of interactive query response

Hasso
Plattner 3
Institut

Traditional Database Architectures

e Shared-everything

* Limited compute scalability

» Storage scalability via data tiering to larger/cheaper/slower storage until too slow
* Shared-nothing

* Expensive data shuffles and loads on workload changes

* Non-interactive performance during transition periods

* Shared-disk (with regular VMs)

* Separate compute and storage resources, matching modern cloud infrastructures
* Compute scalability via adding/removing nodes

e Configuring and launching VMs takes minutes at best, and cannot be part of interactive query response

» Current approaches do not scale fast enough and are prone to under- or over-provisioning

Hasso
Plattner 3
Institut

Function as a Service Platforms

* Allocate and bill fine-grained units of compute resources that launch in milliseconds

Hasso
Plattner
Institut

Function as a Service Platforms

* Allocate and bill fine-grained units of compute resources that launch in milliseconds

> Allocation fast enough to be part of interactive query response

Hasso
Plattner
Institut

Function as a Service Platforms

* Allocate and bill fine-grained units of compute resources that spawn in milliseconds

> Allocation fast enough to be part of interactive query response

* Let users write pieces of code in (almost) any programming language
* Run user code on tiny, short-lived, and stateless workers

* Transparently schedule, load balance, and scale user code across 10,000s of workers

Hasso
Plattner
Institut

Function as a Service Platforms

* Allocate and bill fine-grained units of compute resources that spawn in milliseconds

> Allocation fast enough to be part of interactive query response

* Let users write pieces of code in (almost) any programming language
* Run user code on tiny, short-lived, and stateless workers

* Transparently schedule, load balance, and scale user code across 10,000s of workers

» Combined performance high enough for large-scale query processing

Hasso
Plattner
Institut

Function as a Service Platforms

* Allocate and bill fine-grained units of compute resources that spawn in milliseconds

> Allocation fast enough to be part of interactive query response

Let users write pieces of code in (almost) any programming language

Run user code on tiny, short-lived, and stateless workers

Transparently schedule, load balance, and scale user code across 10,000s of workers

» Combined performance high enough for large-scale query processing

Economically viable for users, when moderately utilized (2-8X the costs of VMs)

Hasso
Plattner
Institut

Challenges in FaaS-based Query Execution: Cloud Functions

1. Tight resource limits (2 vCPUs, 3GB RAM and 15min runtime)

2. Launch overheads (potentially 10s of seconds)

e |nvocation via web-based REST API

* |nitialization including host provisioning, worker placement and runtime setup

3. Observability for blackbox cloud function services
4. Fault tolerance via transparent re-execution

5. Indirect communication due to disabled inbound network connections

Hasso
Plattner
Institut

Challenges in FaaS-based Query Execution: Object Storage

6. Inefficiencies

* High request latencies

 Significant per-request costs

7. Weak data consistency guarantees

* No read-your-own-write

* No multi-key write

Hasso
Plattner
Institut

Challenges in Query Optimization for FaaS-based Execution

8. Cost-awareness

* Cloud service pricing models

e Cost-performance tradeoffs

9. Parallel plans

* Exploit parallelism of underlying platform

e Avoid data shuffles

Hasso
Plattner
Institut

Cloud Data Analysis Systems

Disaggregated Storage FaaS-based Compute Relational OLAP Query Cost-Performance
FaaS-based Data Analysis Systems

PyWren v v X X
Flint v v X X
Locus v v X v
Cloud-based OLAP Database Systems

Amazon Redshift X X v X
Redshift Spectrum v X* v X
Snowflake v X v X

FaaS-based OLAP Database Systems

Lambada v v v v
Starling v v v v
Skyrise v v v v

Hasso
Plattner
Institut

Skyrise Target Architecture

* FaaS-based, shared-disk architecture

Coordinator compiles SQL queries to optimized plans

Optimization incorporates statistics and prices

Coordinator schedules operators on function service

Coordinator observes operator execution

Operators interact with storage service

Build on AWS cloud services

Hasso
Plattner
Institut

Regular Compute Service
(EC2)

Coordinator

Query Compiler

Y

(" pans)
'

Pricing & Billing Services
(Price List & Cost Explorer)

< Prices >

Scheduler

e

Function Service
(Lambda)

Worker

Query Operators

Monitoring Services
(CloudWatch & X-Ray)

(o)

RV(

Object Storage Services
(S8 & ElastiCache)

< Tables >
(Intermediates >

Skyrise Query Engine

* Query operators

* C++ for efficient resource management
* Minimal deployment package for fast launches

* |[dempotence for correct behavior under failure

e Scheduler

 Parallel function invocation

* Function pre-warming

Hasso
Plattner
Institut

10

Skyrise Query Engine |l

* Operator communication

* Operator collocation

* |Interleaved and late materialization

 Access to Persistent and Intermediate Data

* Columnar and compressed file formats
* Statistics-based pruning

* Wait for convergence of eventual consistent storage

* Metadata layer for MVCC

Hasso
Plattner
Institut

11

Skyrise Query Optimizer

* FaaS-based execution: Limits and degrees of freedom
* Query cost-performance: Multi-objective optimization

* Parallel plans: Maximize parallelism and minize data exchange

* Parallel optimization: Cope with complex cost function and large search space

Hasso
Plattner
Institut

12

Conclusion

* Interactive ad-hoc analytics on cold data require elastic query processing capabilities

Modern cloud infrastructure (i.e., FaaS platforms) represents a promising foundation

We identify challenges of building a query processing system on Faa$S platforms

We propose approaches to address these challenges

We report on our progress towards building these concepts into our research prototype

We further provide an outlook of what is still planned in this thread of research

Hasso
Plattner 13
Institut

Thank you.
‘ Questions?

