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Abstract
Over the last decade, data stream processing has emerged to provide real-time insights into large,
unbounded volumes of data. At the same time, graphics processing units (GPU) have become an
important accelerator for improving the performance of compute-bound applications. Nevertheless,
state-of-the-art data streaming systems opt to scale-out and typically do not make efficient use of the
underlying hardware. Recent work has shown that query compilation is a viable technique to support
hardware advancements in query processing engines. However, it often comes with high development
and maintenance costs. In particular, when the process involves hardware accelerators such as GPUs.
In this paper, we propose a framework for compiling data stream queries to efficient GPU code in a
developer-friendly manner. We demonstrate the feasibility of our framework by integrating it into the
data management system NebulaStream. Our experiments show that frequent memory transfers between
CPU and GPU impact the query processing throughput.
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1. Introduction

Large-scale data processing systems have become more heterogeneous with regard to their
components in order to meet the increasing computational demands over the last decade.
General-purpose graphics processing units are an important example of modern hardware
devices that enable better performance for specific computations. Consequently, utilizing GPUs
for query processing in heterogeneous computer systems has been a popular research topic in
recent years [1, 2, 3, 4]. The adoption of query compilation in data processing systems has seen
a huge impact since the strategy was popularized by Neumann [5] with the produce/consume
model. With the increasing heterogeneity in computer systems following the end of Dennard
scaling [6], query compilation is a well-positioned technique to capitalize on technological
advancements in computer architecture and compiler technology. As a result, compiling queries
to specialized hardware can unlock significant performance benefits in data stream processing
by achieving high hardware utilization [7].
The database research community has investigated query compilation for heterogeneous

processors over the last decade extensively [8, 9, 10, 3]. However, existing studies often disre-
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gard maintainability in favor of processor-specific optimizations to improve query processing
performance. In response, Grulich et al. propose the Nautilus [11] framework to unify query
interpretation and query compilation by utilizing a trace-based, just-in-time compilation strat-
egy. Thus, they provide better introspection capabilities during the software development
process of query operators. In this work, we extend the idea behind Nautilus to the field of
heterogeneous computing and bring trace-based query compilation to the GPU. To this end, we
present a framework that enables developers to implement query operators for the GPU on a
high abstraction level to support maintainable software development without re-implementing
the underlying execution model of the query engine.
In particular, our work makes the following contributions:

• We design a framework that enables a seamless operator interface switch from tuple-
at-a-time execution to batched execution, which is beneficial to GPU-based computing,
to support the compilation of a GPU kernel into a query plan for trace-based query
compilation.

• We integrate our framework into the data streammanagement system NebulaStream1 [12]
and demonstrate the feasibility of our framework by implementing three commonly used
data stream operators.

• We show that low-bandwidth interconnects between CPU and GPU represent a perfor-
mance bottleneck in throughput-oriented systems such as data streaming systems.

We organize the paper as follows. First, we introduce background information about general-
purpose computing on the GPU and trace-based query compilation in Section 2. In Section 3, we
present our framework for compiling data streaming queries to GPU code and the integration
of our framework in NebulaStream. In Section 4, we showcase the experimental evaluation of
our framework in an end-to-end benchmark using NebulaStream on state-of-the-art streaming
workloads. In Section 5, we discuss related work. Lastly, we conclude our work in Section 6.

2. Background

In this section, we introduce the concept of general-purpose computing on the GPU. Further-
more, we outline the Nautilus [11] query compilation framework, which aims to unify query
interpretation and query compilation.

2.1. General-purpose Computing on the GPU

Since Dennard scaling came to an end, computer systems have become increasingly hetero-
geneous [6]. The responsibility for computing a particular functionality has shifted from the
central processing unit (CPU) to application-specific hardware. The GPU has emerged as a
versatile co-processor for computer systems over the last two decades. Conceptually, we use
a GPU to accelerate a compute-bound application by parallelizing the execution over a large
number of threads. This has also sparked interest in the database community to accelerate

1Find NebulaStream and related information on https://nebula.stream.

https://nebula.stream


query processing [9, 8, 10, 4]. Rosenfeld et al. [1] provide an in-depth survey on the use of
GPUs in query processing.
The functionality of GPUs has grown to accommodate the execution of compiled, fully-

programmable functions, i.e., compute kernels. The compute kernel is a function that specifies
data-parallel computations on individual elements of a data collection [9]. Throughput-oriented
co-processors employ the kernel programming model to develop and program compute kernels.
When we frequently transfer memory between the CPU and the GPU, a low-bandwidth

interconnect between the two components is a performance bottleneck in GPU computing. To
mitigate high data transfer times, we can employ different memory allocation techniques and
memory bandwidth expansion using, e.g., NVLink [13]. Page-locked, or pinned, memory is an
allocated chunk of memory, where the memory pages are pinned to their physical location. Here,
the GPU leverages direct memory access (DMA) to transfer data to and from the CPU without
host intervention because the physical location of page-locked memory allocation is known
beforehand (in contrast to a pageable memory allocation). However, the size of page-locked
memory is limited because the operating system cannot employ memory paging. Furthermore,
excessive allocation of page-locked memory contributes to overloading the operating system’s
virtual memory management, which negatively impacts system performance [14].

2.2. Trace-based Query Compilation

In practice, the main engineering challenge for a compilation-based query engine is to balance
performance and developer productivity [11]. The Nautilus framework by Grulich et al. [11]
combines query compilation with a novel approach to code generation to achieve a developer-
friendly programming experience for compilation-based query processing systems. Thereby,
Nautilus allows developers to debug their code in an interpreted way, removing the indirection
of running and inspecting the state of generated code. Nautilus employs a push-based query
compilation strategy [5] that uses multiple phases for transforming a logical query plan to an
executable query plan in the form of a binary shared object. The Nautilus framework is the
foundation for the query compilation engine of NebulaStream.

A Nautilus operator is a query operator that implements a programming interface for push-
based query processing. When compiling a Nautilus query plan, Nautilus creates a program
trace from each Nautilus operator. During query compilation, a tracing module creates a
comprehensive recollection, i.e., the program trace, of the recorded operations in a symbolic
execution of the Nautilus query plan. With the program trace, we have a high abstraction level
of the Nautilus operators that make up the query plan. The framework decouples the query
operator implementation from target-specific code generation by the means of the Nautilus
intermediate representation (Nautilus IR). After trace generation, the selected code generation
back-end receives a control flow graph comprised of Nautilus IR instructions and generates the
program code in the target language. Nautilus does not have a compilation back-end for GPUs.

3. Compilation-based Stream Processing on the GPU

In this section, we propose a framework for compiling data stream queries to GPU code. We
present our solution for compiling data stream pipelines to GPU code using the trace-based
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Figure 1: Our proposed framework.

Nautilus framework. We apply our framework to build three commonly used data stream
operators: map, selection, and window aggregation. We show how to integrate our framework
into the data stream management system NebulaStream [12].

3.1. Compiling Data Stream Pipelines to GPU Code

With our framework, we want to give a software developer the ability to program query
operators with methods from the GPU programming model. At the same time, we intend to
strike a fine balance between the high-performance benefits of GPU programming and high-
level query code abstractions. To this end, we will use the Nautilus framework as a basis and
develop an extension to generate query code for the GPU.

Internally, the query engine of NebulaStream works on tuple buffers but uses a Nautilus-style
tuple-at-a-time interface to expose single tuples. Thus, we need to introduce a new operator
programming interface that enables us to specialize the query execution for the GPU. We define
a new class of vectorizable operators in Nautilus, which work on a tuple buffer instead of a
single tuple. Furthermore, we introduce a new Vectorize operator to materialize in-flight tuples
and pass them as a buffer to a vectorizable operator. To allow the reversal to a tuple-at-a-time
operator interface, we also introduce the Unvectorize operator to unroll a tuple buffer into single
tuples for downstream operators.
Figure 1 shows our proposed framework and its application. In the first part, we produce

compiled CPU-based as well as GPU-based operator pipelines from a transformed query plan.
In the second part, we execute our compiled pipelines as part of the query engine.
As a result, we can now traverse a query plan and identify an operator Op that is suitable

for offloading to the GPU. Then, we transform the query plan around it using Vectorize and
Unvectorize operators to support a batched GPU-based execution model, which we define as a
Stage operator. To offload the processing of a query plan to the GPU, a software developer only
needs to implement the vectorizable interface for desired operators while our framework deals
with the hybrid execution. We can apply our approach to any GPU programming framework
because we designed it to align with the high abstraction level of Nautilus rather than tailoring
it to a specific GPU programming framework.
Figure 2 depicts the query plan transformation to the Stage operator using Vectorize and

Unvectorize operators. Given a physical query plan, we select a physical operator Op and
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Figure 2: The Stage transformation changes the operator interface from tuple-at-a-time to buffer-at-a-
time.

transform it into a physical Stage operator. Furthermore, we add physical Vectorize and
Unvectorize operators to facilitate the change of operator interface from tuple-at-a-time to
buffer-at-a-time.

To generate GPU code, we add a compilation back-end for CUDA C++ to Nautilus based on
the C++ back-end. We introduce the Kernel operator to represent the execution of a kernel
function on the GPU in a query plan. After we have transformed the query plan using Vectorize
and Unvectorize operators, we traverse the query plan again to identify Stage operators and
transform them into Kernel operators. During query compilation, we create a Nautilus trace
of the operator Op in a symbolic execution of Op. Then, we convert the trace to Nautilus IR,
which we have extended to account for the GPU programming model. Finally, we convert the
IR to CUDA C++ source code and compile it to a binary shared object using a CUDA-compatible
compiler.

3.2. Building Data Stream Operators for the GPU

With our framework, we can compile any suitable operator to GPU code and selectively offload
parts of the query plan to the GPU. To demonstrate the feasibility of our framework, we have
implemented three commonly used data stream operators (map, selection, and aggregation) in
the data management system NebulaStream using our framework. We encapsulate the execution
of the compiled kernel function in a kernel wrapper function, which is responsible for GPU-side
state management and kernel invocation.
Due to its stateless nature, we describe the implementation of the map operator first. We

assume that the input schema of a map operator is equal to its output schema, i.e., the map
operator applies a function with the same input and output arity to a tuple. To support a map
operator with different input and output arities, we need to size the GPU-side input and output
buffers accordingly to ensure correct memory accesses. We use our extension of Nautilus IR
instructions to symbolically calculate the thread index in the thread hierarchy according to the
GPU programming model.
Listing 1 shows the difference between the original map operator (left) and our newly built,

vectorizable map operator (right), respectively. Here, our framework wraps the Stage operator
around the vectorizable map operator to generate a trace for the kernel compilation. The
implementation of the map operator in our framework exhibits high structural similarity to a
possible kernel code implementation while providing a high abstraction level.

Data stream operators such as aggregations and joins require some form of state management.



void Map::execute(Context& ctx,
Record& record) {

mapExpression->execute(record);
if (hasChild()) {

child->execute(ctx, record);
}

}

void VMap::execute(Context& ctx,
Buffer& buffer) {

auto tid = OneDimThreadIdx();
auto address = buffer.getBuffer();
auto numRecords = buffer.getNumRecords();
if (tid < numRecords) {

auto record = read(address, tid);
mapExpression->execute(record);
write(tid, address, record);

}
if (hasChild()) {

child->execute(ctx, buffer);
}

}

Listing 1: The map operator implemented in the regular Nautilus-style operator interface (left) and the
new vectorizable Nautilus-style operator interface (right).

To combine our framework with state management, we have to convert between CPU-side
state and GPU-side state and vice versa. As a proof of concept, we have opted for the selection
operator to produce a bit vector filter. Therefore, we make the final selection on the CPU-side
tuple buffer with the obtained bit vector converted from the GPU-side tuple buffer.

In NebulaStream, the aggregation pipeline is based on the stream slicing technique [15] and
has two parts: pre-aggregation and slice merging. For any incoming tuple, the pre-aggregation
operator retrieves the slice covering the timestamp of the tuple, updates partial aggregates and
writes them to the slice store. The slice-merging operator creates a final aggregation tuple from
the slices. We identify the pre-aggregation operator as a suitable candidate for a vectorizable
implementation. Using our framework we only have to replace the pre-aggregation operator
with a vectorizable pre-aggregation operator, leaving the other parts of the aggregation pipeline
untouched.
We target non-keyed window-based aggregations because we only consider slices to store

numerical types. We assume ingestion time as our notion of time such that all tuples in a tuple
buffer share the same timestamp when the tuple buffer content was first registered in the system.
Thus, all of the partial aggregates map to only one slice in the slice store. Furthermore, we
have to create a GPU-side representation of the slice store and know how to convert it back
on the CPU side. Since we know that the timestamp is the same across all tuples of a tuple
buffer, we utilize parallel tree reduction to compute the partial aggregates for the entire tuple
buffer in one kernel invocation. We only consider distributive aggregation functions because
parallel reduction requires the binary reduction operator to be associative. To support keyed
window-based aggregations, we can store GPU-based hash maps in a slice to identify matching
keys and update partial aggregates accordingly. Having access to an abstraction of a GPU-based
hash map can also help us implement streaming hash joins using our framework.

4. Evaluation

This section presents an experimental evaluation of our framework. First, we define the
experimental setup. Next, we evaluate the end-to-end query processing throughput of our
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Figure 3: End-to-end query processing throughput for NEXMark queries Q1 (left) and Q2 (right). The
stage buffer size is set to 64 MB.

framework in the data stream management system NebulaStream. We conclude this section
with a discussion of our findings.

4.1. Experimental Setup

In an end-to-end setting, we subject the NebulaStream platform to various workloads of the
research-standard NEXMark benchmark suite [16]. NEXMark by Tucker et al. is a benchmark
suite of data stream processing workloads modeling an online auction system. As a result, we
obtain a realistic impression of the performance of the NebulaStream platform for state-of-the-art
data streaming workloads when using our framework.
We conduct our experiment on a machine with 2x Intel Xeon Gold 5115 @ 2.40 GHz (10

cores per socket, with Intel Hyper-Threading Technology), 192 GB of system memory and a
NVIDIA Tesla V100 GPU with 16 GB of memory. As for our operating system, we execute the
experiment on Ubuntu 22.04 LTS using NebulaStream v0.5 and the CUDA Toolkit 11.7. We
compile the NebulaStream project itself as well as the CPU-based queries with the clang++
16.0.1 compiler on the highest optimization level (i.e., -O3). Similarly, we compile GPU-based
queries targeting compute capability 7.0 using the same compiler configuration.

4.2. End-to-End Query Processing Throughput

To quantify the performance of our framework, we select end-to-end query processing through-
put and memory transfer latency as our two evaluation metrics. To this end, we execute
NEXMark queries Q1 and Q2 on the NebulaStream data management system. We calculate the
end-to-end query processing throughput as the number of tuples processed per second. For
two distinct benchmark configurations, a higher throughput value indicates a better processing
performance.

For comparison, we measure the query processing throughput for both CPU-based and GPU-
based execution configurations. Furthermore, we show the latency induced by transferring
memory between the CPU and the GPU in the GPU-based execution. In CPU-GPU applications,



Table 1
Benchmark for NEXMark query Q1.

Stage Buffer Size in MB
Pageable Memory Pinned Memory

64 128 512 1024 2048 64 128 512 1024 2048

Throughput
in M Tuples/s 6.9 6.9 7.0 7.4 5.9 7.5 7.6 7.5 7.1 6.1

Bandwidth
in GB/s

𝐵𝑊𝐻,𝐷 4.6 4.7 4.6 4.7 4.3 12.3 12.3 12.4 12.4 12.4
𝐵𝑊𝐷,𝐻 4.7 4.7 4.7 4.7 4.6 13.1 13.1 13.2 13.2 13.7
𝐵𝑊𝐺𝑙𝑜𝑏𝑎𝑙 520.5 510.3 502.2 503.4 500.6 518.2 510.3 501.7 501.9 498.3
𝐵𝑊𝑅𝑒𝑞𝑢𝑒𝑠𝑡 130.2 127.6 125.6 125.9 125.1 129.6 127.6 125.4 125.5 124.6

the interconnect often represents a performance bottleneck [13]. Therefore, measuring the time
it takes to move data back and forth between CPU and GPU yields a deeper insight into the
throughput values.
Figure 3 depicts the measured query processing throughput numbers for both CPU-based

and GPU-based execution on the NebulaStream platform for NEXMark queries Q1 (left) and
Q2 (right). We use one GPU thread per tuple and do not overlap memory transfers. As we can
see, the throughput is significantly higher in the CPU-based execution than in the GPU-based
execution. Since both queries do not exhibit high computational complexity, external factors
contribute to the comparatively slower processing performance for the GPU-based configuration.
Thus, we investigate the impact of the latency induced by memory transfers between CPU
and GPU on the query processing performance. Memory transfers are a prime candidate for
optimization because of the high impact of low-bandwidth CPU-GPU interconnects on the
overall performance when the application moves data between the two frequently.

Table 1 shows a more detailed picture of the benchmark results for NEXMark query Q1 with
regards to the memory bandwidth bottleneck. We use mean values for the query processing
throughput and the calculation of the effective inter-device bandwidth. Furthermore, we give
the stage buffer size in megabyte (MB), which is the size of the memory buffer for in-flight tuple
materialization. We determine the GPU memory buffer capacity as the quotient of the stage
buffer size (e.g., 64 MB) and the input schema size (40 B), rounded down.

For reference, the theoretical bandwidth on PCI express (PCIe) 3.0 is 14.9 GB/s [1]. We observe
an effective bandwidth 𝐵𝑊𝐻,𝐷 from host to device between 4.3 GB/s and 4.7 GB/s across different
stage buffer sizes for pageable memory. Furthermore, we see an effective bandwidth 𝐵𝑊𝐷,𝐻
from device to host between 4.6 GB/s and 4.7 GB/s. In contrast, we achieve effective bandwidths
𝐵𝑊𝐻,𝐷 and 𝐵𝑊𝐷,𝐻 between 12.3 GB/s up to 12.4 GB/s and between 13.1 GB/s up to 13.7 GB/s,
respectively, when we use pinned memory instead. We calculated that the computation of
the kernel contributes around 0.7% and 2.1% to the total runtime of one batched execution for
pageable and pinned memory, respectively.

We use the profiling tool nvprof [17] by NVIDIA to obtain two intra-device memory through-
put values 𝐵𝑊𝐺𝑙𝑜𝑏𝑎𝑙 and 𝐵𝑊𝑅𝑒𝑞𝑢𝑒𝑠𝑡. We denote the throughput for global memory transaction as



𝐵𝑊𝐺𝑙𝑜𝑏𝑎𝑙 in Table 1. We use requested global throughput to measure the bandwidth utilization
of global memory transactions [18]. We denote the requested global throughput as 𝐵𝑊𝑅𝑒𝑞𝑢𝑒𝑠𝑡
in Table 1. We compare global throughput and requested global throughput to assess the
resourcefulness of a kernel function. For reference, the theoretical bandwidth for an NVIDIA
Tesla V100 (PCIe 16GB) GPU amounts to 898 GB/s [18]. The NVIDIA Tesla V100 (PCIe 16GB)
GPU features L1 and L2 caches to improve the latency of global memory transactions. We
obtain minimum and maximum throughput values of 500.6 GB/s and 520.5 GB/s as well as
498.3 GB/s and 518.2 GB/s for pageable and pinned memory, respectively. The minimum and
maximum throughput values are 125.1 GB/s and 130.2 GB/s as well as 124.6 GB/s and 129.6
GB/s for pageable and pinned memory, respectively. It is evident that the requested global
throughput 𝐵𝑊𝑅𝑒𝑞𝑢𝑒𝑠𝑡 is significantly lower than the global throughput 𝐵𝑊𝐺𝑙𝑜𝑏𝑎𝑙. The reason for
the noticeable difference between 𝐵𝑊𝑅𝑒𝑞𝑢𝑒𝑠𝑡 and 𝐵𝑊𝐺𝑙𝑜𝑏𝑎𝑙 is insufficient coalescing of memory
accesses [18].

4.3. Discussion

To summarize our findings, we have demonstrated that our framework generates efficient
GPU code but the query processing does not sufficiently hide the memory transfer latency.
In particular, the low bandwidth of the CPU-GPU interconnect limits the rate to supply data
to the GPU because the time to transfer memory between CPU and GPU exceeds the kernel
execution time significantly. We observe that optimizing for a high tuple ingestion rate over
CPU-GPU interconnects improves the query processing throughput. Therefore, we argue
that our framework allows for optimizations that are orthogonal to our GPU-based execution.
For example, we believe that employing NVLink to expand the memory bandwidth helps us
in achieving higher throughput due to an improved ingestion rate [13]. We expect similar
query processing throughput in a GPU-based execution when the CPU-GPU bandwidth is
comparable or higher to the bandwidth between CPU and main memory (cf. NVIDIA Grace
Hopper architecture).

In addition, we have illustrated that our framework improves the abstraction level for writing
GPU-specific query code and enables developers to connect with existing components of
NebulaStream’s aggregation pipeline. Thus, we lay the foundation for the implementation
of more complex query operators using our framework. We conclude that our framework
is successful in providing the operator developer useful abstractions for a GPU-based query
processing engine in a data streaming system. Note that such a data streaming system does not
have to only use the GPU. Instead, we want to emphasize that query processing can benefit
from CPU-GPU co-processing, which our framework allows seamlessly. By employing a hybrid
execution model, we can use a dynamic workload-adaptive strategy for offloading work to the
GPU.

5. Related Work

Menon et al. [19] introduce the relaxed operator fusion (ROF) query processing model to
enable SIMD vectorization in compilation-based database systems. In the ROF model, the query
compiler embeds staging points into the query plan for the purpose of strategic materialization.



Thus, the generated query code exploits data-parallelism in the buffered tuple data, which is
not the case when the generated code processes one tuple-at-a-time. Nevertheless, Menon
et al. [19] do not tailor the query execution towards the GPU execution model and do not
emphasize on creating maintainable GPU-specific query code. In our work, we found that the
idea of materializing tuples at specific points in the query plan is necessary for enabling GPU
query processing using Nautilus. However, we also view the materialization as a necessary
step towards transforming the processing flow from tuple-at-a-time to buffer-at-a-time at any
suitable point in the query plan. With this reversible transformation, we can implement the
kernel programming model inside a new class of operators in the Nautilus framework that
receive tuple buffers instead of single tuples.
Chrysogelos et al. [3] introduce the HetExchange framework to support intra-device data

parallelism (GPU), inter-core task-parallelism (CPU) and heterogeneous cross-device parallelism
in query processing on modern CPU-GPU systems. HetExchange inserts control and data flow
operators into the query plan to facilitate the transfer of control flow as well as data, respectively,
between producers and consumers. HetExchanges uses operator templates to specialize the
code generation for different devices. In contrast, we opt to provide a framework that enables
the developer to program GPU-specific operators in a maintainable manner.
SABER by Koliousis et al. [20] is a hybrid data stream processing engine designed for use

with multi-core CPUs and many-core GPUs. In SABER, a query task is a batch of data bundled
together with the operator graph of a query. SABER executes a query task according to a
novel look-ahead scheduling algorithm that assigns the task to the either the CPU or the
GPU based on expected performance. For each operator, SABER populates pre-defined GPU
code templates with query-specific information such as schemata, selection predicates and
aggregation functions. This is in contrast to our work, where we dynamically generate a GPU
kernel from a pipeline of GPU-specifc operators. To this end, we utilize the foundations of
the Nautilus query compiler, i.e., operator tracing in conjunction with the produce/consume
model [5].
Nugroho et al. [21] evaluate the performance of GPU-based stream join algorithms to iden-

tify the configuration parameter space for different workloads. They develop a guideline for
practitioners to choose the correct parameters for their own use case. For a given workload,
they come to the conclusion that the use of a GPU can improve throughput but can also have a
negative impact on the performance with the wrong choice of parameters.

6. Conclusion

We proposed a framework for compiling data stream queries to efficient GPU code. In our
experiments, we studied the performance of our framework when used as part of the Nebu-
laStream platform. To this end, we measured the end-to-end query processing throughput by
using state-of-the-art data streaming workloads. In our evaluation, we showed that the lack
of existing techniques (e.g., bandwidth expansion) to mitigate the CPU-GPU memory bottle-
neck in NebulaStream also showed a clear divide in performance between the CPU-based and
GPU-based configuration. Future work needs to evaluate and improve the fine balance between
abstraction level and performance as well as sufficiently hide the memory transfer latency.



With our work, we pave the way for GPU-accelerated stream processing in a compilation-based
query engine.
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