
Towards A GPU-Accelerated Stream
Processing Engine Through Query
Compilation

LWDA’24
September 23-25, 2024, Würzburg, Germany

Florian Schmeller,

Dwi P. A. Nugroho,

Steffen Zeuch,

Tilmann Rabl

Motivation
Hardware Trends

07.10.24 2

• Frequency scaling stagnated since 2006

• Computer systems have become

increasingly heterogeneous

• Increase in specialized hardware, cores

• GPUs are popular co-processors for

throughput-oriented applications

• Large number of low complexity cores

• Data-parallel execution model

Motivation
Stream Processing Systems

07.10.24 3

• Current stream processing systems do not

fully exploit modern hardware

• Query compilation leverages execution

environment for better performance

• Generated code is hard to understand,

debug and profile

• Current approaches to query compilation for

GPU are not developer-friendly

• This talk: Maintainable GPU code generation

for streaming operators

Source

Source

Sink

Sink

Interpretation

Compilation

Adapted from Zeuch et al., Analyzing Efficient Stream Processing on Modern Hardware, VLDB 2019

NebulaStream

07.10.24 4

• NebulaStream [Ze20] is a data management

system for the Internet of Things (IoT)

• Dynamic, streaming workloads

• Task-based parallelism

• Nautilus [Gr24] framework unifies query

interpretation and query compilation

• One operator implementation for both

• Creates trace from symbolic execution

• Used in NebulaStream query engine

IoT application (from [Ze20])

[Gr24] Grulich et al., Query Compilation Without Regrets, SIGMOD 2024
[Ze20] Zeuch et al., The NebulaStream Platform for Data and Application Management in the Internet of Things, CIDR 2020

• Relaxed Operator Fusion model [Me17] enables SIMD in compilation-based engines

• Staging points in query plan allow strategic materialization

• SABER [Ko16] is a hybrid CPU-GPU stream processing engine

• Compiled execution using code templates

• HetExchange [Ch19] is a framework for hybrid CPU-GPU query processing

• Operator templates for different devices

[Me17] Menon et al., Relaxed Operator Fusion for In-Memory Databases: Making Compilation, Vectorization, and Prefetching Work Together at Last, VLDB 2017

[Ko16] Koliousis et al., SABER: Window-Based Hybrid Stream Processing for Heterogeneous Architectures, SIGMOD 2016

[Ch19] Chrysogelos et al., HetExchange: Encapsulating Heterogeneous CPU-GPU Parallelism in JIT Compiled Engines, VLDB 2019

Related Work

07.10.24 5

Agenda

6

1. Compilation-based Stream Processing on the GPU

2. Evaluation

3. Conclusion

07.10.24

Compilation-based Stream
Processing on the GPU

1. Designed a framework to support the compilation of a GPU kernel into a query plan

2. Integrated our framework into NebulaStream and implemented three data stream operators

3. Demonstrated the impact of low memory bandwidth on throughput-oriented systems

Compilation-based Stream Processing on the GPU
Contributions

07.10.24 8

Op

Vectorize Stage [Op] Unvectorize

Compilation-based Stream Processing on the GPU
From Query Plan to GPU Code

07.10.24 9

1. Identify vectorizable operators
a) Traverse query plan for operator Op
b) Add Vectorize, Unvectorize around Op
c) Wrap Op in Stage operator
d) Replace Stage with Kernel operator

Op

Vectorize Stage [Op] Unvectorize

Compilation-based Stream Processing on the GPU
From Query Plan to GPU Code

07.10.24 10

1. Identify vectorizable operators
a) Traverse query plan for operator Op
b) Add Vectorize, Unvectorize around Op
c) Wrap Op in Stage operator
d) Replace Stage with Kernel operator

2. Compile Kernel operator to GPU code
a) Traverse query plan for Kernel operator
b) Trace symbolic execution of Op
c) Transform trace to NES IR
d) Transform NES IR to CUDA C++

Query
.from("src")
.filter("x" > 0)
.sink("dest")

UnvectorizeVectorize

Kernel

Compiled CPU-based
Operator Pipeline

Compilation Execution

Compiled GPU-based
Operator Pipeline

CPU-side Execution

GPU-side Execution

Filter

Vec.

Unvec.

Source

Sink

Compilation-based Stream Processing on the GPU
From Compilation to Execution

07.10.24 11

We compile the query plan to CPU and GPU executable code.

Regular Map Operator Vectorized Map Operator

void Map::execute(Context& ctx, Record& record)
{

mapExpression->execute(record);
if (hasChild()) {

child->execute(ctx, record);
}

}

void VMap::execute(Context& ctx, Buffer& buf)
{

auto tid = OneDimThreadIdx();
auto address = buf.getBuffer();
auto numRecords = buf.getNumRecords();
if (tid < numRecords) {

auto record = read(address, tid);
mapExpression->execute(record);
write(tid, address, record);

}
if (hasChild()) {

child->execute(ctx, buf);
}

}

Compilation-based Stream Processing on the GPU
Nautilus-style Operator Implementation

07.10.24 12

Regular Map Operator Vectorized Map Operator

void Map::execute(Context& ctx, Record& record)
{

mapExpression->execute(record);
if (hasChild()) {

child->execute(ctx, record);
}

}

void VMap::execute(Context& ctx, Buffer& buf)
{

auto tid = OneDimThreadIdx();
auto address = buf.getBuffer();
auto numRecords = buf.getNumRecords();
if (tid < numRecords) {

auto record = read(address, tid);
mapExpression->execute(record);
write(tid, address, record);

}
if (hasChild()) {

child->execute(ctx, buf);
}

}

Compilation-based Stream Processing on the GPU
Nautilus-style Operator Implementation

07.10.24 13

Regular Map Operator Vectorized Map Operator

void Map::execute(Context& ctx, Record& record)
{

mapExpression->execute(record);
if (hasChild()) {

child->execute(ctx, record);
}

}

void VMap::execute(Context& ctx, Buffer& buf)
{

auto tid = OneDimThreadIdx();
auto address = buf.getBuffer();
auto numRecords = buf.getNumRecords();
if (tid < numRecords) {

auto record = read(address, tid);
mapExpression->execute(record);
write(tid, address, record);

}
if (hasChild()) {

child->execute(ctx, buf);
}

}

Compilation-based Stream Processing on the GPU
Nautilus-style Operator Implementation

07.10.24 14

Evaluation

Component Specification
CPU Intel Xeon Gold 5115 @ 2.40 GHz
GPU NVIDIA Tesla V100 (PCIe 3.0 16 GB/s)

System Memory 192 GB
Operating System Ubuntu 22.04 LTS

Compiler Clang 16.0.1
GPU Framework CUDA Toolkit 11.7

Experiment Platform NebulaStream v0.5
Workload NEXMark queries Q1, Q2

Evaluation
Experimental Setup

07.10.24 16

Evaluation
End-to-End Query Processing Throughput

07.10.24 17Throughput in CPU-based execution (blue) is higher than in GPU-based execution (red)

Query::from("Bid")
 .map(Attribute("price") = Attribute("price") * 0.89)
 .sink(NullSink());

Evaluation
End-to-End Query Processing Throughput

07.10.24 18Throughput in CPU-based execution (blue) is higher than in GPU-based execution (red)

Query::from("Bid")
 .filter(Attribute("auction") == 1007
 || Attribute("auction") == 1020
 || Attribute("auction") == 2001
 || Attribute("auction") == 2019
 || Attribute("auction") == 2087)
 .sink(NullSink());

Evaluation
End-to-End Query Processing Throughput

07.10.24 19Throughput in CPU-based execution (blue) is higher than in GPU-based execution (red)

Evaluation
Breakdown of NEXMark Q1

07.10.24 20

Memory transfer time dominates execution time

• CPU-GPU memory bandwidth negatively impacts throughput

• Hide latency using complex operator like join

• Bandwidth increase improves tuple throughput

• CPU-GPU bandwidth much lower than CPU-memory bandwidth in evaluation

• Recent systems use NVLink to support faster data transmission

• Code generation benefits from knowledge of workload characteristics

Evaluation
Discussion & Main Takeaways

07.10.24 21

Conclusion

• Query compilation capitalizes on recent hardware trends

• Framework supports data parallelism in Nautilus-style operators

• High abstraction level for operator developers (target architectures, GPU frameworks)

• Other vectorization methods like SIMD possible

• Evaluation shows importance of memory bandwidth in GPU-based stream processing

Conclusion
Thank you

07.10.24 23

Query
.from("src")
.filter("x" > 0)
.sink("dest")

UnvectorizeVectorize

Kernel

Compiled CPU-based
Operator Pipeline

Compilation Execution

Compiled GPU-based
Operator Pipeline

CPU-side Execution

GPU-side Execution

Filter

Vec.

Unvec.

Source

Sink

Evaluation
Map Operator Benchmark

07.10.24 24

Pageable Memory Pinned Memory

Buffer Size [MB] 64 512 1024 64 512 1024

Throughput [M tup/s] 6.9 7.0 7.4 7.5 7.5 7.1

Bandwidth [GB/s]

CPU-GPU 4.6 4.6 4.7 12.3 12.4 12.4

GPU Global 520.5 502.2 503.4 518.2 501.7 501.9

GPU Requested 130.2 125.6 125.9 129.6 125.4 125.5

No coalescing of memory access leads to worse requested GPU bandwidth
Improvement in CPU-GPU bandwidth leads to better throughput

