
Addressing Data Management Challenges for
Interoperable Data Science

Ilin Tolovski
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany
ilin.tolovski@hpi.de

Tilmann Rabl
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany
tilmann.rabl@hpi.de

ABSTRACT
The development of data science pipelines (DSPs) has been steadily
growing in popularity. While the increasing number of applications
can also be attributed to novel algorithms and analytics libraries,
the interoperability of new DSPs has been limited. To investigate
this, we curated a corpus of over 494k GitHub Python repositories.
We find that only 20% of the data science pipelines provide access
to their input data and only 14% use a data backend. These findings
highlight the key pain points in the development of interoperable
DSPs. We identify five open data management challenges related
to pipeline analysis, data access, and storage. We introduce Stork, a
system for automated pipeline analysis, transformation, and data
migration. Stork provides open data access while removing the hu-
man in the loop when reproducing results and migrating projects to
different storage and execution environments. We analyze terabytes
of DSPs with Stork and successfully process 72% of the pipelines,
transforming 75% of the accessible datasets.

VLDBWorkshop Reference Format:
Ilin Tolovski and Tilmann Rabl. Addressing Data Management Challenges
for Interoperable Data Science. VLDB 2024 Workshop: The 1st
International Workshop on Data-driven AI (DATAI).

VLDBWorkshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/hpides/stork.

1 INTRODUCTION
In recent years, collaborative development environments gained in-
creasing relevance for open-source data analysis. Between 2017 and
2020, there has been a seven-fold increase in the number of publicly
available data analytics notebooks on GitHub [41]. Our analysis
shows that Python repositories on GitHub in general have doubled
between the years of 2019 and 2021. Collaborative environments,
such as Jupyter Notebooks, Google Collab, and Vizier, provide an
easy-to-use interface for developing and sharing pipelines with
reproducible results [7, 16, 20].

Despite the extensive use of data science frameworks, interop-
erability and reproducibility remain two significant challenges in
the data science lifecycle [31]. Interdisciplinary environments high-
light the need for interoperability and collaboration. Projects in the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

health domain, such as the Health Data Spaces Initiative present
legal and technical barriers to the collaboration on data science
projects between the scientists, medical personnel, and legislators.
The pipelines and workflows are developed in a localized environ-
ment lacking open data access and significantly limiting the project
interoperability [25, 26, 58].

To create a collaborative environment and interoperable pipelines,
project resources need to have hosted data storage and an open
execution environment. For each pipeline, the data engineer needs
to locate, format, and transfer the data to a hosted storage system,
such as a database, cloud storage, or remote file system. Addition-
ally, they need to transform the pipeline to adjust the data access.
Performing these steps manually incurs additional financial and
technical migration cost. This prevents the interoperability and
overall (re-)usability of data analysis projects [43, 54].

Chattopadhyay et al. [10] summarize the challenges for develop-
ing data science workloads, including the data setup, exploration
and analysis, code management and archival, reliability, security,
sharing and collaboration, reproducibility, and deployment. From
the data management perspective, we identify five data manage-
ment challenges. Specifically, data setup, analysis, sharing, repro-
ducibility and reusability, and security.

To quantify the technical cost, we perform an analysis of 494,513
open-source GitHub projects. We determine the necessary steps to
update or reproduce the pipelines in a different execution environ-
ment. When migrating to a collaborative environment, transferring
the analysis scripts to a hosted solution like Jupyter Server is not
sufficient for the results to be reproduced or the pipelines updated
[20]. The data engineer needs to enable data access, format the data,
and adjust the pipelines.

One data science repository in our corpus has three data science
pipelines on average, accessing nine datasets in total. To transfer the
data and adjust its access in the original pipelines, a data engineer
needs to perform between 18 and 30 sequential steps, depending on
the number of datasets. Executing each step manually is inefficient
for pipelines ingesting more than one data file as well as for projects
containing multiple pipelines. The reliance on manual pipeline
adjustments presents a significant challenge for the interoperability
of data science pipelines in collaborative environments.

Manual adjustments need to be performed on more than 80%
of the data science repositories in our corpus. We observe a 5:1
discrepancy between the usage of analytical libraries and DBMS
or cloud connectors, indicating that data science pipelines heavily
rely on local data accesses. Out of the repositories accessing local
datasets, only 20% provide access to the data. The rest have invalid
data access even with the shared data or do not provide the data in
the repository at all. These findings indicate that open-source data

https://github.com/hpides/stork
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

science projects are not designed to be reproducible or interopera-
ble. To address the interoperability challenges and avoid the cost
of manual transformations, we propose developing an automated
workflow based on code analysis and pipeline rewriting.

Related work has designed systems for automated code anal-
ysis based on static analyzers and large language models. Such
approaches have been prominently used for automated program
repair, bug detection, and class-level code generation [14, 30, 53].
To the best of our knowledge, we are the first to introduce a code
analysis system designed for interoperability, modification of data
access, and transformations in data science pipelines.

In this paper, we introduce Stork, a system for automated analy-
sis, data migration, and transformation of data science pipelines.
Stork uses static code analysis to detect data accesses, migrate data
to a designated storage solution, and rewrite the pipeline. With
Stork, we address key interoperability challenges, such as: data
access and setup, pipeline sharing, as well as, reproducibility and
reusability of the data and pipelines.

To design Stork, we performed an in-depth analysis of the open-
source data science landscape. We curated a corpus of 494k Python
repositories, which we use for the analysis and evaluation. Our
findings show that Stork extracts data and operators on 72% of all
openly available Python repositories. Stork provides a completely
automated end-to-end pipeline analysis and data migration solu-
tion, replacing the human in the loop for pipeline analysis, data
transformation, andmigration.We compare Stork’s automated anal-
ysis and code transformation to two large language models, one
hosted on-premise (Llama3-8B), and GPT-3.5-Turbo, accessed via
OpenAI’s API [28, 36]. Stork shows three orders of magnitude faster
analysis time. To the best of our knowledge, Stork is the first system
that automates the complete interoperability workflow of pipeline
analysis, data transformation, and pipeline rewrite. We summarize
our contributions as follows:
• We curate and release a corpus of open-source repositories solv-

ing heterogeneous data processing tasks.
• We perform an in-depth analysis of the data science landscape

focused on data management on over 494k Python projects.
• We identify five open data management challenges in the devel-

opment of data science workflows.
• We present a system for automated pipeline analysis, data trans-

formation, and migration. Our implementation can be accessed
at https://github.com/hpides/stork.
The paper is organized as follows.We formalize the interoperabil-

ity challenges in data processing pipelines in Section 2. In Section
3, we present the system design of Stork and the implementation
details in Section 4. In Section 5, we evaluate Stork. In Section 7,
we summarize our findings and potential future work.

2 INTEROPERABLE DATA ANALYTICS
In this section, we look into the data science landscape and inves-
tigate the surrounding interoperability challenges. We analyze a
corpus of Python repositories available on GitHub from 2018 to
2023. We categorize them based on their dependencies and focus on
the repositories with data analytics workloads. Based on our find-
ings and related work, we define five data management challenges
in the current data science landscape.

Figure 1: Library categories.

2.1 Pipeline Exploration
We curate a corpus of Python repositories published on GitHub
between 2018 andOctober 2023 published under theMIT license [15,
18]. The corpus consists of 494,513 repositories with a compressed
size of 3.5 TB. While related work analyzes individual pipelines
and notebooks, we focus on complete data science repositories
allowing us to observe cross-pipeline dependencies that cannot be
read through processing individual files.

For each repository, we analyze the Python packages imported
by the individual pipelines and create a minimal set of imported
packages per repository. We observe that 8% of the repositories
cannot be processed because of syntactical and versioning errors.
Further in the analysis, we only consider repositories written in
Python 3.0 and above.

We categorize the libraries based on their domain into five cat-
egories: Data Management (DM),Web Development, Visualization
& Image Processing, Setup & Maintenance, and Other libraries. The
category distribution is shown in Figure 1. The Data Management li-
braries are the second most commonly used after theOther libraries,
accounting for more than a quarter of all imports in our corpus
of Python repositories. Related work has presented the popularity
of machine and deep learning libraries, which account for a third
of the data management libraries currently in use [41, 42]. While
we confirm these findings, we also observe that the most used DM
libraries are numerical libraries for efficient large data processing.

Additionally, we analyze the use of libraries interfacing with
databases or cloud storage environments. We observe a low usage
of connectors for databases (9.7%) or cloud storage (4.3%). Both
categories combined have a 14% share of repositories that utilize
any DM library. This shows a significant difference between the
popularity of big data and machine learning libraries as tools for
processing large data files and the necessary storage environments.

We observe a 5:1 discrepancy between repositories utilizing DM
libraries and those storing the data in a hosted environment. This
discrepancy suggests that data is often accessed locally, resulting in
data access and project interoperability issues. We investigate this
further by looking into the individual pipelines. In Figure 2a, we
present the distribution of the pipelines reading data from storage
devices compared to the pipelines processing the data and the code
files that do not process data. The majority of code files (55%) are
in the latter category. The read-and-write workloads constitute
only 11% of the pipelines in the repositories, whereas a third of all
pipelines are processing and analyzing data.

We look further into the most common ways of interacting with
data in data science workloads. In our corpus, 36 % of all repositories

https://github.com/hpides/stork

(a) Pipeline distribution. (b) Data reading methods. (c) Distribution of DB connectors. (d) Dataset availability.

Figure 2: Distribution of used data backends & availability of datasets.

contain at least one pipeline processing data. On this subset, we
investigate the data reading methods used in each pipeline. In
Figure 2b, we analyze the pipelines on a per-year basis. While we
notice a significant increase in the number of data science pipelines
created after 2020, we also observe that approximately two-thirds
of pipelines read data with the native Python file manager. This
analysis covers all files ingested into a Python workload. A third of
the pipelines ingest data through data management libraries, such
as numpy, pandas, or a database connector.

We analyze the distribution of database connectors used in data
science pipelines. In Figure 2c, we observe that SQLalchemy ac-
counts for almost half of the database connectors used. It provides
an interface to several in-process and client-server databases. How-
ever, it is most commonly used as an SQLite connector, the most
used in-process database, which stores data in a single file [48].

The convenience of using local files through Python file handlers
and libraries operating in memory opens a set of interoperability
and reproducibility questions. Specifically, the data availability,
pipeline execution, and result reproducibility, are directly affected
by the reliance on local file management. In our corpus, the ma-
jority of repositories in the dataset rely on local file accesses. We
observe that only 20% of the accessed data is provided with the
source code (see Figure 2d). This also confirms the significant dis-
crepancy in the usage of libraries connecting repositories to storage
environments. The lack of hosted data access in shared repositories
makes it difficult to execute the pipelines in a new environment,
and the results are difficult to reproduce. The low data availability,
weak reproducibility standards, as well as the lack of interfacing
with hosted storage solutions pose significant challenges that affect
the overall interoperability of the current data science landscape.
In Section 2.2, we define a set of data management challenges and
propose an automated data science workflow.

2.2 Problem Formulation
Data and pipeline interoperability has been a significant hurdle
for cross-institutional and international collaboration through the
secondary use of data. Secondary data use is defined as analyzing
data collected from previous studies and trials in different domains
[25, 26]. A prominent example is the domain of health data with
initiatives backed by theWorld Health Organization (WHO) and the
European Union (EU). There have been several efforts to develop a
framework that facilitates innovation and research by collaborating
on the secondary use of health data [25, 26]. The European Union
through the project Towards Europe Health Data Space (TEHDAS)
has defined a set of legislative and technical barriers on the way

toward a connected health data space [25]. The technical infras-
tructure and data management barriers include the lack of data
access through research data centers, no standardized data formats,
and poor data management standards for accessing and analyzing
data across collaborating health centers. This leads to difficulties
with interoperable data access, loss of information value, failed data
analysis efforts, unreliable benchmarking, non-reproducible results,
and significant financial overhead.

The infrastructure and data management barriers show a need
for a framework that facilitates data interoperability as well as open
access adhering to the FAIR (Findable, Accessible, Interoperable,
Reusable) data principles [56]. To develop such a framework, we
need to address several open interoperability challenges affecting
the end-to-end data science lifecycle in a collaborative environment.

The data interoperability challenges between collaborating enti-
ties with different infrastructure and execution environments are
a significant part of the data science lifecycle research in the data
management (DM) and human-computer interaction (HCI) commu-
nities [10, 23, 24, 27, 31, 32, 40, 54, 55]. Both communities analyze
the developments and opportunities in the data science lifecycle
focusing on systems and interactivity, respectively. Chattopadhyay
et al. [10] present a set of challenges from an HCI perspective.

In this work, we recognize five of them as open data management
challenges. We focus on loading and processing data in multiple
platforms (Setup), adapting data processing pipelines (Exploration
and Analysis), code and pipeline reuse (Share and Collaborate, Re-
produce and Reuse), and access control (Security). We look into the
technical barriers through the lens of the five data management
challenges and address them separately. In Listing 1 we present an
example data science pipeline relevant to the health data space use
case for which we present opportunities for improvement.

Setup: Loading and processing data from multiple sources and
platforms. The management of projects in collaborative environ-
ments offered by major cloud vendors, such as Azure Notebooks,
Google Collab, and Amazon SageMaker is well integrated with
their object storage services [3, 16, 29]. Users synchronize their
file storage by using these services, thus removing the challenge
of transferring data and rewriting the pipelines. However, these
setups are not suitable for locally stored data, or data with restricted
access. In Lines 7 and 8 of Listing 1, we define the source folders
of two data files. Data is read in lines 9 and 11, in CSV and JSON
format, respectively. The pipeline cannot be executed in a different
environment because of the local data access in Line 9. To address
the interoperable data access barrier, we propose opening the access
and transferring local sources to a designated storage solution.

Explore and Analyze: Adapting of data processing pipelines
through repetitive steps denoting data reading and locality. To facili-
tate open data access and analysis, the data engineer needs to read
the data (Lines 9 and 11) and apply several preprocessing operations
(Lines 12-23) before running statistical analysis. In Listing 1, we
show an example with two data sources. However, doing so for
several pipelines with multiple data sources becomes a repetitive
and error-prone effort. To address the sequential and repetitive data
adjustments, we propose an approach that analyzes the pipeline
structure and automatically detects data reads to facilitate open
data access.

1 import pandas as pd
2 import numpy as np
3 from sklearn.preprocessing import StandardScaler
4 from sklearn.linear_model import LogisticRegression
5 from sklearn.pipeline import Pipeline
6 from sklearn.metrics import accuracy_score
7 DATA_HOME = "/home/user/data"
8 DATA_WEB = 'https :// example.com/user/data'
9 local_data = pd.read_csv(f'{DATA_HOME }/ raw_data1.csv')
10 response = requests.get(f'{DATA_WEB }/ raw_data2.json')
11 web_data = pd.read_json(StringIO(response.text))
12 train_data = pd.concat ([local_data1 , web_data]
13 for col in ["name", "DOB", "gender"]:
14 train_data[col] = train_data[col]
15 .apply(lambda x: f"{hash(x)}")
16 train_data["ccard_no"] = train_data["ccard_no"]
17 .apply(lambda x: str(x)[:-4] + "XXXX")
18 for col in ["ZIP"]:
19 train_data[col] += np.random.normal(0, 1)
20 train_data.to_csv("anonymized_data.csv", index=False)
21 pipeline = Pipeline ([
22 ('scaler ', StandardScaler ()),
23 ('logreg ', LogisticRegression ())])
24 pipeline.fit(train_data [:, :-1], train_data[:, -1])
25 test_data = pd.read_csv(f'{DATA_HOME }/ test_data.csv')
26 X_test = test_data.drop('target_column ', axis =1)
27 y_test = test_data['target_column ']
28 y_pred = pipeline.predict(X_test)
29 accuracy = accuracy_score(y_test , y_pred)

Listing 1: Data science script

Share and Collaborate: Sharing of complete pipeline or parts of
it in the form of code, data, or results. Similarly to moving the data
in a new storage solution in the environment setup, the pipeline
also needs to be accessible to the users. To this end, the data must
be stored in a file system, cloud object storage, or a database man-
agement system. Depending on the new storage system, the data
needs to be transformed. In database management systems, there
are several steps required to transform the data reads in Lines 9 and
11 in Listing 1. The individual columns need to be transformed to
database-specific datatypes, a database schema needs to be created,
and the data transformed from a flat file to a relational table before
writing it to the DBMS. Such steps are required for each data source
in the pipeline. To address the lack of standardized data formats for
sharing and collaboration, we automate the data transformation
workflow and transfer the data to a hosted storage system.

Reproduce and Reuse: Adapting pipelines and repositories to
be executed in a new environment for code reuse and result replica-
tion. Following the data and pipeline migration, data accesses and
environment requirements need to be adapted before executing
the pipeline in a new environment. From the data management
perspective, managing the data reads is essential for the successful
reuse of the pipeline and replication of results. Lines 9 and 11 in

Listing 1 need to be replaced by data reads for the transformed and
relocated data. To allow data access that is independent of the exe-
cution environment, we query the new storage system. We show a
DBMS example of the adjusted pipeline with a read query in Listing
4. Lines 9 and 11 from Listing 1 are replaced by the respective code.
To address pipeline interoperability, we propose a pipeline rewriter
that connects to the data storage and modifies the data access.

Security: Providing access control to localized and vulnerable data
accesses in data processing pipelines. When sharing a pipeline in
a collaborative environment, the data access needs to be verified
and managed to ensure authorized updates. By establishing user
authentication, we prevent unwanted data corruption or pipeline
changes.We address the potential vulnerabilities of open data access
by allowing users to manage the authentication requirements.

We propose an automated workflow that incorporates the indi-
vidual components framed in this section. The goal is to facilitate
interoperable data access and collaborative pipeline development
in use cases such as the open health data space. We aim to reduce
the complexity of the data integration into data science pipelines
and automate a sequence of manual tasks normally performed by
data engineers. We present the system design in Section 3.

3 SYSTEM DESIGN
Our analysis in Section 2.1 shows that the majority of data science
repositories do not provide an accessible environment to store and
share the input data as well as their results.

To this end, we introduce Stork, a system for static pipeline
analysis and data migration. Stork provides an automated workflow
addressing the challenges presented in Section 2.2. From the system
design perspective, we group these challenges into three segments:
Pipeline Analysis, Data Access and Formatting, Pipeline Rewrite and
Access Management. In Figure 3, we present the end-to-end Stork
workflow. We present each stage in the following subsections.

3.1 Pipeline Analysis
We address the Setup and Exploration and Analysis by performing
static code analysis on the DS pipeline. We manage the execution
environment on different levels of granularity by addressing indi-
vidual pipelines or projects containing multiple pipelines. We create
an open and accessible execution environment for the pipelines by
detecting the data sources and the data ingestion method.

The pipeline analysis consists of two phases: Abstract Syntax
Tree(AST) Traversal and Generating an Intermediate Representa-
tion. In the two stages, Stork detects the data sources, verifies the
access to the input data files, and records the reading and transfor-
mation of the input data. By designing the system in this way, we
track the data updates throughout the pipelines and record it in a
compact representation.

In the traversal phase, Stork initially reads and parses the ab-
stract syntax tree (AST) of the complete pipeline. It then stores the
operator tree of the input data and collects any input and trans-
formation references. In Figure 4, we show a segment of the AST
operator tree for Line 9 from Listing 1. The fields necessary to
track the lineage of the data read are highlighted in red. It enables
Stork to process the pipeline structure and record data inputs and
transformations. Stork traverses the code structure of the pipeline

Figure 3: System overview of Stork.

and segments it into data access and execution parts. The traversal
detects data reads from local files, while the segmentation stores
references for the input data and tracks the transformations.

In DS pipelines, data is read from local files in several ways,
including string paths, variable assignments, and references to ex-
ternal configuration files. The data sources are represented by a
different set of nodes in the pipeline’s AST. This requires adaptive
filtering and variable extraction during the AST traversal. Stork dif-
ferentiates between the data ingestion nodes when the data source
is referenced in the pipeline. The analysis of the AST cannot capture
data inputs provided in external files and as runtime arguments.
Such setups are out of the scope of individual pipeline analysis.

In the second phase of the pipeline analysis, Stork stores the input
and operator references in a compact intermediate representation,
saving storage and subsequent traversal times. We collect the data
input statements and a reference to the transformations applied
to the data. Once the data reads and transformations have been
recorded in our intermediate representation, the data pipeline(s)
are dynamically transformed and prepared for the Data Access and
Formatting stage of the Stork workflow. We describe the complete
pipeline analysis workflow and its implementation in Section 4.1.

3.2 Data Access & Formatting
In the second stage of the Stork workflow, we access, format, and
transfer the existing data to a new storage environment. We enable
concurrent access to the input data and changes to the pipeline. In
this stage, we address the Share and Collaborate, and Reproduce and
Reuse challenges. When a storage environment is selected, Stork
parses through the structure of the data and issues a data transfer.
There are cases where the data needs to be formatted before it
can be written to a new storage backend. One such example is
transferring a flat file to a relational database management system.
Upon parsing the structure of the data, Stork transforms it into a
relational table before issuing the data transfer.

Stork allows for various implementations of storage backends
and provides an extensible interface. In this paper, we consider
relational database management systems, cloud object storage, and
local file systems. Transforming the data and interfacing with mul-
tiple storage backends incurs several implementation challenges,
which we present in more detail in Section 4.3.

Figure 4: AST representation of a single data assignment.

3.3 Pipeline Rewrite & Access Management
In the third stage of the workflow, Stork generates the necessary
connections to the new storage environment and rewrites the data
read operations in the pipeline. With this stage, we enable the
users to reuse the pipeline and reproduce its results, addressing the
Reproduce and Reuse challenge.

Following the static analysis, we identify the sections of the
pipelines that are ingesting data from local files. Once the data
has been transferred to a new storage environment, Stork rewrites
the pipeline to reroute data access to the new environment. We
reuse our intermediate results from the pipeline analysis stage
and access the data on the server rather than the local files. The
adjusted data access enables the pipeline to be shared and executed
in different environments. This translates to executing workloads
on more powerful hardware, as well as sharing the pipeline with
other collaborators for synchronized development.

The rewritten pipeline can be transferred to a database server,
where the database also serves as an execution environment. Having
the data and the pipeline co-located in a single DBMS allows us
to further improve the performance and interoperability of the
pipeline by utilizing the data locality.

When generating the connections to the new storage environ-
ments, Stork assumes permissive access to the environment. How-
ever, in cases when additional authentication is required, we provide
managed data access to the new environments, introducing a layer
of Security in our system. We discuss the implementation details of
this workflow stage in Section 4.4.

4 SYSTEM IMPLEMENTATION
In this section, we present the implementation of Stork. In addition
to the three workflow stages presented in Section 3, we discuss the
data access patterns, as well as the storage backend implementation.

4.1 Pipeline Analysis
To obtain all necessary data access information in the pipeline, we
perform static code analysis. We analyze the code through its ab-
stract syntax tree (AST) in a single pass that consists of two phases.
First, we traverse the AST to detect all Import and Assignment
nodes. We then filter out all imports and assignments that do not
contain any data artifacts and store them in an intermediate repre-
sentation.

In the traversal stage, we extract all Import and Assignment
nodes containing the library imports and data assignments. These
nodes carry references relevant to the data analytics steps in the
pipelines. From the Import nodes we obtain information on the
libraries used for reading and processing the data. We collect the
libraries to replicate the execution environment for the pipeline.

When traversing the Assignment nodes, we determine whether
we have access to the data, where it is stored, and which methods
are used to read and process it. The Assignment nodes also con-
tain information orthogonal to the data reads, such as instances of
classes, variables, and execution of arithmetic operations.

In the second stage, we filter such assignments by analyzing
the contents of the Assignment nodes in a single-pass filtering
stage. In Listing 2, we show a Pythonic AST representation of the
operator tree shown in Figure 4. It consists of several nested nodes
for variable names, method calls, attributes, and constants.

1 Assign(
2 targets =[Name(id='local_data ', ctx=Store())],
3 value=Call(
4 func=Attribute(
5 value=Name(id='pd', ctx=Load()),
6 attr='read_csv ',
7 ctx=Load()),
8 args=[Constant(value='/home/user/data/

raw_data1.csv')])

Listing 2: An Assignment node in AST representation

Each of the nested nodes contains additional value, attribute, and
context fields, making repeated traversals costly and impractical.
We traverse the AST once and filter the relevant Assignment nodes
in a compact representation. We show the representation of the
Assignment node in Listing 3.

We use the intermediate representation to detect the parts of the
pipeline that read and process the data. Storing the information in
this format provides reference points for the data reads. We track
and use these reference points to process data read by different
access patterns. For each access pattern, Stork creates different
references for the data artifacts ingested in the pipeline.

1 {'variable ':'local_data ',
2 'data_source ': {
3 'func_call ': {'from': 'pd', 'method ': 'read_csv '},
4 'data_file ': ['/home/user/data/raw_data1.csv'],
5 'params ': []}}

Listing 3: Representation of an Import and Assignment node

We obtain the referenced artifacts and transform them before
migrating them to a new storage environment described in Section
4.3. The data references are then used for the pipeline rewriting
stage described in Section 4.4.

4.2 Data Access Patterns
During the analysis stage, we distinguish between the different
data access patterns, string path, variable reference, and runtime
data access. Each pattern results in a different operator tree of
Assignment nodes generated in the AST. In the case of data access
through string paths, static code analysis is sufficient to parse the
respective node and retrieve the file stored on the path. In cases
when the data path is passed as a reference to another variable, a
macro variable, or accessed from a configuration file, we process
the references leading to the data path.

We extract the data path from a local variable defined in the
pipeline by mapping the variable and its latest assignment. Stork
then reads the value of the data path that is referenced by the vari-
able without executing any part of the pipeline. Once the referenced
mapping has been read, the data path value is extracted the same
way as in the case of accessing raw strings.

Traversing through the Assignment nodes and extracting the
data path values from variable references allows Stork to analyze
the pipeline statically, without compiling or executing the pipeline.
Bypassing compilation or execution removes the need to include
library imports and potentially resolve any dependency conflicts.
This approach allows us to retrieve absolute data paths also in cases
where partial or relative paths are concatenated to a stem path.

4.3 Data Transformations
The references to the data paths from the AST traversal are stored
in an intermediate representation and used to access the data files
that need to be transferred. Before initializing the data transfer,
we run a data integrity check to ensure the correct data format.
Depending on the new storage environment, we perform several
data formatting steps. In its current implementation, Stork supports
data formatting and transfers to relational database management
systems, cloud object storage, and local file systems.

Conversion to Relational Data. In a DBMS scenario, the data
formatting includes schema inference and table creation. Data sci-
ence pipelines and notebooks process data with dataframes in
Python. They are ingested in different formats, such as comma-
separated values, text tables, parquet, or zip-compressed files. These
formats are read into dataframes and subsequently NumPy arrays.
To process them, the target format needs to be compatible with
the dataframe schema used in the pipeline. The set of datatypes
supported by the dataframe interface in Python is significantly
more constrained than the datatypes supported by frequently used
database systems. For example, the dataframe interface supported
by pandas has 12 general-purpose datatypes, whereas Postgres
supports 43 general-purpose datatypes.

When a data reading method, such as read_csv or read_table
is called with a file path as an argument, the reader infers the
datatypes for each column upon memory allocation for the created
dataframe. In case of data conflicts in a column, the library uses the
object datatype as the default. Stork uses the inferred datatypes

Table 1: Mapping between Dataframe and Postgres datatypes

DF dtype PSQL dtype
object varchar
(u)int64 bigint

(u)int8, (u)int16 smallint
(u)int32 integer

float16, float32 real
float64 double precision

by the dataframe interface to create a table schema suitable for the
stored data and compatible with the operators in the pipeline.

For relational database systems, Stork has a datatype matching
tool, that ensures each column in the dataframe is represented by
an equivalent datatype in the schema. The datatype matching is
depicted in Table 1. We have implemented the datatype matching
for the datatypes supported by Postgres.

Transferring Flat Files.When transferring data to cloud object
storage systems and local filesystems, Stork processes flat files,
such as CSV files, parquet files, and zip-compressed libraries. The
files are parsed to ensure the correct format. Other than checking
the structure of the file, there are no additional data cleaning or
preprocessing steps on the raw files at this stage.

When using a cloud object storage system, Stork prepares the
data transfer by initializing the system access, verifying the user cre-
dentials and destination path. We validate the account credentials,
traverse the bucket structure, and transfer the files. Transferring
files to another filesystem works analogously.

4.4 Pipeline Rewrite & Access Management
Through the static analysis, Stork references the sections of the
pipelines that are ingesting the data from local files. Once the data
has been moved to a new storage environment, our system rewrites
the pipeline to reroute the data access to the server rather than
look for the data locally. We use the referenced sections from the
pipeline analysis stage (see Sections 3.1 and 4.1) and access the data
on the server rather than the local files.

To establish a connection to the storage environment, we gener-
ate template code in the pipeline necessary to grant read rights on
the server. Depending on the data backend, we generate either a
database connection through the driver or provide the access keys
to the cloud storage. The template code provides access rights to
the new data storage. Additionally, we adjust the data reads in the
pipeline. We rewrite the local data access with a query from the
new backend. An example of a rewritten pipeline code when using
a Postgres DBMS as the data backend is shown in Listing 4.

4.5 Limitations of Static Pipeline Analysis
Traversing through the AST of a pipeline without compiling or
executing the pipeline limits the analysis of read statements. The
execution of a pipeline with external arguments cannot be resolved
since the variable values are not available during the AST traver-
sal step. Such examples include data inputs provided at runtime,
from configuration files, or imported from other pipelines. In these
cases, the values cannot be retrieved without a partial or complete
execution of the code with the external input. Inspecting efficient

ways of dynamic code execution and analysis is out of the scope of
this paper.

1 dbms_connector = DBMSConnector(pipeline , config)
2 train_data_1 = pd.read_csv(dbms_connector
3 .execute("SELECT * FROM raw_data1"))
4 train_data_2 = pd.read_json(dbms_connector
5 .execute("SELECT * FROM raw_data2"))

Listing 4: Rewritten data read operation in a script

5 EVALUATION
In this section, we evaluate the performance of Stork on a curated
corpus of open-source data science pipelines. We outline our ex-
perimental setup and the criteria for forming the corpus. We then
present the main findings from our evaluation.

5.1 Experimental Setup
We crawled GitHub for projects with varying numbers of pipelines
and data sources. Before curation, the corpus included 494,513
repositories for a compressed size of 3.5TB. In Section 2, we present
the curation and analysis of the complete set of repositories. In
this section, we utilize our curated corpus of 54,757 repositories,
which include a total of 152,554 pipelines. We use it to evaluate
the effectiveness of Stork in the following subsections. We ran the
complete corpus analysis with Stork, the relational data transfor-
mations, and the storage backend comparison on two different x86
server configurations, 1) 2x Intel Xeon Gold 5220S with 18 cores
and 96GB of RAM, and 2) 2x AMD EPYC 7742 with 64 cores and
512GB of RAM. All experiments were executed using 36 threads.
For hosting a Llama3-8B model, we use a server with AMD Ryzen
Threadripper PRO 3995WX, 64GB of RAM, and two NVIDIA RTX
A5000 GPUs with 24GB HBM2 memory.

5.2 Analyzing the GitHub Corpus
We analyze Stork’s workflow on a curated dataset of 54,757 GitHub
repositories defined in Section 2. In this experiment, we analyze
the complete corpus and run the end-to-end workflow. We eval-
uate Stork in three separate stages: end-to-end performance, data
availability, and data transformations. Stork ingests 91% of the repos-
itories. Upon inspection of a sample of the remaining repositories,
we found that the analysis had failed due to syntactical and import
errors, rendering the repositories not executable or translatable.

End-to-end Performance. In Figure 5a, we present the results
for measuring the success rate of Stork on all pipelines from the
repository corpus. We analyze the repositories on a per-year basis.
We evaluated Stork on 56,444 pipelines, ingesting data from strings
as well as derived paths from variable references. Stork success-
fully processes 71.6% of the pipelines (see Figure 5a). For this set of
pipelines, Stork detects the data ingestion in the pipeline and trans-
forms the pipeline. The majority (65%) of the analyzed pipelines
are reading data through string paths, whereas 35% access the data
through paths derived from variable references (see Figure 5b). Ex-
ternal arguments are the limiting factors for analyzing the pipeline
without compiling or executing the code, as shown in Section 4.5.

Data Availability. In the second stage, Stork accesses the de-
tected datasets and transfers them to a new storage medium, where
the pipeline can be reproduced. However, our analysis in Section

(a) Stork pipeline coverage. (b) Accessed data by Stork.

(c) Data availability in pipelines. (d) Data transformations.

Figure 5: Analysis of the GitHub Corpus with Stork.

2.1 shows that only 20% of datasets referenced in the pipelines are
available in the repository. In Figure 5c, we present the percentage
of available datasets found and accessed by Stork. We observe that
only 21.4% of the datasets recognized by Stork are accessible in the
repositories. From the data reads, we observe that the rest of the
accessed data are stored locally, thus rendering the pipelines up-
loaded on GitHub not reproducible. For the detected datasets, Stork
transfers the data to a hosted storage and rewrites the pipeline to
access the data from the new storage medium.

Data Transformations. In this experiment, we transform flat
files into relational tables and transfer the data to a DBMS. We
evaluate the schema inference on the set of available datasets in our
corpus. Stork detects 82% of all datasets as structured data that can
be transformed into a relational format. It translates and transfers
75% of this subset (see Figure 5d). We observe several recurring
errors in the data that can be improved. Date encoding issues and
using special characters in column names account for the majority
of errors, for which we perform encoding checks and column name
sanitation. Data cleaning operations on the raw data of individual
datasets are out of the scope of this paper.

5.3 Storage Backend Comparison
We break down Stork’s end-to-end runtime for three storage envi-
ronments: DBMS (Postgres), cloud object storage (AWS S3), and a
local file system. We run the workflow on three pipelines process-
ing 10MB, 100MB, and 1GB of data, respectively. In Figures 6a - 6c,
we show the duration breakdown for the three storage backends.

We observe that the pipeline analysis stage has a mean runtime
of 3ms, amounting to a maximum of 4% of the total runtime when
using a local file system and transferring 10MB (see Figure 6a). The
data transformation and schema inference for Postgres take up to
3x longer than the translation across all data sizes, with a maximum
runtime of 6ms.When using S3, creating the HTTP request takes up
to 5% of the total runtime, or 400ms on average. In this experiment,
the bottleneck is the data transfer stage, with the end-to-end time
scaling linearly with the increase in data size.

(a) Processing 10MB. (b) Processing 100MB. (c) Processing 1GB.

Figure 6: Runtime breakdown of Stork.

Stork’s system overhead of pipeline analysis and data transfor-
mation reaches a maximum of 5% of the total runtime (see 6a), i.e,
2ms and 405ms when using LFS and S3, respectively. The maximum
overhead when using Postgres is 8ms, or less than 1% of the runtime
for all data sizes.

5.4 Analyze Pipelines with LLM
Open-access large language models (LLMs) have been used for
code generation from user input. In this section, we evaluate the
effectiveness and efficiency LLMs for analyzing the code structure
of a pipeline. Specifically, we evaluate Stork’s performance against
LLMs when analyzing data science pipelines. We focus only on the
pipeline analysis from the end-to-end Stork workflow since the LLM
has no execution rights, nor access to the dataset.We analyze a set of
52 representative pipelines reading data via strings, variables,
and external arguments. We compare Stork against two LLM
versions, the open-sourced Llama-3 with 8B parameters hosted on-
premise, and GPT-3.5-Turbo, accessed via the online API [28, 36].

The LLM workflows consist of 1) creating a structured prompt
to the model, 2) loading the model weights, and 3) inference of the
output. When creating the prompt, we set a code analysis context
for the model. In Listing 5 we show the context, prompt message,
and a placeholder for the pipeline code.

1 ["role": "system", "content": {"You are a code analyzer
that detects data inputs in Python workloads .}"

2 "role": "user", "content": "Given the following code ,
detect the lines where data is read from external
files , and return a list of all paths to the data."

3 "role": "user", "content":{ PIPELINE_CODE }]

Listing 5: Evaluation prompt.

The desired output from this prompt is a structured list of data
paths, that can be used as an input to the rewriting and data transfer
workloads. We measure the inference time of the LLMs to generate
the list of data inputs in the pipeline. In Figure 7 we show the
inference times for both LLMs and the analysis time for Stork.

We observe that Stork is up to three orders of magnitude faster
for the pipeline analysis workflow. For our hosted LLM, we reload
the weights to minimize the variance between the LLM outputs.
The reloading time is not measured towards the total inference
time. For GPT-3.5-Turbo, we report the request return time after
the prompt has been generated. In terms of coverage and accuracy
of the answers, both LLM solutions detect the data read operations
in the pipeline, albeit at a significantly higher runtime.

We note that using an LLM for such a workload requires an
additional manual effort. The data transfer, as well as the insertion
of the new data location in the pipeline, needs to be done by the data

Figure 7: Code Analysis with Stork and LLMs.

scientist. In comparison, Stork automates the complete analysis,
transformation, rewrite, and migration workflow. By utilizing Stork
instead of an LLM, we achieve an analysis speedup of three orders
of magnitude. While LLMs have found great use in code generation,
completion, and workflow automation tasks, in our use case the
benefits come at significant runtime and interoperability costs.

6 RELATEDWORK
Bommarito and Bommarito analyze the usage of the complete
Python Package Index (PyPI) [5]. Other case studies provide insights
into the development of the data science landscape for open-source
ML products, library usage, and software engineering practices
[1, 4, 13, 33, 38, 42, 46]. Our analysis is focused on the combined
usage of data analytics and database libraries and their contribution
to an interoperable data science lifecycle. We utilize these findings
to increase the overall interoperability in the data science lifecycle.

Data science pipelines have been analyzed and processed through
automated provenance tracking [17, 34, 37, 39, 45]. Furthermore,
there have been several approaches for static analysis of data pro-
cessing pipelines to detect data leakages and analyze data transfor-
mations [6, 35, 50, 51]. Compared to these approaches, Stork utilizes
the AST of the pipeline to detect data reads and input operations,
as well as to recursively rewrite the pipeline.

In the area of data and pipeline migration, proprietary and open-
source ETL solutions have been available [2, 9, 12, 22, 44, 49]. Such
tools provide a low- or no-code development environment for data
science pipelines with a semi-automated storage integration. Defin-
ing the data inputs and their interaction with the pipeline are done
manually, together with the formatting and management of the
data. While such solutions ease the development of data science
pipelines, Stork enables fully automated datamigration and pipeline
rewrite of completed projects to new storage mediums.

Static code analysis and generation solutions have been intro-
duced for the use cases of code repair, error detection, as well
as class-level code generation [11, 57]. Large Language Models
(LLMs) have also been used for code repair, analysis, and genera-
tion [14, 30, 52]. We utilize AST analysis for managing data accesses
and transformations in the pipelines. To the best of our knowledge,
we are the first to build an end-to-end system for this use case.

Collaborative environments, such as Jupyter Server, and Google
Collab offer integration with cloud storage backends [16, 21] and
to a lesser extent with distributed cloud systems [8, 19, 20]. Cloud
providers have also developed data science tools offering exclusive
access to their storage backends [3, 29, 47].

Stork bridges the gap between semi-automated ETL tools and
cloud-dependent notebook environments. By performing static
code analysis, Stork automates the data migration, provides open

access to it, and rewrites the pipeline. It increases project interop-
erability and facilitates collaboration in a fully automated fashion.

7 CONCLUSION
In this paper, we analyze the landscape of data science reposito-
ries from 2018 to 2023. While observing an increase in the number
of data science pipelines, we recognize limited data and pipeline
interoperability, summarized in five data management challenges.
Based on our analysis, we propose Stork, a system for automated
pipeline analysis and data migration on different storage backends.
Stork works out of the box for more than 70% of the existing data
science pipelines while outperforming LLMs as an alternative code
analysis and workflow automation tool. In future work, we will fur-
ther extend the pipeline translation coverage of Stork and research
opportunities of migrating parts of the pipeline automatically into
database systems to enable efficient hybrid execution.

ACKNOWLEDGMENTS
This workwas partially funded by the German Research Foundation
(ref. 414984028), the European Union’s Horizon 2020 research and
innovation programme (ref. 957407).

REFERENCES
[1] Ashvin Agrawal, Rony Chatterjee, Carlo Curino, Avrilia Floratou, Neha Gowdal,

Matteo Interlandi, Alekh Jindal, Kostantinos Karanasos, Subru Krishnan, Brian
Kroth, Jyoti Leeka, Kwanghyun Park, Hiren Patel, Olga Poppe, Fotis Psallidas,
Raghu Ramakrishnan, Abhishek Roy, Karla Saur, Rathijit Sen, Markus Weimer,
Travis Wright, and Yiwen Zhu. 2019. Cloudy with high chance of DBMS: A
10-year prediction for Enterprise-Grade ML. arXiv:1909.00084 [cs.DB]

[2] Sajid Alam, Nok Lam Chan, Laura Couto, Yetunde Dada, Ivan Danov, Deepya-
man Datta, Tynan DeBold, Jitendra Gundaniya, Jannic Holzer, Stephanie Kaiser,
Rashida Kanchwala, Ankita Katiyar, Ravi Kumar Pilla, Amanda Koh, Andrew
Mackay, Ahdra Merali, Antony Milne, Huong Nguyen, Vladimir Nikolic, Nero
Okwa, Juan Luis Cano Rodríguez, Joel Schwarzmann, Dmitry Sorokin, Jo Stich-
bury, and Merel Theisen. 2023. Kedro. https://github.com/kedro-org/kedro

[3] Amazon. 2023. AWS Sagemaker. Amazon. Retrieved March 16, 2023 from
https://aws.amazon.com/pm/sagemaker/

[4] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece
Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. 2019.
Software engineering for machine learning: A case study. In 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 291–300.

[5] Ethan Bommarito and Michael Bommarito. 2019. An Empirical Analysis of the
Python Package Index (PyPI). arXiv:1907.11073 [cs.SE]

[6] Laurent Boué, Pratap Kunireddy, and Pavle Subotić. 2023. Automatically Resolv-
ing Data Source Dependency Hell in Large Scale Data Science Projects. In 2023
IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering
for AI (CAIN). 1–6. https://doi.org/10.1109/CAIN58948.2023.00009

[7] Mike Brachmann, Carlos Bautista, Sonia Castelo, Su Feng, Juliana Freire, Boris
Glavic, Oliver Kennedy, Heiko Müeller, Rémi Rampin, William Spoth, et al.
2019. Data debugging and exploration with vizier. In Proceedings of the 2019
International Conference on Management of Data. 1877–1880.

[8] Michael Brachmann and William Spoth. 2020. Your notebook is not crumby
enough, REPLace it. In Conference on Innovative Data Systems Research (CIDR).

[9] ByteHub. 2023. ByteHub Feature Store. ByteHub AI. Retrieved September 29,
2023 from https://github.com/bytehub-ai/bytehub

[10] Souti Chattopadhyay, Ishita Prasad, Austin Z. Henley, Anita Sarma, and Titus
Barik. 2020. What’s Wrong with Computational Notebooks? Pain Points, Needs,
and Design Opportunities. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. ACM, Honolulu HI USA, 1–12. https://doi.org/10.
1145/3313831.3376729

[11] Zhifei Chen, Lin Chen, Yuming Zhou, Zhaogui Xu, William C. Chu, and Baowen
Xu. 2014. Dynamic Slicing of Python Programs. In 2014 IEEE 38th Annual Com-
puter Software and Applications Conference. IEEE, Vasteras, Sweden, 219–228.
https://doi.org/10.1109/COMPSAC.2014.30

[12] Nachiket Deo, Boris Glavic, and Oliver Kennedy. 2022. Runtime provenance
refinement for notebooks. In Proceedings of the 14th International Workshop on
the Theory and Practice of Provenance. 1–4.

https://arxiv.org/abs/1909.00084
https://github.com/kedro-org/kedro
https://aws.amazon.com/pm/sagemaker/
https://arxiv.org/abs/1907.11073
https://doi.org/10.1109/CAIN58948.2023.00009
https://github.com/bytehub-ai/bytehub
https://doi.org/10.1145/3313831.3376729
https://doi.org/10.1145/3313831.3376729
https://doi.org/10.1109/COMPSAC.2014.30

[13] Helen Dong, Shurui Zhou, Jin L.C. Guo, and Christian Kästner. 2021. Splitting,
Renaming, Removing: A Study of Common Cleaning Activities in Jupyter Note-
books. In 2021 36th IEEE/ACM International Conference on Automated Software
Engineering Workshops (ASEW). 114–119. https://doi.org/10.1109/ASEW52652.
2021.00032

[14] Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan
Chen, Jiayi Feng, Chaofeng Sha, Xin Peng, and Yiling Lou. 2024. Evaluating
Large Language Models in Class-Level Code Generation. In Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering. ACM, Lisbon
Portugal, 1–13. https://doi.org/10.1145/3597503.3639219

[15] GitHub. 2023. GitHub Official Website. GitHub. Retrieved August 30, 2023 from
https://github.com/

[16] Google. 2023. Google Collab. Google. Retrieved March 16, 2023 from https:
//colab.research.google.com/

[17] Stefan Grafberger, Julia Stoyanovich, and Sebastian Schelter. 2021. Lightweight
inspection of data preprocessing in native machine learning pipelines. In Confer-
ence on Innovative Data Systems Research (CIDR).

[18] Open Source Initiative. 2023. The MIT License. open source initiative. Retrieved
August 30, 2023 from https://opensource.org/license/mit/

[19] Jupyter. 2023. Jupyter Hub. Jupyter. Retrieved September 29, 2023 from
https://jupyter.org/hub

[20] Jupyter. 2023. Jupyter Notebooks. Jupyter. Retrieved September 29, 2023 from
https://jupyter.org/

[21] Kaggle. 2023. Kaggle Notebooks. Kaggle. Retrieved March 16, 2023 from
https://www.kaggle.com/code

[22] Kedro. 2023. Kedro Official Website. Kedro. Retrieved September 29, 2023 from
https://kedro.org/

[23] David Koop and Jay Patel. [n.d.]. Dataflow Notebooks: Encoding and Tracking
Dependencies of Cells. ([n. d.]).

[24] Sam Lau, Ian Drosos, Julia M. Markel, and Philip J. Guo. 2020. The Design
Space of Computational Notebooks: An Analysis of 60 Systems in Academia
and Industry. In 2020 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, Dunedin, New Zealand, 1–11. https://doi.org/10.
1109/VL/HCC50065.2020.9127201

[25] Abboud Linda, Cosgrove Shona, Kesisoglou Irini, Richards Rosie, Soares Flavio,
Pinto Cátia, Bogaert Petronille, and Bowers Sarion. 2021. Summary of results:
case studies on barriers to cross-border sharing of health data for secondary use.
Technical Report. TEHDS Consortium.

[26] Kalliola Markus, Drakvik Elina, and Nurmi Maria. 2023. Advancing Data Sharing
to Improve Health For All in Europe. Technical Report. SITRA.

[27] Andrew M Mcnutt, Chenglong Wang, Robert A Deline, and Steven M. Drucker.
2023. On the Design of AI-powered Code Assistants for Notebooks. In Proceed-
ings of the 2023 CHI Conference on Human Factors in Computing Systems. ACM,
Hamburg Germany, 1–16. https://doi.org/10.1145/3544548.3580940

[28] Meta. 2024. Llama-3-8B. Meta. Retrieved May 30, 2024 from https://huggingface.
co/meta-llama/Meta-Llama-3-8B

[29] Microsoft. 2023. Azure Notebooks. Microsoft. Retrieved March 16, 2023 from
https://visualstudio.microsoft.com/vs/features/notebooks-at-microsoft/

[30] Mohammad Mahdi Mohajer, Reem Aleithan, Nima Shiri Harzevili, Moshi Wei,
Alvine Boaye Belle, Hung Viet Pham, and Song Wang. 2023. SkipAnalyzer: A
Tool for Static Code Analysis with Large Language Models. arXiv:2310.18532 [cs]

[31] Michael Muller and Angelika Strohmayer. 2022. Forgetting Practices in the Data
Sciences. In CHI Conference on Human Factors in Computing Systems. ACM, New
Orleans LA USA, 1–19. https://doi.org/10.1145/3491102.3517644

[32] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.
Curating GitHub for Engineered Software Projects. Empirical Software Engineer-
ing 22, 6 (Dec. 2017), 3219–3253. https://doi.org/10.1007/s10664-017-9512-6

[33] Nadia Nahar, Haoran Zhang, Grace Lewis, Shurui Zhou, and Christian Kästner.
2023. A Dataset and Analysis of Open-Source Machine Learning Products. arXiv
preprint arXiv:2308.04328 (2023).

[34] Mohammad Hossein Namaki, Avrilia Floratou, Fotis Psallidas, Subru Krishnan,
Ashvin Agrawal, Yinghui Wu, Yiwen Zhu, and Markus Weimer. 2020. Vamsa:
Automated Provenance Tracking inData Science Scripts. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(Virtual Event, CA, USA) (KDD ’20). Association for Computing Machinery, New
York, NY, USA, 1542–1551. https://doi.org/10.1145/3394486.3403205

[35] Luca Negrini, Guruprerana Shabadi, and Caterina Urban. 2023. Static Analysis
of Data Transformations in Jupyter Notebooks. In Proceedings of the 12th ACM
SIGPLAN International Workshop on the State Of the Art in Program Analysis
(Orlando, FL, USA) (SOAP 2023). Association for Computing Machinery, New
York, NY, USA, 8–13. https://doi.org/10.1145/3589250.3596145

[36] OpenAI. 2024. GPT-3.5-Turbo. OpenAI. Retrieved May 30, 2024 from https:
//platform.openai.com/docs/models/gpt-3-5-turbo

[37] João Felipe Pimentel, Juliana Freire, Leonardo Murta, and Vanessa Braganholo.
2019. A Survey on Collecting, Managing, and Analyzing Provenance from Scripts.
ACM Comput. Surv. 52, 3, Article 47 (jun 2019), 38 pages. https://doi.org/10.1145/
3311955

[38] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2021. Understanding and Improving the Quality and Reproducibility of Jupyter
Notebooks. Empirical Softw. Engg. 26, 4 (jul 2021), 55. https://doi.org/10.1007/
s10664-021-09961-9

[39] Joao Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2017. noWorkflow: a tool for collecting, analyzing, and managing provenance
from python scripts. Proceedings of the VLDB Endowment 10, 12 (2017).

[40] Joao Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2019. A Large-Scale Study About Quality and Reproducibility of Jupyter Note-
books. In 2019 IEEE/ACM 16th International Conference on Mining Software Repos-
itories (MSR). IEEE, Montreal, QC, Canada, 507–517. https://doi.org/10.1109/
MSR.2019.00077

[41] Fotis Psallidas, Yiwen Zhu, Bojan Karlas, Jordan Henkel, Matteo Interlandi,
Subru Krishnan, Brian Kroth, Venkatesh Emani, Wentao Wu, Ce Zhang, Markus
Weimer, Avrilia Floratou, Carlo Curino, and Konstantinos Karanasos. 2022. Data
Science Through the Looking Glass: Analysis of Millions of GitHub Notebooks
and ML.NET Pipelines. SIGMOD Rec. 51, 2 (jul 2022), 30–37. https://doi.org/10.
1145/3552490.3552496

[42] Fotis Psallidas, Yiwen Zhu, Bojan Karlas, Matteo Interlandi, Avrilia Floratou,
Konstantinos Karanasos, Wentao Wu, Ce Zhang, Subru Krishnan, Carlo Curino,
and Markus Weimer. 2019. Data Science through the looking glass and what we
found there. arXiv:1912.09536 [cs.LG]

[43] Dhivyabharathi Ramasamy, Cristina Sarasua, Alberto Bacchelli, and Abraham
Bernstein. 2022. Workflow Analysis of Data Science Code in Public GitHub
Repositories. Empirical Software Engineering 28, 1 (Nov. 2022), 7. https://doi.
org/10.1007/s10664-022-10229-z

[44] Rivery. 2023. Rivery Cloud ELT Tool Official Website. Rivery. Retrieved September
29, 2023 from https://rivery.io/

[45] Lukas Rupprecht, James C Davis, Constantine Arnold, Yaniv Gur, and Deepavali
Bhagwat. 2020. Improving reproducibility of data science pipelines through
transparent provenance capture. Proceedings of the VLDB Endowment 13, 12
(2020), 3354–3368.

[46] Marius Schlegel and Kai-Uwe Sattler. 2023. Management of Machine Learning
Lifecycle Artifacts: A Survey. SIGMOD Rec. 51, 4 (jan 2023), 18–35. https:
//doi.org/10.1145/3582302.3582306

[47] Snowflake. 2023. Snowpark API. Snowflake. Retrieved February 15, 2023 from
https://docs.snowflake.com/en/developer-guide/snowpark/index

[48] SQLite. 2024. SQLite. SQLite. Retrieved February 28, 2024 from https://www.
sqlite.org/mostdeployed.html

[49] Stitch. 2023. Stitch Official Website. Stitch. Retrieved September 29, 2023 from
https://www.stitchdata.com/

[50] Pavle Subotić, Uroš Bojanić, and Milan Stojić. 2022. Statically detecting data leak-
ages in data science code. In Proceedings of the 11th ACM SIGPLAN International
Workshop on the State Of the Art in Program Analysis. 16–22.

[51] Pavle Subotić, Lazar Milikić, and Milan Stojić. 2022. A Static Analysis Framework
for Data Science Notebooks. In Proceedings of the 44th International Conference on
Software Engineering: Software Engineering in Practice (Pittsburgh, Pennsylvania)
(ICSE-SEIP ’22). Association for Computing Machinery, New York, NY, USA,
13–22. https://doi.org/10.1145/3510457.3513032

[52] Florian Tambon, Arghavan Moradi Dakhel, Amin Nikanjam, Foutse Khomh,
Michel C. Desmarais, and Giuliano Antoniol. 2024. Bugs in Large Language
Models Generated Code: An Empirical Study. arXiv:2403.08937 [cs]

[53] Yao Wan, Wei Zhao, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin.
2022. What Do They Capture?: A Structural Analysis of Pre-Trained Language
Models for Source Code. In Proceedings of the 44th International Conference
on Software Engineering. ACM, Pittsburgh Pennsylvania, 2377–2388. https:
//doi.org/10.1145/3510003.3510050

[54] Dakuo Wang, Q. Vera Liao, Yunfeng Zhang, Udayan Khurana, Horst Samulowitz,
Soya Park, Michael Muller, and Lisa Amini. 2021. How Much Automation Does
a Data Scientist Want? arXiv:2101.03970 [cs]

[55] Dakuo Wang, Justin D. Weisz, Michael Muller, Parikshit Ram, Werner Geyer,
CaseyDugan, Yla Tausczik, Horst Samulowitz, andAlexander Gray. 2019. Human-
AI Collaboration in Data Science: Exploring Data Scientists’ Perceptions of
Automated AI. Proceedings of the ACM on Human-Computer Interaction 3, CSCW
(Nov. 2019), 1–24. https://doi.org/10.1145/3359313

[56] Mark DWilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Apple-
ton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino
da Silva Santos, Philip E Bourne, et al. 2016. The FAIR Guiding Principles for
scientific data management and stewardship. Scientific data 3, 1 (2016), 1–9.

[57] Zhaogui Xu, Ju Qian, Lin Chen, Zhifei Chen, and Baowen Xu. 2013. Static Slicing
for Python First-Class Objects. In 2013 13th International Conference on Quality
Software. IEEE, Najing, China, 117–124. https://doi.org/10.1109/QSIC.2013.50

[58] Amy X. Zhang, Michael Muller, and Dakuo Wang. 2020. How Do Data Science
Workers Collaborate? Roles, Workflows, and Tools. Proceedings of the ACM on
Human-Computer Interaction 4, CSCW1 (May 2020), 1–23. https://doi.org/10.
1145/3392826

https://doi.org/10.1109/ASEW52652.2021.00032
https://doi.org/10.1109/ASEW52652.2021.00032
https://doi.org/10.1145/3597503.3639219
https://github.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://opensource.org/license/mit/
https://jupyter.org/hub
https://jupyter.org/
https://www.kaggle.com/code
https://kedro.org/
https://doi.org/10.1109/VL/HCC50065.2020.9127201
https://doi.org/10.1109/VL/HCC50065.2020.9127201
https://doi.org/10.1145/3544548.3580940
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://visualstudio.microsoft.com/vs/features/notebooks-at-microsoft/
https://arxiv.org/abs/2310.18532
https://doi.org/10.1145/3491102.3517644
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1145/3394486.3403205
https://doi.org/10.1145/3589250.3596145
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://doi.org/10.1145/3311955
https://doi.org/10.1145/3311955
https://doi.org/10.1007/s10664-021-09961-9
https://doi.org/10.1007/s10664-021-09961-9
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1145/3552490.3552496
https://doi.org/10.1145/3552490.3552496
https://arxiv.org/abs/1912.09536
https://doi.org/10.1007/s10664-022-10229-z
https://doi.org/10.1007/s10664-022-10229-z
https://rivery.io/
https://doi.org/10.1145/3582302.3582306
https://doi.org/10.1145/3582302.3582306
https://docs.snowflake.com/en/developer-guide/snowpark/index
https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/mostdeployed.html
https://www.stitchdata.com/
https://doi.org/10.1145/3510457.3513032
https://arxiv.org/abs/2403.08937
https://doi.org/10.1145/3510003.3510050
https://doi.org/10.1145/3510003.3510050
https://arxiv.org/abs/2101.03970
https://doi.org/10.1145/3359313
https://doi.org/10.1109/QSIC.2013.50
https://doi.org/10.1145/3392826
https://doi.org/10.1145/3392826

	Abstract
	1 Introduction
	2 Interoperable Data Analytics
	2.1 Pipeline Exploration
	2.2 Problem Formulation

	3 System Design
	3.1 Pipeline Analysis
	3.2 Data Access & Formatting
	3.3 Pipeline Rewrite & Access Management

	4 System Implementation
	4.1 Pipeline Analysis
	4.2 Data Access Patterns
	4.3 Data Transformations
	4.4 Pipeline Rewrite & Access Management
	4.5 Limitations of Static Pipeline Analysis

	5 Evaluation
	5.1 Experimental Setup
	5.2 Analyzing the GitHub Corpus
	5.3 Storage Backend Comparison
	5.4 Analyze Pipelines with LLM

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

