
Separated Allocator Metadata in Disaggregated
In-Memory Databases: Friend or Foe?

Marcel Weisgut
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

marcel.weisgut@hpi.de

Daniel Ritter
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

daniel.ritter@hpi.uni-potsdam.de

Martin Boissier
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

martin.boissier@hpi.de

Michael Perscheid
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

michael.perscheid@hpi.de

Abstract—Memory allocation has a significant impact on the
performance of in-memory databases. While state-of-the-art
memory allocators work well in DRAM-only setups, some of
their design decisions might no longer yield efficiency if data is
tiered to disaggregated memory or secondary memory tiers.

In this work, we study the performance impact of metadata in
memory allocators and their tiering to disaggregated memory in
the context of in-memory databases for the first time. We show
how to separate metadata and application data by the example
of jemalloc, which is widely used for data-intensive applications,
and study performance effects for different workloads.

Index Terms—Disaggregated Memory, Memory Allocators,
Metadata Separation, In-Memory Databases

I. INTRODUCTION

In-memory databases (IMDBs) store most of their data in
main memory to reach low latencies and high throughput.
However, main memory becomes a limiting factor for IMDBs
due to growing data [1] and the necessary co-location of
resource types, such as compute and memory (e. g., [2, 3]),
limiting their independent scalability and leading to resource
over-provisioning [4, 5]. To overcome these challenges, the
next hardware generation will physically separate computation
and memory resources (called memory disaggregation) [6, 7],
which allows IMDBs to prevent memory limitations of dedi-
cated servers. While these technological advances are highly
relevant for IMDBs, academic and industrial database research
only recently picked up disaggregated memory (DM) hardware
(e. g., [1, 8]). Besides the challenges around increased data
access latency [9], transparent access to this new data tier
without changing the design of the database management
system (DBMS) is crucial. While non-uniform memory access
(NUMA) denotes an established memory interface to leverage
DM, specific memory resources with dynamic memory allo-
cations are simpler and less invasive [10]. However, in both
cases, memory allocation and location significantly impact
the query processing performance of a DBMS [11, 12].
Especially, the combined storage of data and metadata in
current memory allocators might be inefficient [13].

In this work, we study the impact of metadata separation
on disaggregated in-memory DBMSs in terms of (1) query
performance, (2) the duration of migrating data from CPU-
local main memory to DM (tiering), and (3) compare perfor-
mance impact for data stored on a remote NUMA node. As an

exemplary memory allocator, we use jemalloc, which is widely
used, e. g., for data-intensive applications (cf. [11, 12]) and in
well-known DBMSs, such as Hyrise [14], Umbra [12], and
RocksDB [13]. As DBMS, we use the open-source, columnar,
in-memory system Hyrise. We created a new tiering plugin,
allowing for flexible assignment of memory resources via
jemalloc to migrate application data and metadata from local
memory to secondary memory tiers, such as SSD and a DM
appliance without changing the DBMS.

In particular, we investigate whether co-location of a mem-
ory allocator’s application data and metadata is a performance
bottleneck and whether its separation can improve the perfor-
mance in a DM scenario. We make the following contributions:

• Tiering Concept. We present an approach that allows
separating jemalloc’s metadata from the tiered application
data on block-level devices.

• Tiering Prototype. We extend an existing IMDB and
enable efficient tiering with minimal code changes using
C++’s polymorphic allocators and memory resources.

• Metadata Separation Evaluation. We evaluate the per-
formance of different separation strategies for analytical
database workloads (TPC-H, TPC-DS) on (i) block-level
disaggregated memory and (ii) remote NUMA nodes.

In summary, we identified that co-locating an allocator’s
metadata and application data neither constitutes a perfor-
mance bottleneck on external storage, such as DM and SSDs,
nor shows significant performance improvements. While the
NUMA results suggest slight performance improvements, the
biggest effects were found for specific allocator and user-space
page handler configurations. These insights are valuable when
integrating DM into applications, such as IMDBs.

II. BACKGROUND AND RELATED WORK

This section introduces the jemalloc memory allocator,
UMap, a user-space page management library used in our data
migration experiments, and discusses related work.

A. The jemalloc Memory Allocator
jemalloc is an open-source1 malloc(3) implementation

especially designed for scalable concurrency and fragmenta-
tion avoidance [15], which has experimentally been shown to

1jemalloc on GitHub, visited 3/22: https://github.com/jemalloc/jemalloc

Memory (Virtual Address Space)

Metadata

...

Slab

(class 2KiB)

Extent 0

Metadata

...

Large

(80KiB)

Metadata

...

Slab

(class 14KiB)

Extent E-1Extent 1

 page sizeFree regions

User-requested
memory allocations

(regions)

Region size page
size

Stores small regions of
a certain size class

Multiple of page size

Fig. 1: jemalloc’s memory layout

have the best performance for IMDBs [12]. jemalloc splits
memory into extents, which are aligned to a multiple of
the page size [16]. User-requested memory allocations are
called regions. Regions are categorized into small and large
size classes. Small classes are smaller than, and large classes
greater than or equal than four times the page size. One large
region is stored in one extent. Contiguous small regions of
the same size form a slab, which resides in a single extent.
jemalloc’s memory layout is exemplified in Figure 1.

With memory being split into extents, an arena manages
a set of extents. Arenas are self-contained memory alloca-
tors [15] (i. e., managing extents as mutual exclusive memory
regions) and for each arena, jemalloc allows to optionally
specify custom extent management functions, so-called extent
hooks [16]. Those extent hooks include, for example, functions
to allocate and deallocate memory for a given extent. jemalloc
uses multiple arenas to reduce lock contention [16].

B. UMap: User-Space Page Fault Handling

UMap is a user-space page management library based on the
userfaultdf mechanism [17]. It comes with its own page
cache and provides various configuration parameters, which
allow optimizing the page management to match the needs
of applications’ data access patterns. Such parameters are, for
example, the size of the internal page cache, the page size,
and the number of workers to fetch and evict pages (fillers
and evictors). For further details about UMap, we refer the
interested reader to the work of Peng et al. [17, 18].

C. Related Work

To the best of our knowledge, no work addresses meta-
data separation for in-memory databases with disaggregated
storage. Nevertheless, some papers cover one or two of these
aspects, which we discuss subsequently.

The memory allocator Makalu [19] ensures persistence of
metadata but does not cover the idea of separating metadata
from application data.

The memory allocator WAlloc [20] designed for non-volatile
random access memory (NVRAM) decouples metadata from
application data and stores volatile metadata in local DRAM.

This reduces the number of NVRAM writes and, thus, in-
creases the lifetime of NVRAM with its limited endurance.
Nevertheless, NVRAM is still located in the same machine
and not related to DM like in our work.

PAllocator [21] is a persistent allocator for storage class
memory (SCM). The allocator internally uses two allocators:
one for small, the other for big allocations. The latter uses hy-
brid SCM-DRAM trees to persist metadata. This tree persists
the leaf nodes as a linked list in SCM and stores inner nodes
in DRAM for performance reasons.

Zonouz et al. leveraged jemalloc’s internal separation of
metadata and application data to relocate the metadata to an-
other position of the process memory space for data protection
reasons [22]. Rather than optimizing data access latencies, they
store metadata inside a memory enclave to ensure that heap
metadata cannot be affected during heap buffer overflows.

III. SYSTEM OVERVIEW & ARCHITECTURE

This section introduces our prototypical extension of the
Hyrise in-memory database for DM, which we use in our
experimental evaluation.

A. Hyrise In-Memory Database

Hyrise is an open-source2, relational, in-memory DBMS
that can be non-invasively extended for our purpose through its
built-in plugin mechanism [14]. Data is stored in a columnar
layout and each table is horizontally partitioned into fixed-
sized chunks. The resulting column fractions stored in a chunk
are called segments. Data is inserted into the most recent
chunk, which is mutable. Using MVCC [23] concurrency
control, updates are executed by appending the new tuple and
invalidating the previous version (similar to deletes). Once a
chunk reaches its limit, the chunk is marked as immutable and
a new mutable chunk is appended to the table. The size of
chunks, usually between a few to dozens of megabytes, and
their immutability make chunks and their segments suitable
units for data movement and placement on slower storage tiers.

B. Experimental Disaggregated Memory

In our experiments, we run a Hyrise instance on a server that
is connected to storage and memory as depicted in Figure 2.
The server is connected to an NVMe-based SSD and to a Gen-
Z-based3, block-level DM appliance. Both the SSD and the
DM appliance are connected via PCIe Gen 3.0. The DM ap-
pliance consists of a Gen-Z bridge, a Gen-Z switch, and Gen-Z
memory modules. The server is connected to the bridge, which
presents the DM appliance’s memory as NVMe namespace
and translates NVMe I/O to Gen-Z memory transactions. The
bridge is connect to the switch, which connects the compute
node (i. e., server) with Gen-Z memory modules utilizing the
3.0” form factor per SFF-TA-1008 specification. Furthermore,
the server is attached to 256 GB DDR4 memory.

2Hyrise on GitHub, visited 3/22: https://git.io/hyrise
3GenZ specification, visited 3/22: https://genzconsortium.org/specifications/

PCIe 3.0

Server

Data Tiering
Plugin

Hyrise Database

SSD (1.6TB)

NVMe
(96GiB)

Segments

~80GB/s

SegmentsMetadata
DDR4 Memory

PCIe 3.0 x8

~8GB/sMemory

Allocator

NVMe

Disaggregated Memory

Segments

Memory ModulesG
en

Z
(B

rid
ge

,
Sw

itc
h)

Fig. 2: Hyrise setup with disaggregated memory

C
lie

nt Execution Engine

Storage (Chunks,
Segments, ...)Tr

an
sa

ct
io

n
H

an
dl

in
g

Database Core

Hyrise Database (Server)

Data Structure

 Polymorphic

Allocator (stateful)

jemalloc

UMap

(user space paging)

UMap Region

Memory
Allocation

Virtual Address
Space

<<byte-level>>

... Disaggregated
memory / storage

<<block level>> physical pages

Page Fault
Handling

SQL

Memory
Resource

Fig. 3: Hyrise tiering approach

C. Hyrise Tiering Approach

Hyrise uses C++17’s polymorphic allocators to decouple
the data storage and data access. Initially started as a pure
in-memory database, Hyrise’s codebase uses numerous data
structures of C++’s standard library (e.g., std::vector).
Using the C++ polymorphic allocator interface and polymor-
phic memory resources, data structures can be dynamically
placed on different memory tiers with only minimal changes to
the codebase (cf. [24]). Creating an SSD-resident integer vec-
tor can be accomplished with std::pmr::vector<int>(std::

pmr::polymorphic_allocator{&ssd_memory_resource}).
We extended Hyrise through a data tiering plugin, in

which we use memory resources to migrate segments between
storage tiers (e. g., disaggregated memory or SSD). Figure 3
depicts how we use Hyrise’s polymorphic allocators and
jemalloc to migrate segments to secondary storage tiers.

To memory-map files from secondary storage tiers, we
decided against mmap. Besides various short comings of mmap
(cf. [25]), the main issue for an IMDB with mmap is that
memory-mapped pages reside in the kernel’s page cache,
whose size cannot be restricted by the IMDB. This can be
prevented by using page fault handlers such as UMap, which
provides its own size-configurable page cache and performs
the page fault handling in the user-space. Hence, we added

Secondary Storage

Extent 0 Extent 1 Extent 2

File

Offset

(grows with extent

allocations)

Start
address

Next extent's
base address Mapped virtual

memory (UMap)

File per memory
resource

Fig. 4: jemalloc memory resource

UMap (cf. Section II-B) to Hyrise for our tiering approach.

D. Separating Metadata and Application Data

Since recently, jemalloc has allowed handling metadata
allocations differently than application data allocations [26].
For an arena (cf. Section II-A), this allows controlling whether
custom extent hooks are used for metadata allocations. This
feature is in an experimental state and not fully exposed to the
public API. To leverage it, we implemented a custom extent
hook and use a jemalloc-internal data structure in the tiering
plugin of Hyrise. Our extension allows to store metadata on
DRAM while application data (e. g., segments) can be stored
on different devices, such as DM and SSD (cf. Figure 2).

E. Segment Migration and Extent Allocation

Three steps are executed to migrate a segment to another
storage tier: (i) the segment is copied from one memory
resource to the destination resource by calling the segment’s
data structures’ copy constructors with a polymorphic allocator
as the allocator parameter (cf. Section III-C), (ii) the pointer
within the segment’s chunk is atomically switched, and (iii) the
previous allocation is freed. The memory resource internally
uses jemalloc calls for memory allocations. Therefore, we
refer to it as jemalloc memory resource. Its initialization maps
a large memory address range to a file stored on the DM
using UMap. Furthermore, it creates a new jemalloc arena,
for which metadata separation can be controlled as explained
in Section III-D. For this arena, we specify a custom extent
allocation function via extent hooks (cf. Section II-A). All
extents allocated with this function are allocated linearly in
a file-backed address range as shown in Figure 4. The first
extent’s base address equals the mapped address range’s start
address. Each extent allocation increases an offset. The sum of
the start address and the offset is the next extent allocation’s
base address. For region allocations (cf. Section II-A), the
jemalloc memory resource uses mallocx [16].

IV. EXPERIMENTAL EVALUATION

With the described tiering approach, we experimentally
evaluated the performance impact of metadata separation in
jemalloc, in the following two scenarios: (i) both metadata
and application data is stored on the block-level device (i. e.,
DM or SSD); (ii) metadata is stored on CPU-local DRAM
whereas application data is stored on the block-level device
(DM or SSD). To study jemalloc isolated from UMap and our
disaggregated memory appliance for scenarios (i) and (ii), we
replaced both by a remote NUMA node.

A. Setup

The experiments were executed on a machine with two
CPUs (2.5 GHz base, 3.1 GHz turbo), on which each socket
serves as a NUMA node. Each NUMA node has 128 GiB of
DDR4-3200 memory, distributed over two DIMMs. In addition
to the local DRAM, the machine is connected to the DM
appliance described in Section III-B. The system runs on
Ubuntu 20.04 with kernel version 5.11.0-16-generic. We used
GCC 9.3, UMap version 2.1.0 (Git commit a06f1a3), and
jemalloc version 5.2.1 (Git commit 011449f1).

For experiments on the extended Hyrise database, we use
the analytical database benchmarks TPC-H and TPC-DS4 with
no further compression for the datasets. For both benchmarks,
a scale factor (SF) can be specified, which approximately
determines the size of the generated data in GB. When data is
stored on DM or SSD, Hyrise generates segments and migrates
all of them to the target device (cf. Section III-E).

Except for the number of UMap evictors and fillers, we used
UMap’s default configuration. Since optimizing the UMap
configuration is not focus of this work, we set the number
of fillers and evictors to one each, and executed the bench-
marks single-threaded to reduce potential noise introduced by
multiple running threads. Initial experiments showed that the
overhead of UMap with a page cache large enough so that
all data is stored in that DRAM-local page cache is marginal:
with UMap, query latencies in Hyrise are increased by only
about one percent according to the geometric mean for the
TPC-H and TPC-DS benchmarks with scale factor 8.

B. Disabling jemalloc’s Retain Option

By default on 64-bit Linux systems, jemalloc does not dis-
card unused virtual memory but retains it for later reuse [16].
This, however, results in using more virtual memory address
space. With the DM’s capacity of 96 GiB and using the extent
allocation method (cf. Section III-E), we exceeded the file-
backed memory address range with (TPC-H/DS) scale factors
larger than one. This can be avoided by disabling the retain
option as shown in the following experiment.
Setup. We performed the TPC-H benchmark with scale factor
one for various UMap page sizes. The UMap page cache was
set to 20% of the SF’s data size (i. e., 200 MB). The set of
queries was executed over 20 minutes in random order. For the
DRAM-only baseline, we enabled the retain option (default).
Results. Figure 5 shows the resulting runtime with and without
retaining unused memory with data segments stored on DM
normalized to the runtime of segments stored on DRAM.
Besides avoiding virtual memory exhaustion, it can be seen
that disabling jemalloc’s retain option also improves the run-
time, except for the page size of 4 KiB. Furthermore, the
figure shows that a page size of 256 KiB led to the lowest
total runtimes. We also made this observation with SF 10
(not shown). It can be seen that the runtime increases with
decreasing and increasing page sizes. This could be explained
due to higher page load events for smaller page sizes and

4As of March 2022, Hyrise supports 47 TPC-DS queries.

4 8 16 32 64 128 256 512 1024 2048 4096
Page size in KiB

0

10

20

30

40

Ru
nt

im
e

fa
ct

or
(b

as
el

in
e:

 d
at

a
in

 lo
ca

l D
RA

M
)

Retain disabled
Retain enabled

Fig. 5: Normalized total runtime of the TPC-H benchmark

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Allocated memory in GB

TPC-H

TPC-DS

Ex
te

nt
 a

llo
ca

tio
n

ty
pe

20.518

6.906

4.178

0.216

0.086

0.007

large (application data)
small (application data)
base (metadata)

Fig. 6: Allocated memory during segment migration

higher data shipment for higher page sizes. For the TPC-DS
benchmark with SF one, a page size of 32 KiB led to the
lowest runtimes. In the subsequent experiments, we uniformly
used a page size of 256 KiB for comparability reasons and
disabled jemalloc’s retain option if not mentioned otherwise.
Findings. (1) Using our custom extent allocation strategy (cf.
Section III-E), disabling jemalloc’s retain option reduces the
allocated virtual memory space. (2) Except for a UMap page
size of 4 KiB, disabling jemalloc’s retain option reduces the
benchmark’s total runtime. (3) UMap configurations such as
page sizes are workload-specific (e. g., TPC-H) and have a
large impact on the overall runtime.

C. Metadata Memory Footprint

We assume that the more data accessed and stored on
a device with increased access latencies compared to CPU-
local DRAM, the higher the potential to achieve runtime
improvements by storing that data on CPU-local DRAM.
Therefore, we investigated the footprint of memory allocated
for metadata and application data.
Setup. For each arena, jemalloc provides statistics about the
size of small, large, and base allocations [16]. The latter is the
size of allocations performed by the base allocator, from which
metadata of an arena is allocated. Therefore, base extents,
which are extents allocated by the base allocator, are used to
store jemalloc’s metadata. Using jemalloc’s allocation statis-
tics, we measured the size of application data and metadata
allocated during the segment migration for the TPC-H and
TPC-DS benchmarks with SF 8. For this, we measured before
and after the migration and calculated the differences, which
are shown in Figure 6.
Results. Figure 6 shows that the base extent allocations consti-
tute only a marginal part of the allocated memory. Compared
to the small and large extents, metadata only takes up a share

TPC-DS
(SSD)

TPC-DS
(DM)

TPC-H
(SSD)

TPC-H
(DM)

Benchmark

2

1

0

1

2
Re

la
tiv

e
ru

nt
im

e
ch

an
ge

 in
 %

(a) Query processing

TPC-DS TPC-H
Benchmark

1

0

1

2

Re
la

tiv
e

ru
nt

im
e

ch
an

ge
 in

 %

Scale
Factors

1
2
4
8

(b) Data migration

Fig. 7: Relative runtime change comparisons

of 0.35% in the TPC-H and 0.1% in the TPC-DS benchmark.
Note, the allocated application data for the TPC-H benchmark
is higher than the approximately eight gigabytes specified by
the scale factor due to the benchmark’s string dominance [27]
and C++’s memory consumption for std::string.
Finding. (4) Compared to the application data allocated for the
data migration during the TPC-H and TPC-DS benchmarks,
metadata takes up a marginal share of less than one percent.

D. Analytical Read-Only Database Workloads

This experiment evaluated the impact of metadata separation
on query runtimes for read-only, analytical workloads.
Setup. We performed the TPC-H and TPC-DS benchmarks
and compared the query performance with data stored on the
target device with and without metadata separation. For each
experiment, the corresponding benchmark was executed three
times. In a single execution, each query was executed five
times with five previous warmup runs, resulting in 15 mea-
sured query runs. The queries were executed in a sequential
order (i. e., all runs of a query were finished before the next
query was started). The calculated total benchmark runtime is
the sum of each query’s mean execution times.
Results. For the TPC-H and TPC-DS benchmarks with seg-
ments stored on the DM and the SSD, respectively, Figure 7a
shows the relative performance change achieved with metadata
separation compared to the resulting runtimes without meta-
data separation. It can be seen that the performance changes
for all benchmark setups is between -2% and +2%.
Findings. (5) Separating metadata while using the jemalloc
memory resource on the DM appliance or SSD does not result
in consistent latency improvements for the TPC-H and TPC-
DS workloads with latency changes between -2% and +2%.

E. Migration Time

In this experiment, we focus on write-intensive workloads in
the form of data segment migrations through extended TPC-H
and TPC-DS benchmarks (cf. Section III-E).
Setup. We measured the time required for the segment migra-
tion for the TPC-H and TPC-DS benchmarks for the SFs 1,
2, 4, and 8. For all configurations, the migration was executed
ten times and the arithmetic means were used to calculate the
runtime changes.

False True

40

45

50

55

60

Large Allocations
(3 million)

False True
18.5

19.0

19.5

20.0

20.5

21.0

Small Allocations
(10 million)

0.0 0.2 0.4 0.6 0.8 1.0
Metadata separation

0.0

0.2

0.4

0.6

0.8

1.0

Ru
nt

im
e

in
 s

Fig. 8: Runtime for 3 M large and 10 M small allocations.

Results. Figure 7b shows the resulting runtime change with
metadata separation compared to the runtime achieved without
separation for different scale factors. Both runtime improve-
ments and degradations can be seen for different bench-
mark configurations. The runtime changes between -1.8% and
+2.8% (lower is better).
Finding. (6) Using the jemalloc memory resource for migrating
data to the DM appliance, the separation of metadata shows
no consistent runtime improvements in our experiments.

F. UMap Allocation Micro Benchmark

To better understand the impact of metadata separation
for write-heavy workloads, we ran sequences of memory
allocations as micro-benchmarks.
Setup. We performed two benchmarks, one with three million
sequential 16 KiB large allocations and ten million small
one KiB allocations. We used the jemalloc memory resource
(cf. Section III-E) with the DM appliance as target device to
perform the memory allocations.

The benchmarks were performed with and without the
metadata separation. Each benchmark setup was executed 20
times with jemalloc’s retain option enabled, a UMap page size
of 256 KiB and a UMap page cache size of 10 MiB. This cache
size ensured that pages are evicted and, thus, stored on DM.
Results. Figure 8 shows the resulting runtime change with
metadata separation compared to the runtime achieved without
metadata separation. On a mean basis and compared to the
runtime achieved without metadata separation, the runtime
increases by 0.8% for small allocations and 0.2% for large
allocations with separated metadata.
Finding. (7) Using the jemalloc memory resource for se-
quential data allocations, the separation of metadata slightly
increases the runtime by less than one percent.

G. NUMA Allocation Micro Benchmark

To study application data placements on memory with
higher latencies but without user-space page handling through
UMap, we stored data on a remote NUMA node. Note, the
latency of a remote NUMA node is not comparable to that of
DM devices as the distances can be different. Furthermore, the
DM protocol, e.g., Gen-Z, adds additional latency. With this
abstraction, we reduce our experiment’s software and hardware
stack and, thus, the potential noise.

False True

94

95

96

97

98
Large Allocations

False True
44.25

44.50

44.75

45.00

45.25

45.50
Small Allocations

0.0 0.2 0.4 0.6 0.8 1.0
Metadata separation

0.0

0.2

0.4

0.6

0.8

1.0

Ru
nt

im
e

in
 s

Fig. 9: Runtime for 10 million memory allocations.

Setup. In this experiment, we allocated data on a remote
NUMA node with and without metadata separation. Using
Linux’s numa(3) library (libnuma) [28], we bound the
benchmark process and its memory allocations to node one.
Similar to the previous experiments, we used a polymorphic
memory resource and a custom extent allocation hook to
migrate data to a remote node (i. e., node zero). If metadata
and application data are separated, the custom extent hook is
only used for metadata allocations. When data is not separated,
the hook is used for both types of data. Measurements with
the Memory Latency Checker [29] showed an idle latency
of 88 nanoseconds for a random access from node one to
node one and 150 nanoseconds from node one to node zero.
We enabled jemalloc’s retain option (i. e., jemalloc’s default
setting) for this benchmark since we did not encounter virtual
memory capacity problems in these micro-benchmarks as in
the TPC benchmarks with the jemalloc memory resource (cf.
Section IV-B). We performed two benchmarks (each 20 times),
each with ten million sequential large and small allocations,
respectively. In one benchmark, we performed large alloca-
tions, in the other benchmark, we performed small allocations
(cf. Section II-A). We generated uniformly distributed random
values between one byte and 16KiB, as well as 16KiB and
256KiB for small and large allocations, respectively.
Results. Figure 9 shows the resulting runtime change with
metadata separation compared to the runtime achieved without
metadata separation. On a mean basis, the runtime can be
marginally reduced by 0.13% and 0.24% for small and large
allocations, respectively.
Finding. (8) The required runtime for metadata allocations can
be slightly reduced by less than one percent in a NUMA setup.

H. Discussion

The experimental evaluation showed insightful findings,
which we will briefly discuss subsequently. The findings are
divided into the aspects (i) impact of configurations, (ii) impact
of metadata separation on block devices, e. g., DM and SSD,
with the proposed tiering approach (cf. Section III-E), and
(iii) impact of metadata separation on NUMA nodes.
(i) jemalloc and UMap Configurations. jemalloc’s retain op-
tion has significant impact on the virtual memory space
consumption (cf. Finding (1)) as well as processing latency
(cf. Finding (2)). The UMap page size has to be selected

workload-specific due to its huge impact on query runtime
(cf. Finding (3)).
(ii) Metadata Separation on Block Devices. In jemalloc, meta-
data has a marginal footprint compared to the stored appli-
cation data (cf. Finding (4)). The benchmarks on analytical
database workloads and the more write-heavy data migration
showed no significant improvement or decay in terms of
performance on external storage such as DM and SSDs,
when used via the proposed tiering approach utilizing UMap
(cf. Findings (5)–(6)). Those small performance changes can
probably be considered noise, as even the same binary of a
complex system (such as Hyrise) can vary in performance
by up to 5% [30]. Moreover, through our micro-benchmarks
on sequential memory allocations, we observed a marginal
performance degradation for metadata separation (cf. Finding
(7)). However, our experiments did not suggest a cause for the
increased runtime, which requires dedicated investigations in
future work.
(iii) Metadata Separation on NUMA Nodes. When placing
application data on remote NUMA nodes, instead of external
block-based devices (i. e., UMap is not used), our experiments
showed a slight performance improvement for metadata sepa-
ration (cf. Finding (8)).

V. CONCLUSION

In this work, we studied the performance impact of sepa-
rating memory allocator metadata from application data, by
the example of jemalloc, for the Hyrise in-memory database
on disaggregated memory and SSD as secondary memory
tiers. The results on read-heavy database workloads (i. e., TPC-
H, TPC-DS), write-heavy data migrations, as well as micro-
benchmarks on sequential memory allocations show no sig-
nificant performance impact (cf. Findings (4)–(7)).Similarly,
our experiments on remote NUMA nodes showed only slight
performance improvements for separate metadata (cf. Findings
(8)). However, we found that the specific jemalloc configura-
tions (cf. Findings (1)–(2)) as well as UMap parameters, e. g.,
the page size, buffer size, and the number of workers, used for
configuring the behavior of the user-space page fault handler
UMap, is crucial (cf. Finding (3)).

To better understand user-space mapping concepts such
as UMap, we will study their configuration for database
workloads and their interplay with memory allocators in
future work. Moreover, we will explore more sophisticated
migration approaches for temporary data and the impact of
mixed workloads with random (de-)allocations in the context
of allocator metadata separation.

ACKNOWLEDGMENT

We thank Seagate Technology LLC for their contributions
and support of our disaggregated memory experiments and
projects. We are indebted to Markus Dreseler for his work
on memory tiering in Hyrise, on which our work is built. We
thank Felix Eberhardt and Andreas Grapentin for encouraging
us to investigate this topic and for insightful discussions.

REFERENCES

[1] D. Korolija, D. Koutsoukos, K. Keeton, K. Taranov, D. S. Milojicic, and
G. Alonso, “Farview: Disaggregated memory with operator off-loading
for database engines,” in CIDR, 2022.

[2] Q. Zhang, Y. Cai, S. Angel, V. Liu, A. Chen, and B. T. Loo, “Rethinking
data management systems for disaggregated data centers,” in CIDR,
2020.

[3] Y. Zhang, C. Ruan, C. Li, J. Yang, W. Cao, F. Li, B. Wang, J. Fang,
Y. Wang, J. Huo, and C. Bi, “Towards cost-effective and elastic cloud
database deployment via memory disaggregation,” Proc. VLDB Endow.,
vol. 14, no. 10, pp. 1900–1912, 2021.

[4] M. Bielski, C. Pinto, D. Raho, and R. Pacalet, “Survey on mem-
ory and devices disaggregation solutions for HPC systems,” in
CSE/EUC/DCABES, 2016, pp. 197–204.

[5] I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A. Maruf, O. Mutlu,
and A. Kolli, “Rethinking software runtimes for disaggregated memory,”
in ASPLOS. ACM, 2021, pp. 79–92.

[6] S. Lee, Y. Yu, Y. Tang, A. Khandelwal, L. Zhong, and A. Bhattachar-
jee, “MIND: in-network memory management for disaggregated data
centers,” in SOSP. ACM, 2021, pp. 488–504.

[7] P. Zuo, J. Sun, L. Yang, S. Zhang, and Y. Hua, “One-sided RDMA-
conscious extendible hashing for disaggregated memory,” in ATC.
USENIX Association, 2021, pp. 15–29.

[8] S. Idreos, V. Leis, K.-U. Sattler, and M. Seltzer, “Data structures for
modern memory and storage hierarchies (Dagstuhl Seminar 21283),” in
Dagstuhl Reports, vol. 11, no. 6. Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2021.

[9] P. S. Rao and G. Porter, “Is memory disaggregation feasible?: A case
study with Spark SQL,” in ANCS. ACM, 2016, pp. 75–80.

[10] N. Pemberton, “Exploring the disaggregated memory interface design
space,” in Workshop on Resource Disaggregation (WORD), 2019.

[11] D. Durner, V. Leis, and T. Neumann, “On the impact of memory
allocation on high-performance query processing,” in DaMoN, 2019,
pp. 21:1–21:3.

[12] D. Durner, V. Leis, and T. Neumann, “Experimental study of memory
allocation for high-performance query processing,” in ADMS@VLDB,
2019, pp. 1–9.

[13] S. Dong, A. Kryczka, Y. Jin, and M. Stumm, “RocksDB: Evolution of
development priorities in a key-value store serving large-scale applica-
tions,” ACM Trans. Storage, vol. 17, no. 4, pp. 26:1–26:32, 2021.

[14] M. Dreseler, J. Kossmann, M. Boissier, S. Klauck, M. Uflacker, and
H. Plattner, “Hyrise re-engineered: An extensible database system for
research in relational in-memory data management,” in EDBT. Open-
Proceedings.org, 2019, pp. 313–324.

[15] J. Evans, “Tick tock, malloc needs a clock,” in Applicative 2015, ser.
Applicative 2015. Association for Computing Machinery, 2015.

[16] jemalloc manual. http://jemalloc.net/jemalloc.3.html, Accessed: 2/2022.
[17] I. B. Peng, M. McFadden, E. W. Green, K. Iwabuchi, K. Wu, D. Li,

R. Pearce, and M. B. Gokhale, “UMap: Enabling application-driven
optimizations for page management,” in MCHPC@SC, 2019, pp. 71–78.

[18] I. B. Peng, M. Gokhale, K. Youssef, K. Iwabuchi, and R. Pearce, “En-
abling scalable and extensible memory-mapped datastores in userspace,”
IEEE Transactions on Parallel and Distributed Systems, 2021.

[19] K. Bhandari, D. R. Chakrabarti, and H. Boehm, “Makalu: fast recov-
erable allocation of non-volatile memory,” in OOPSLA, 2016, pp. 677–
694.

[20] S. Yu, N. Xiao, M. Deng, F. Liu, and W. Chen, “Redesign the memory
allocator for non-volatile main memory,” ACM J. Emerg. Technol.
Comput. Syst., vol. 13, no. 3, pp. 49:1–49:26, 2017.

[21] I. Oukid, D. Booss, A. Lespinasse, W. Lehner, T. Willhalm, and
G. Gomes, “Memory management techniques for large-scale persistent-
main-memory systems,” Proc. VLDB Endow., vol. 10, no. 11, pp. 1166–
1177, 2017.

[22] S. A. Zonouz, M. Zhang, P. Sun, L. Garcia, and X. Liu, “Dy-
namic memory protection via Intel SGX-supported heap allocation,” in
DASC/PiCom/DataCom/CyberSciTech. IEEE Computer Society, 2018,
pp. 608–617.

[23] D. Schwalb, M. Faust, J. Wust, M. Grund, and H. Plattner, “Efficient
transaction processing for hyrise in mixed workload environments,” in
IMDM, 2014, pp. 112–125.

[24] M. Dreseler, “Storing STL containers on NVM,” in Persistent Program-
ming in Real Life, PIRL, 2019.

[25] A. Crotty, V. Leis, and A. Pavlo, “Are you sure you want to use mmap
in your database management system?” in CIDR, 2022.

[26] jemalloc patch: metadata separation. https://github.com/jemalloc/
jemalloc/pull/2118, Accessed: 2/2022.

[27] L. Heinzl, B. Hurdelhey, M. Boissier, M. Perscheid, and H. Plattner,
“Evaluating lightweight integer compression algorithms in column-
oriented in-memory DBMS,” in ADMS@VLDB, 2021, pp. 26–36.

[28] libnuma manual. https://man7.org/linux/man-pages/man3/numa.3.html,
Accessed: 2/2022.

[29] Intel Memory Latency Checker. https://www.intel.com/content/www/
us/en/developer/articles/tool/intelr-memory-latency-checker.html,
Accessed: 2/2022.

[30] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney, “Producing
wrong data without doing anything obviously wrong!” in ASPLOS, 2009,
pp. 265–276.

