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Serverless Service Paradigm 
Economics

□ Providers offer services with different economic model 

□ Customers pay for consumption instead of capacity 

□ Customers benefit when resource utilization is low, i.e., 
workload prediction and capacity planning are difficult 

□ Providers charge extra to compensate underutilization 

▷  Assumption: Providers are better at using resources, because of their scale

SAP HANA Cloud Capacity Unit Estimator
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Serverless Service Paradigm 
Technology

□ No burden of provisioning or managing resources (like servers, thus the term serverless) 
□ No scaling, load balancing, failure tolerance, .. in distributed systems 
▷ Infrastructure and database services moving towards consumption-based model 

□ Serverless infrastructure as an emergent distributed environment 
□ Serverless storage (e.g., Amazon S3): Scale from bytes to EB, high-throughput, cheap 
□ Serverless compute (e.g., AWS Lambda) 

▪ Execute pieces of code in any programming language 
▪ Spawn tiny, short-lived, and stateless workers in milliseconds 
▪ Scale to 10,000s of workers, enabling large-scale query processing

Amazon S3

AWS Lambda



□ FaaS-based, shared-storage database architecture 
▷ Exploits serverless cloud infrastructure for compute and storage elasticity 

▷ Demonstrates cost and performance benefits for interactive queries on cold data 

□ Compute tier runs pipelines of query 
operators in cloud function workers 

□ Storage tier holds base tables and 
intermediate/final results as immutable, 
column-oriented, compressed objects
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Serverless Query Execution
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[1] Perron et al. Starling: A Scalable Query Engine on Cloud Function Services. In SIGMOD 2020. 
[2] Müller et al. Lambada: Interactive Data Analytics on Cold Data Using Serverless Cloud Infrastructure. In SIGMOD 2020. 
[3] Cai et al. Integrated Querying of SQL database data and S3 data in Amazon Redshift. In IEEE Data Engineering Bulletin 2018. 

Architecture Blueprint 
of Serverless Query Engine



□ Analyzing query execution dynamics in cloud-based distributed databases is difficult 
□ Serverless query execution is more challenging! 
▷ Impedes understanding, maturity, and adoption of technology 

□ Observing large ephemeral clusters of stateless workers 

□ Contextualizing, integrating and analyzing distributed query traces 

□ Timely and with little cost and performance overhead
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Challenges in Understanding 
Serverless Query Execution



□ Toolkit for post-mortem analysis of serverless queries 
□ Puts query context into traces to relate traces back 

to semantic parts of a query 
□ Collects traces from cloud functions via library that 

wraps most basic persistent log service 
□ Integrates and analyzes distributed traces
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Doppler: Debugging and Performance Profiling 
for Serverless Query Execution
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Skyrise-0.3.0; John.Doe; us-east-1; ...

... [INFO]; TupleCount; 5916815

    ... 

Prefix:

... 8743b52063; 1648215263000; B64A ...

... WorkerFunction;D2...52; B1...59; AggregateHashOperator; F2...EC; ...

Coordinator
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    ... 

    ... 

    ... 
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    ... 

Doppler Context Information

Doppler Architecture



□ Straggling query workers 
□ Stragglers taking much longer than other workers severely impact performance 
□ Can occur due to a variety of reasons across hardware/software stack, data skew, .. 
□ We induce at random 5s delays into query operators 

□ Serverless function concurrency limit 
□ Cloud functions are subject to provider-side cluster size limits 
□ We restrict our worker functions to run at low concurrency 

□ Local node errors 
□ A distributed system is still subject to all local error types 
□ We inject at random non-fatal errors into query operators
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Demonstration of Doppler 
Scenarios



□ We integrate Doppler with the Skyrise query processor 

□ Standard TPC-H benchmark query #1 

□ On datasets of scale factors 1 to 10,000 (10 TB) 
□ Stored in columnar, compressed ORC files 

□ In AWS region US-East-1 
□ No “serverful” resources running 
□ Max. Lambda concurrency 20,000 instances 
□ Coordinator instance at 10 GB, workers at 4 GB
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Demonstration of Doppler 
Setup

s3://skyrise-lineitem/sf10000
 {23,479 objects}

ImportOperatorProxy

FilterOperatorProxy

ProjectionOperatorProxy

AggregateOperatorProxy

s3://skyrise-results/final/
 tpch_q1.csv

ExportOperatorProxy

23,479 objects

Partial Merge

DataExchangeOperatorProxy

AggregateOperatorProxy

Partial Merge

DataExchangeOperatorProxy

Full Merge

DataExchangeOperatorProxy

AggregateOperatorProxy

ProjectionOperatorProxy

SortOperatorProxy

AliasOperatorProxy

AggregateOperatorProxy

841 objects

29 objects

1 object

1 object

Physical Query Plan 
for TPC-H Q1

[1] Bodner. Elastic Query Processing on Function as a Service Platforms. In VLDB PhD Workshop 2020.
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1. Local CLI invokes serverless coordinator with SQL query string 
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1. Local CLI invokes serverless coordinator with SQL query string 

2. On coordinator, query compiler generates 
 physical query plan fragments 
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per plan fragment, tracks their progress 
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 write results to shared storage, inform 
 scheduler about progress 

5. Upon query completion, coordinator reports 
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Demonstration of Doppler 
Debugging and Performance Profiling Toolkit
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Demonstration of Doppler 
Debugging and Performance Profiling Toolkit
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Thank you! 
Questions?



12

Backup Slides
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Serverless Infrastructure 
AWS Lambda under the Hood

Regular C5/C6g EC2 Instance

Firecracker Hypervisor

Guest Kernel

Database Code

Host Kernel + KVM

Lambda Node

Nitro ASICs for Acceleration

Lambda Control Plane
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Serverless Infrastructure 
Lambda Limits and Performance Characteristics

□ Service limits 
□ Concurrent executions: Up to 10,000s 
□ CPU: Up to 6 vCPUs 
□ RAM: 128 to 10,240 MB in 1 MB increments 
□ Disk: 512 to 10,240 MB in 1 MB increments 
□ Network bandwith: 50-300 MB/s 
□ Timeout: 15 min 

□ Performance  
□ Hypervisor starts >150 VMs/s/host at <125ms with 5 MB overhead 
□ Accumulated network bandwidth: 100s of GB/s, matches memory bandwidth of x86 machines 
□ Accumulated compute: TFLOPS for 1,000s of functions, surpasses large x86 machines



15

Serverless Infrastructure 
Current Challenges for Query Processing

□ Launch overheads (potentially 10s of seconds) 

□ Tight resource limits (6 vCPUs, 10 GB RAM/Disk and 15 min runtime) 

□ Observability of blackbox cloud function services 

□ Indirect communication due to disabled inbound network connections 

□ Fault tolerance via transparent re-execution 

□ All of the above can be dealt with today 

□ Expectation for them to go away as compute variants converge 
□ Or to stay as part of the new programming model


