
Doppler: Understanding Serverless Query Execution
Thomas Bodner, Tobias Pietz, Lars Jonas Bollmeier, Daniel Ritter
Hasso Plattner Institute, University of Potsdam, Germany

SIGMOD Workshop on Big Data in Emergent Distributed Environments
12 June 2022

2

Serverless Service Paradigm
Economics

□ Providers offer services with different economic model

□ Customers pay for consumption instead of capacity

□ Customers benefit when resource utilization is low, i.e.,
workload prediction and capacity planning are difficult

□ Providers charge extra to compensate underutilization

▷ Assumption: Providers are better at using resources, because of their scale

SAP HANA Cloud Capacity Unit Estimator

3

Serverless Service Paradigm
Technology

□ No burden of provisioning or managing resources (like servers, thus the term serverless)
□ No scaling, load balancing, failure tolerance, .. in distributed systems
▷ Infrastructure and database services moving towards consumption-based model

□ Serverless infrastructure as an emergent distributed environment
□ Serverless storage (e.g., Amazon S3): Scale from bytes to EB, high-throughput, cheap
□ Serverless compute (e.g., AWS Lambda)

▪ Execute pieces of code in any programming language
▪ Spawn tiny, short-lived, and stateless workers in milliseconds
▪ Scale to 10,000s of workers, enabling large-scale query processing

Amazon S3

AWS Lambda

□ FaaS-based, shared-storage database architecture
▷ Exploits serverless cloud infrastructure for compute and storage elasticity

▷ Demonstrates cost and performance benefits for interactive queries on cold data

□ Compute tier runs pipelines of query
operators in cloud function workers

□ Storage tier holds base tables and
intermediate/final results as immutable,
column-oriented, compressed objects

4

Serverless Query Execution

Coordinator

Scheduler

Stage n

Object

Storage

Query Compiler

Worker

Scheduler

Intermediates

Base Tables

PPPs

Final Results

λ

Stage 2

λ

Stage 1

λλ λ

λ

Import

Operator Operator

Operator

Export

[1] Perron et al. Starling: A Scalable Query Engine on Cloud Function Services. In SIGMOD 2020.
[2] Müller et al. Lambada: Interactive Data Analytics on Cold Data Using Serverless Cloud Infrastructure. In SIGMOD 2020.
[3] Cai et al. Integrated Querying of SQL database data and S3 data in Amazon Redshift. In IEEE Data Engineering Bulletin 2018.

Architecture Blueprint
of Serverless Query Engine

□ Analyzing query execution dynamics in cloud-based distributed databases is difficult
□ Serverless query execution is more challenging!
▷ Impedes understanding, maturity, and adoption of technology

□ Observing large ephemeral clusters of stateless workers

□ Contextualizing, integrating and analyzing distributed query traces

□ Timely and with little cost and performance overhead

5

Challenges in Understanding
Serverless Query Execution

□ Toolkit for post-mortem analysis of serverless queries
□ Puts query context into traces to relate traces back

to semantic parts of a query
□ Collects traces from cloud functions via library that

wraps most basic persistent log service
□ Integrates and analyzes distributed traces

6

Doppler: Debugging and Performance Profiling
for Serverless Query Execution

Serverless Storage

Data

Serverless
Workers

Serverless
Workers...

Traces

Doppler
Trace

Library

Doppler Backend

Doppler User Interface1-4

Collector

Analyzer

load
an

al
yz

e

plot
interact

Query Context
Query Hash
Arrival Time

Stage Context
Stage ID

Function Context
Function Name
Log Stream ID
Invocation ID

Operator Context
Operator Name

Operator ID

Trace Body
Level
Tag

Message

Session Context
Software Version

User ID
Region ID

Skyrise-0.3.0; John.Doe; us-east-1; ...

... [INFO]; TupleCount; 5916815

 ...

Prefix:

... 8743b52063; 1648215263000; B64A ...

... WorkerFunction;D2...52; B1...59; AggregateHashOperator; F2...EC; ...

Coordinator

Worker

 ...

 ...

 ...

 ...

 ...

Doppler Context Information

Doppler Architecture

□ Straggling query workers
□ Stragglers taking much longer than other workers severely impact performance
□ Can occur due to a variety of reasons across hardware/software stack, data skew, ..
□ We induce at random 5s delays into query operators

□ Serverless function concurrency limit
□ Cloud functions are subject to provider-side cluster size limits
□ We restrict our worker functions to run at low concurrency

□ Local node errors
□ A distributed system is still subject to all local error types
□ We inject at random non-fatal errors into query operators

7

Demonstration of Doppler
Scenarios

□ We integrate Doppler with the Skyrise query processor

□ Standard TPC-H benchmark query #1

□ On datasets of scale factors 1 to 10,000 (10 TB)
□ Stored in columnar, compressed ORC files

□ In AWS region US-East-1
□ No “serverful” resources running
□ Max. Lambda concurrency 20,000 instances
□ Coordinator instance at 10 GB, workers at 4 GB

8

Demonstration of Doppler
Setup

s3://skyrise-lineitem/sf10000
 {23,479 objects}

ImportOperatorProxy

FilterOperatorProxy

ProjectionOperatorProxy

AggregateOperatorProxy

s3://skyrise-results/final/
 tpch_q1.csv

ExportOperatorProxy

23,479 objects

Partial Merge

DataExchangeOperatorProxy

AggregateOperatorProxy

Partial Merge

DataExchangeOperatorProxy

Full Merge

DataExchangeOperatorProxy

AggregateOperatorProxy

ProjectionOperatorProxy

SortOperatorProxy

AliasOperatorProxy

AggregateOperatorProxy

841 objects

29 objects

1 object

1 object

Physical Query Plan
for TPC-H Q1

[1] Bodner. Elastic Query Processing on Function as a Service Platforms. In VLDB PhD Workshop 2020.

9

1. Local CLI invokes serverless coordinator with SQL query string

Coordinator

Scheduler

Stage n

Object

Storage

Query Compiler

Worker

Scheduler

Intermediates

Base Tables

PPPs

Final Results

λ

Stage 2

λ

Stage 1

λλ λ

λ

Import

Operator Operator

Operator

Export

Demonstration of Doppler
Outline

9

1. Local CLI invokes serverless coordinator with SQL query string

Coordinator

Scheduler

Stage n

Object

Storage

Query Compiler

Worker

Scheduler

Intermediates

Base Tables

PPPs

Final Results

λ

Stage 2

λ

Stage 1

λλ λ

λ

Import

Operator Operator

Operator

Export

Demonstration of Doppler
Outline

9

1. Local CLI invokes serverless coordinator with SQL query string

2. On coordinator, query compiler generates
 physical query plan fragments

Coordinator

Scheduler

Stage n

Object

Storage

Query Compiler

Worker

Scheduler

Intermediates

Base Tables

PPPs

Final Results

λ

Stage 2

λ

Stage 1

λλ λ

λ

Import

Operator Operator

Operator

Export

Demonstration of Doppler
Outline

9

1. Local CLI invokes serverless coordinator with SQL query string

2. On coordinator, query compiler generates
 physical query plan fragments

3. On coordinator, scheduler invokes a worker
per plan fragment, tracks their progress

Coordinator

Scheduler

Stage n

Object

Storage

Query Compiler

Worker

Scheduler

Intermediates

Base Tables

PPPs

Final Results

λ

Stage 2

λ

Stage 1

λλ λ

λ

Import

Operator Operator

Operator

Export

Demonstration of Doppler
Outline

9

1. Local CLI invokes serverless coordinator with SQL query string

2. On coordinator, query compiler generates
 physical query plan fragments

3. On coordinator, scheduler invokes a worker
per plan fragment, tracks their progress

4. Workers run their respective fragments,
 write results to shared storage, inform
 scheduler about progress

Coordinator

Scheduler

Stage n

Object

Storage

Query Compiler

Worker

Scheduler

Intermediates

Base Tables

PPPs

Final Results

λ

Stage 2

λ

Stage 1

λλ λ

λ

Import

Operator Operator

Operator

Export

Demonstration of Doppler
Outline

9

1. Local CLI invokes serverless coordinator with SQL query string

2. On coordinator, query compiler generates
 physical query plan fragments

3. On coordinator, scheduler invokes a worker
per plan fragment, tracks their progress

4. Workers run their respective fragments,
 write results to shared storage, inform
 scheduler about progress

5. Upon query completion, coordinator reports
 query result and trace handle back to local CLI

Coordinator

Scheduler

Stage n

Object

Storage

Query Compiler

Worker

Scheduler

Intermediates

Base Tables

PPPs

Final Results

λ

Stage 2

λ

Stage 1

λλ λ

λ

Import

Operator Operator

Operator

Export

Demonstration of Doppler
Outline

9

1. Local CLI invokes serverless coordinator with SQL query string

2. On coordinator, query compiler generates
 physical query plan fragments

3. On coordinator, scheduler invokes a worker
per plan fragment, tracks their progress

4. Workers run their respective fragments,
 write results to shared storage, inform
 scheduler about progress

5. Upon query completion, coordinator reports
 query result and trace handle back to local CLI

6. Local Doppler backend collects traces based on query handle and analyzes traces

Coordinator

Scheduler

Stage n

Object

Storage

Query Compiler

Worker

Scheduler

Intermediates

Base Tables

PPPs

Final Results

λ

Stage 2

λ

Stage 1

λλ λ

λ

Import

Operator Operator

Operator

Export

Demonstration of Doppler
Outline

10

Demonstration of Doppler
Debugging and Performance Profiling Toolkit

10

Demonstration of Doppler
Debugging and Performance Profiling Toolkit

11

Thank you!
Questions?

12

Backup Slides

13

Serverless Infrastructure
AWS Lambda under the Hood

Regular C5/C6g EC2 Instance

Firecracker Hypervisor

Guest Kernel

Database Code

Host Kernel + KVM

Lambda Node

Nitro ASICs for Acceleration

Lambda Control Plane

14

Serverless Infrastructure
Lambda Limits and Performance Characteristics

□ Service limits
□ Concurrent executions: Up to 10,000s
□ CPU: Up to 6 vCPUs
□ RAM: 128 to 10,240 MB in 1 MB increments
□ Disk: 512 to 10,240 MB in 1 MB increments
□ Network bandwith: 50-300 MB/s
□ Timeout: 15 min

□ Performance
□ Hypervisor starts >150 VMs/s/host at <125ms with 5 MB overhead
□ Accumulated network bandwidth: 100s of GB/s, matches memory bandwidth of x86 machines
□ Accumulated compute: TFLOPS for 1,000s of functions, surpasses large x86 machines

15

Serverless Infrastructure
Current Challenges for Query Processing

□ Launch overheads (potentially 10s of seconds)

□ Tight resource limits (6 vCPUs, 10 GB RAM/Disk and 15 min runtime)

□ Observability of blackbox cloud function services

□ Indirect communication due to disabled inbound network connections

□ Fault tolerance via transparent re-execution

□ All of the above can be dealt with today

□ Expectation for them to go away as compute variants converge
□ Or to stay as part of the new programming model

