
Technische Berichte Nr. 119

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

k-Inductive Invariant
Checking for Graph
Transformation Systems
Johannes Dyck, Holger Giese

ISBN 978-3-86956-406-7
ISSN 1613-5652

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 119

Johannes Dyck | Holger Giese

k-Inductive Invariant Checking
for Graph Transformation Systems

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.dnb.de/ abrufbar.

Universitätsverlag Potsdam 2017
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.
Druck: docupoint GmbH Magdeburg

ISBN 978-3-86956-406-7

Zugleich online veröffentlicht auf dem Publikationsserver der Universität Potsdam:
URN urn:nbn:de:kobv:517-opus4-397044
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-397044

mailto:verlag@uni-potsdam.de

While offering significant expressive power, graph transformation systems of-
ten come with rather limited capabilities for automated analysis, particularly if
systems with many possible initial graphs and large or infinite state spaces are
concerned. One approach that tries to overcome these limitations is inductive in-
variant checking. However, the verification of inductive invariants often requires
extensive knowledge about the system in question and faces the approach-inherent
challenges of locality and lack of context.

To address that, this report discusses k-inductive invariant checking for graph
transformation systems as a generalization of inductive invariants. The additional
context acquired by taking multiple (k) steps into account is the key difference to
inductive invariant checking and is often enough to establish the desired invariants
without requiring the iterative development of additional properties.

To analyze possibly infinite systems in a finite fashion, we introduce a symbolic
encoding for transformation traces using a restricted form of nested application
conditions. As its central contribution, this report then presents a formal approach
and algorithm to verify graph constraints as k-inductive invariants. We prove
the approach’s correctness and demonstrate its applicability by means of several
examples evaluated with a prototypical implementation of our algorithm.

5

1. Introduction

1. Introduction

The expressive power of graph transformation systems often leads to rather limited
capabilities for automated analysis, particularly if systems with many initial graphs
and large or infinite state spaces are concerned. Model checkers can typically only
be employed for the analysis of graph transformation systems with a finite state
space of moderate size (e.g., [9, 14]). Other fully automatic approaches that can
handle infinite state spaces by abstraction [2, 3, 11, 12, 16] are limited in their
expressiveness, supporting only limited forms of negative application conditions
at most. In some cases, additional limitations concerning the graphs of the state
space apply (cf. [2]). In contrast to that, the SeekSat/ProCon tool [10, 13] is able
to prove correctness of graph programs with respect to pre- and postconditions
specified as nested graph constraints; however, it may require too expensive (cf. [5])
or infeasible computations.

One direction that tries to overcome these limitations is the automated verifica-
tion of inductive invariants (cf. our own work [1, 5]), where we analyze the capability
of system behavior (captured by a number of graph rules) to preserve or violate
desired properties (captured by graph constraints) as inductive invariants. How-
ever, the technique faces the approach-inherent challenges of locality and lack of
context information. The analysis of single transformation steps does not take the
broader context, prior rule applications, or the state space into account, which is
both the primary objective and a main challenge of the approach. Hence, in order
to develop successfully verifiable inductive invariants (if the system is, indeed,
safe) or establish meaningful counterexamples (if the system is not), additional
knowledge encoded by additional properties may be required and often has to be
accumulated by an iterative and manual procedure.

Therefore, this report applies the notion of k-induction [15] to graph transfor-
mation systems by extending our previous work in [1] and [5]. In particular, k-
inductive invariants are a generalization of inductive invariants; conversely, the
latter are a special case of the former for k = 1. Our approach takes paths of length
k into account [15]: a k-inductive invariant is a property whose validity in a path
of length k − 1 implies its validity in the subsequent step. By analyzing system
behavior over multiple transformation steps, more context information is available
and the resulting analysis will be more precise. While the idea of k-induction has
been successfully employed in the field of software verification [4], to the best
of our knowledge, no approach to automatically check k-inductive invariants for
graph transformation systems has been developed so far.

In order to analyze possibly infinite systems in a finite fashion, we first intro-
duce a symbolic encoding for transformation traces. Our main contribution is a
formal approach and algorithm to verify a restricted form of graph constraints as

7

k-Inductive Invariant Checking for Graph Transformation Systems

k-inductive invariants. We prove the approach’s correctness and demonstrate its
applicability by means of several examples evaluated with a prototypical imple-
mentation of our algorithm. While our technique takes care of the inductive step
(verifying the k-inductive invariant), the base of induction for traces of length k − 1
from an initial graph is established with the model checker GROOVE [9].

This report is organized as follows: In Section 2, we reintroduce the necessary
foundations and our formal model. Section 3 defines our notion of k-inductive in-
variants and the symbolic encoding. We present our formal approach to k-inductive
invariant checking in Section 4. In Section 5, we evaluate our algorithm and ap-
proach, before summarizing our results in Section 6. Omitted constructions and
proofs can be found in the respective sources. More details to our examples can be
found in Appendix A.

This report is an extended version of [6] and provides proofs to our lemmas
and theorems and additional details to our example systems and evaluation. The
numbering of definitions, theorems, examples, and lemmas follows the numbering
in [6]; any such elements added in this report are not numbered.

8

2. Prerequisites

2. Prerequisites

This section cites formal foundations [7, 8, 10], introduces our running example,
and reintroduces the restricted formal model employed in our approach and tool.

2.1. Foundations

The formalism we use (see [7] and our previous work [5]) considers a graph to
consist of node and edge sets V and E and source and target functions s, t ∶ E → V
assigning source and target nodes to edges. A graph morphism f ∶ G1 → G2 for
graphs Gi = (Vi, Ei, si, ti) with i = 1, 2 consists of two functions mapping nodes and
edges f = (fV , fE) with fV ∶ V1 → V2 and fE ∶ E1 → E2 that preserve source and target
functions. Injective graph morphisms (or monomorphisms) are graph morphisms
with injective mapping functions and are denoted as f ∶ G1 ↪ G2. A typed graph G
is typed over a special type graph TG by a typing morphism type ∶ G → TG; typed
graph morphisms must preserve the typing morphism.

Additionally, we require (nested) application conditions [8] and (nested) graph
constraints [10] to describe more complex conditions over morphisms and graphs,
respectively. Here, an application condition (graph constraint) can also be inter-
preted as describing the set of morphisms (graphs) that satisfy it.

Application conditions (or nested application conditions) are inductively defined as
in [8]: (1) for every graph P, true is an application condition over P; (2) for every
morphism a ∶ P ↪ C and every application condition ac over C, ∃(a, ac) is an
application condition over P. Application conditions can also be extended over
boolean combinations: (3) for application conditions ac, aci over P (for all index sets
I), ¬ac and ⋀i∈I aci are application conditions over P.

Satisfiability of application conditions is inductively defined as in [8]: (1) every
morphism satisfies true; (2) a morphism g ∶ P → G satisfies ∃(a, ac) over P with
a ∶ P → C if there exists an injective q ∶ C ↪ G such that q ○ a = g and q satisfies ac.
Finally, (3) a morphism g ∶ P → G satisfies ¬ac over P if g does not satisfy ac and g
satisfies ⋀i∈I aci over P if g satisfies each aci (i ∈ I).

We write g ⊧ ac to denote that the morphism g satisfies ac. Two conditions ac
and ac′ are equivalent (ac ≡ ac′), if for all morphisms g ∶ P → G, g ⊧ ac if and only if
g ⊧ ac′. Also, ∃p and ∀(p, ac) abbreviate ∃(p, true) and ¬∃(p,¬ac).

A graph constraint [10] is a condition over the empty graph ∅. A graph G then
satisfies such a condition if the initial morphism iG ∶ ∅ ↪ G satisfies it.

We use graph rules to describe how graphs can be transformed by rule appli-
cations. As defined in [8], a plain rule p = (L ↩ K ↪ R) consists of two injective
morphisms K ↪ L and K ↪ R. L and R are called left- and right-hand side of

9

k-Inductive Invariant Checking for Graph Transformation Systems

Track
next

Shuttle
isAt

slow fast

brake acc

(a) Type graph for variants
1 and 2

t1:Track

s:Shuttle

isAt

fast

t2:Track

t3:Track

next

next ∃

(b) Forbidden graph con-
straint F of variants 1, 2

slow acc

fast brake

s2a

a2f

f2f
f2b

a2b b2s
s2s

(c) Mode transi-
tions

t1:Track t2:Track
next

s:Shuttle

isAt --
isAt ++

slow

(d) Graph rule s2s of
variants 1 and 2

t1:Track t2:Track
next

s:Shuttle
isAt -- isAt ++

acc ++ -- slow

(e) Graph rule s2a of vari-
ant 1 without NAC

t1:Track t2:Track
next

s:Shuttle
isAt -- isAt ++

acc ++ -- slow

t3:Track

t4:Track

next

next
¬∃

(f) Graph rule s2a of variant 2 with
NAC for switch ahead

Figure 1: Example type graph, graph constraint, mode transitions, and rules

p, respectively. A rule b = ⟨p, acL, acR⟩ consists of a plain rule p and a left (right)
application condition acL (acR) over L (R).

L

(1) (2)

acL▷

m
��

K � r
//?

l
oo

��

R◁acR

m′
��

G D � r′ //?l′oo H

A transformation (also [8]) consists of two
pushouts (1) and (2) such that m ⊧ acL and m′ ⊧ acR.
We write G ⇒b,m,m′ H and say that m ∶ L → G
(m′ ∶ R → H) is the match (comatch) of b in G (in
H). We write G ⇒b H to express that there exist m and m′ such that G ⇒b,m,m′ H.
For a set of rules R, G ⇒R H expresses that there exist b ∈ R and m, m′ such that
G⇒b,m,m′ H. Also, given a rule b = ⟨(L ↩ K ↪ R), acL, acR⟩, its inverse rule is denoted
as b−1 and defined as b−1 = ⟨(R ↩ K ↪ L), acR, acL⟩.

Finally, a typed graph transformation system GTS = (R, TG) consists of a set of
graph rules R and a type graph TG [7].

Example 1 (variant 1; see Appendix A.1 for all details). Our running example is a
system where a single shuttle moves on a topology of connected tracks in different
speed modes (slow, acc(elerate), fast, and brake), which follow a certain protocol
(Fig. 1(c)). The system also has a forbidden property, which describes a shuttle
driving on a switch in mode fast. Fig. 1 shows our system modeled as a typed
graph transformation system: a type graph (Fig. 1(a)), the forbidden property as
a graph constraint (F, Fig. 1(b)), and seven rules modeling shuttle movement and
driving mode transitions. Two of those rules are depicted: s2s (slow to slow) in Fig.
1(d) and s2a (slow to acc(elerate)) in Fig. 1(e). All other rules (a2b, a2f, f2b, b2s, f2f)
function analogously and follow the scheme of s2a or s2s, respectively. Graph rules

10

2. Prerequisites

are pictured in a compact notation: deleted (created) elements are drawn in red
(green) and annotated −− (++); unchanged elements are in black.

This example variant exhibits unsafe behavior in the sense of possible violations
of our forbidden property, because rule s2a (Figure 1(e)) does not prevent the
shuttle from accelerating from slow to acc when there is a switch two tracks ahead.
Subsequent application of a2f could then lead to the violation. In our second variant,
this error has been fixed:

Example 2 (variant 2; see Appendix A.2 for all details). While the type graph,
forbidden property, and most rules remain the same, variant 2 modifies variant 1

by extending a number of rules with a left (negative) application condition: s2a as
in Figure 1(f), a2f and f2f in a similar fashion. The application condition is designed
to prevent the shuttle from acc(elerating) (and, for a2f and f2f, from driving fast) if a
switch is two tracks ahead.

Since k-inductive invariant checking considers paths of transformations instead of
single steps, we require the notion of transformation sequences. Given a set of rules
R = {bi}, graphs G0, Gi, and matches (comatches) mi (m′i) for i = 1, ..., k, a sequence of
transformations to R trans = G0 ⇒b1,m1,m′1

G1 ⇒b2,m2,m′2
...⇒bk ,mk ,m′k

Gk denotes subse-
quent graph transformations G0 ⇒b1,m1,m′1

G1, G1 ⇒b2,m2,m′2
G2, ..., Gk−1 ⇒bk ,mk ,m′k

Gk.
Also, G0 ⇒R G1 ⇒R ...⇒R Gk denotes G0 ⇒R G1, G1 ⇒R G2, ..., Gk−1 ⇒R Gk and is
abbreviated as G0 ⇒k

R Gk.
We say that a sequence of transformations trans = G0 ⇒b1 ... ⇒bk Gk leads to a

graph constraint F, if Gk ⊧ F.

Example 3 (transformation sequence). Fig. 2 shows a transformation sequence
trans = G0 ⇒b1,m1,m′1

G1 ⇒b2,m2,m′2
G2, where b1 and b2 are graph rules s2a and

a2f from Example 1. Matches and comatches are not depicted. Here, G2 contains
a shuttle on a switch driving in mode fast, which matches our forbidden property
F (Fig. 1(b)). Thus, we have G2 ⊧ F and trans leads to F. Note that trans would
not be a valid transformation sequence in variant 2 due to the additional negative
application condition preventing the application of s2a (b1).

tr5:Track

tr1:Track

tr3:Track tr5:Track
next next next

tr3:Track tr3:Track tr5:Track

isAt

acc

isAt

next

fast

isAt

next

slow

⇒ ⇒ tr2:Track tr4:Track

s:Shuttle

tr1:Track tr2:Track tr4:Track tr1:Track tr2:Track tr4:Track

s:Shuttle s:Shuttle

next

next next

next next next next

Figure 2: Example transformation sequence trans = G0 ⇒b1,m1,m′1
G1 ⇒b2,m2,m′2

G2

11

k-Inductive Invariant Checking for Graph Transformation Systems

Graph transformation systems appear in an executable form as part of (typed)
graph grammars. A typed graph grammar [7] GG = (GTS, G0) consists of a typed
graph transformation system GTS and an initial graph G0. We define the state
space of a graph grammar GG = (GTS, G0) with GTS = (R, TG) as REACH(GG) =
{G ∣ ∃n(G0 ⇒n

R G)}. We can also restrict the state space of a graph grammar by a
graph constraint C and define the state space under C of a graph grammar GG as
REACH(GG, C) = {G ∣ ∃n(G0 ⇒n

R G and all traversed graphs satisfy C)}.
In order to calculate the state space for a limited number of transformation steps,

we define REACHk(GG) = {G ∣ ∃n(0 ≤ n ≤ k ∧G0 ⇒n
R G)} and REACHk(GG, C) =

{G ∣ ∃n(0 ≤ n ≤ k ∧G0 ⇒n
R G and all traversed graphs satisfy C)}, respectively.

An important part of our algorithm is an adjusted form of the Shift-lemma and
-construction [8], which transfers nested application conditions over morphisms to
new context while preserving the condition’s satisfiability.

Construction (Shift-construction, adjusted from [8]). For each application condition
ac over a graph P and for each morphism b ∶ P → P′, Shift(b, ac) transforms ac via b into
an application condition over P’ such that, for each morphism n ∶ P′ ↪ H, it holds that
n ○ b ⊧ ac⇔ n ⊧ Shift(b, ac).

The Shift-construction is inductively defined as follows:
(1) Shift(b, true) = true,
(2) Shift(b,∃(a, ac)) = ⋁(a′,b′)∈F ∃(a′, Shift(b′, ac)) for a non-

empty set F of jointly surjective and injective morphism pairs
(a′, b′) such that b′ ○ a = a′ ○ b, and false, if F = ∅,

(3) Shift(b,¬ac) = ¬Shift(b, ac), and
(4) Shift(b,⋀i∈I aci) = ⋀i∈I Shift(b, aci).

P

=

b
//

a
��

P′�

a′
��

C � b′ //
◁ac

C′

Furthermore, we employ the L-lemma and -construction [8, 10], which transforms
application conditions over graph rules in reverse direction:

Construction (L-construction [8, 10]). For each rule b = ⟨L ↩ K ↪ R⟩ and each applica-
tion condition ac over R, L(b, ac) transforms ac via b into an application condition over L
such that, for each direct transformation G⇒b,m,m′ H, we have m ⊧ L(b, ac) ⇔ m′ ⊧ ac.

The L-construction is inductively defined:
(1) L(b, true) = true,
(2) L(b,∃(a, ac)) = ∃(a′, L(b′, ac)) if b′ = ⟨L′ ↩ K′ ↪ R′⟩

constructed via the pushouts (1) and (2) exists and
false, otherwise,

(3) L(b,¬ac) = ¬L(b, ac), and
(4) L(b,⋀i∈I aci) = ⋀i∈I L(b, aci).

L

(2)a′
��

K

(1)

�

r
//?

l
oo

��

R

a
��

L′ K′ � r′ //?l′oo
◁

L(b ′, ac)

R′◁ac

Both Shift and L produce finite results by construction.

12

2. Prerequisites

2.2. Formal Model

As described in [5], our verification approach and tool impose certain restrictions
on rules and properties in order to strike a balance between expressiveness and
computational complexity while ensuring termination. In the following, we discuss
those restrictions, starting with composed negative application conditions as a
restricted form of nested application conditions.

Definition 4 (composed negative application condition [5]). A composed negative
application condition is an application condition of the form ac = true or ac = ⋀i∈I ¬∃ai
for monomorphisms ai. An individual condition ¬∃ai is called negative application con-
dition.

Our properties to be verified as k-inductive invariants are described by so-called
forbidden patterns, which follow a restricted form of graph constraints.

Definition 5 (pattern [5]). A pattern is a graph constraint of the form F = ∃(iP ∶ ∅ ↪
P, acP), with P being a graph and acP a composed negative application condition over P.
A composed forbidden pattern is a graph constraint of the form F = ⋀i∈I ¬Fi for some
index set I and patterns Fi. Patterns Fi occurring in a composed forbidden pattern are also
called forbidden patterns.

Besides forbidden patterns, we allow our systems to be equipped with (composed)
assumed forbidden patterns, which are similar in form to (composed) forbidden
patterns and which will be explained below (see Example 8).

In order to compare patterns, we reintroduce the notion of pattern implication
in Definition 6 and our technique to perform implication checks in the theorem
following below. More general approaches discussing implication of (unrestricted)
graph constraints can be found in [10, 13].

Definition 6 (implication of patterns [5]). Let C and C′ be two patterns. C′ implies C,
denoted C′ ⊧ C, if, for all graphs G, G ⊧ C′ implies G ⊧ C.

Theorem (implication of patterns, adjusted from [5]). Let C = ∃(iP ∶ ∅ ↪ P, ac) and
C′ = ∃(iP′ ∶ ∅ ↪ P′, ac′) be two patterns, with composed negative application conditions
ac = ⋀i∈I ¬∃(xi ∶ P ↪ Xi) and ac′ = ⋀j∈J ¬∃(x′j ∶ P′ ↪ X′j) for index sets I, J. Then C′ ⊧ C,
if the following condition is fulfilled:

1’. There exists a j ∈ J such that x′j is an isomorphism or
1. There exists a monomorphism m ∶ P ↪ P′ such that:
2. With Shift(m,¬∃xi) = ⋀k∈Ki ¬∃(x

′′
ik ∶ P′ ↪ X′′ik) for a

number of corresponding index sets Ki, for each xi it holds
that ∀k(k ∈ Ki ⇒ ∃j∃y(y ∶ X′j ↪ X′′ik ∧ x′′ik = y ○ x′j)).

P � m
//�

xi

��

P′�

x′j
��

q

x′′ik

��
Xi
�

m′ik
// X′′ik

=
X′j?y

oo

13

k-Inductive Invariant Checking for Graph Transformation Systems

Proof. Assuming that the above conditions hold, we have to show ∀G(G ⊧ C′ ⇒
G ⊧ C).

Assuming condition (1’) holds, consider an arbitrary graph G′ with g′ ∶ P′ ↪ G′

and thus, G′ ⊧ ∃iP′ . Since x′j (for the specific j) is an isomorphism, there is a
q′ ∶ X′j ↪ G′ with q′ ○ x′j = g′. Hence, we have g′ /⊧ ∃x′j and, more importantly,
G′¬ ⊧ C′. Thus, there does not exist a graph G′ with G′ ⊧ C′ and consequently,
∀G(G ⊧ C′ ⇒ G ⊧ C) is trivially true.

Assuming condition (1’) does not hold, consider an arbitrary graph G with
G ⊧ C′. By definition of satisfaction, we have iG ⊧ C′, implying the existence of
a monomorphism g′ ∶ P′ ↪ G with g′ ⊧ ac′. By assumption, there is a monomor-
phism m ∶ P ↪ P′. Then there exists a morphism g ∶ P → G with g = g′ ○m. Since
monomorphisms are closed under composition, g is a monomorphism.

P �

g

=

� m //
�

x

��

P′
n

g′

}}

�

x′j

��

t

x′′

��

= G =

X � //
/

q
??

X′′
?

q′′

OO

X′j?y
oo

=

We will show g ⊧ ac by contradiction. Suppose g /⊧ ac, implying the existence
of a x = xi for some i ∈ I and a corresponding monomorphism q ∶ X ↪ G with
g = q ○ x, i.e. g /⊧ ¬∃x. For Shift(m,¬∃x) = ⋀k∈K ¬∃(x′′k ∶ P′ ↪ X′′k) for an index set
K depending on x, we have g′ ⊧ Shift(m,¬∃x) ⇔ g′ ○m ⊧ ¬∃(xi). Since g = g′ ○m,
we have g′ /⊧ Shift(m,¬∃x) and thus g′ /⊧ ⋀k∈K ¬∃(x′′k ∶ P′ ↪ X′′k). This implies
the existence of a x′′ = x′′k for some k ∈ K with g′ /⊧ ¬∃(x′′ ∶ P′ ↪ X′′). Then
there exists a monomorphism q′′ ∶ X′′ ↪ G with g′ = q′′ ○ x′′. By assumption,
there exists a monomorphism y ∶ X′j ↪ X′′ with x′′ = y ○ x′j for some j ∈ J. This
implies the existence of a monomorphism q′ ∶ X′j ↪ G with q′ = q′′ ○ y and thus
q′ ○ x′j = q′′ ○ y ○ x′j = q′′ ○ x′′ = g′. Thus, g′ /⊧ ¬∃x′j for the specific j ∈ J and therefore
g′ /⊧ ac′. This is a contradiction and hence, we have g ⊧ ac. With g ∶ P ↪ G and
g ⊧ ac, we get G ⊧ C, concluding the proof.

In summary, our formal model is subject to the restrictions listed below [5].
However, only the requirements concerned with left application conditions and
graph constraints actually result in a limitation of expressive power [7, 8, 10].

Morphisms in application conditions (see Section 2.1) must be injective.
Left application conditions (see Section 2.1) in rules are required to be composed

negative application conditions.

14

2. Prerequisites

Right application conditions (Section 2.1) in rules are required to be true.
Rule applicability (see Section 2.1) requires injective matches and comatches.
Graph constraints must be patterns (Definition 5).

Since k-inductive invariants are a generalization of inductive invariants, we also
reiterate the notion of inductive invariants as defined in our previous work.

Definition 7 (inductive invariant [5]). Given a typed graph transformation system
GTS = (R, TG) and graph constraints F and H, F is an inductive invariant for GTS
under H, if, for each rule b in R, it holds that:

∀G0, G1((G0 ⇒b G1) ⇒ ((G0 ⊧ F ∧G0 ⊧ H) ⇒ (G1 ⊧ F ∨G1 /⊧ H)))

An inductive invariant (here: F) is a property that, given its validity before rule
application (G0 ⊧ F), will also hold after rule application (G1 ⊧ F). In addition, we
allow our system to be equipped with an additional assumed graph constraint (H).
This constraint is assumed to be guaranteed by other means, such as additional ver-
ification steps. Typical examples include cardinality restrictions of the type graph,
which, in our tool, are not automatically enforced otherwise. As defined above, rule
applications involving violations of those properties are not considered as possible
violations of the inductive invariant (cf. G0 ⊧ H, G1 /⊧ H). In our approach, both
types of constraints are required to be composed (assumed) forbidden patterns.

Example 8. Fig. 3(a) depicts an assumed forbidden pattern H1 of our running exam-
ple implementing a cardinality constraint resulting from the physical impossibility
of a shuttle being located on two tracks. Fig. 3(b) (H2) describes an undesired track
topology. Both (and all other assumed forbidden patterns in our examples, see Ap-
pendix A) are negated and conjunctively joined in a composed assumed forbidden
pattern H = ¬H1 ∧¬H2 ∧ ...∧¬H15. H is an inductive invariant and can be separately
verified as such by our existing algorithm [5]. In contrast to that, the composed
forbidden pattern F = ¬F (Fig. 1(b)), which consists of just one forbidden pattern
F, is not an inductive invariant for either variant.

t1:Track t2:Track

s:Shuttle

∃ isAt isAt

(a) Cardinality restriction

t1:Track t2:Track

t3:Track

next

∃
next

next

(b) Topology restriction

Figure 3: Assumed forbidden patterns

15

k-Inductive Invariant Checking for Graph Transformation Systems

3. k-Induction and Symbolic Encoding of Sequences

With the foundations established, we can now define the notion of k-induction [15]
and k-inductive invariants for graph transformation systems. We also introduce a
symbolic encoding for transformation sequences.

As established, an inductive invariant (Def. 7) is a property that, given its validity
before rule application, will also hold after rule application. Likewise, a k-inductive
invariant is a property whose validity in a path of length k − 1 (Gz ⊧ F , below)
implies its validity after the next rule application (Gk ⊧ F).

Definition 9 (k-inductive invariant). Given a typed graph transformation system GTS =
(R, TG) and graph constraints F and H, F is a k-inductive invariant for GTS under
H, if, for all sequences of transformations to R trans = G0 ⇒R G1 ⇒R ...⇒R Gk it holds
that:

∀z(0 ≤ z ≤ k − 1⇒ Gz ⊧ F ∧H) ⇒ (Gk ⊧ F ∨Gk /⊧ H)

As with inductive invariants, which are k-inductive invariants with k = 1, our
formal model requires the graph constraints F and H to be a composed (assumed)
forbidden pattern, respectively.

In order to deduce from the existence of a k-inductive invariant its validity in
all states of an executable system, we need to consider graph grammars [7] and
their initial states and state spaces (cf. Section 2.1). In particular, a k-inductive
invariant (inductive step) under a constraint (H) holds in every reachable state of
the grammar’s state space under the constraint (REACH(GG,H)) if it is also valid
in all transformation sequences (induction base) of length k− 1 from the initial state
that satisfy the constraint.

Lemma 10. Let GG = (GTS, G0) be a graph grammar with a graph transformation system
GTS = (R, TG) and let F and H be two graph constraints. Then, F is satisfied in all states
of REACH(GG,H), if the following conditions hold:

1. ∀G(G ∈ REACHk−1(GG,H) ⇒ G ⊧ F).
2. F is a k-inductive invariant for GTS under H.

Proof. Consider a graph G in the graph grammar’s state space under the constraint,
i.e. G ∈ REACH(GG,H). Hence, there exists a transformation sequence G0 ⇒n

R G
such that all traversed graphs satisfy H. If n ≤ k− 1, we have G ⊧ F by precondition.

We will prove the case n > k − 1 by induction:
Induction base. For n = k, there exist a transformation sequence G0 ⇒k−1

R G′ and
a transformation G′ ⇒R G. Also, all graphs in the sequence satisfyH and there exist
transformation sequences (whose length is smaller than k) from G0 to all graphs

16

3. k-Induction and Symbolic Encoding of Sequences

in the sequence such that all traversed graphs satisfy H. Hence, by precondition
(1), G′ ⊧ F and all graphs in the sequence satisfy F . Then, since F is a k-inductive
invariant under H (2) and holds in all graphs of the sequence G0 ⇒k−1

R G′ and since
we have G0 ⇒k−1

R G′ and G′ ⇒R G, we get G ⊧ F .
Inductive step. Consider a sequence G0 ⇒n

R G with n > k. Then, there is a
transformation sequence G0 ⇒n−1

R G′ and a transformation G′ ⇒R G. By inductive
hypothesis, F holds in all graphs of the sequence G0 ⇒n−1

R G′. Since F is a k-
inductive invariant under H (2) and n > k, we have G ⊧ F , concluding the inductive
proof.

This lemma disregards the specific part of a graph grammar’s state space that
cannot be reached without violating the assumed graph constraint (here: H). Usu-
ally, this happens under the assumption that there exist additional measures (such
as postprocessing) preventing the system (at runtime) from transitioning into such
states. In the absence of such measures – and specifically, for our examples – we
have to establish the assumed graph constraint’s validity differently, as described
by the following lemma:

Lemma. Let GG = (GTS, G0) be a graph grammar with a graph transformation system
GTS = (R, TG) and let F and H be two graph constraints. Then, F is satisfied in all states
of REACH(GG), if the following conditions hold:

1. G0 ⊧ H and H is a 1-inductive invariant for GTS.
2. ∀G(G ∈ REACHk−1(GG) ⇒ G ⊧ F).
3. F is a k-inductive invariant for GTS under H.

Proof. Since G0 ⊧ H (1) and since H is a 1-inductive invariant for GTS (1), we have
REACHk−1(GG) = REACHk−1(GG,H) (A) and REACH(GG) = REACH(GG,H) (B).
∀G(G ∈ REACHk−1(GG) ⇒ G ⊧ F) (2) and (A) imply ∀G(G ∈ REACHk−1(GG,H) ⇒
G ⊧ F) and, with (3) and by Lemma 10, F is satisfied in all states of REACH(GG,H).
With (B), F is then satisfied in all states of REACH(GG).

While our verification approach and contribution focus on establishing k-inductive
invariants, we will shortly discuss the base of induction in our evaluation. In the
following, the notion that a transformation system is safe (unsafe) will refer to the
inductive step; i.e. will mean that the respective composed forbidden pattern can
(cannot) be established as a k-inductive invariant.

Since there is a possibly infinite amount of transformation sequences to be
analyzed in order to establish a composed forbidden pattern as a k-inductive
invariant, we require a symbolic encoding for sequences of transformations. Then,
reasoning over transformation sequences can be reduced to reasoning over a finite
set of representative symbolic encodings. To establish such an encoding, we first

17

k-Inductive Invariant Checking for Graph Transformation Systems

require application conditions that can represent graph rule applications, similar to
patterns and application conditions representing the set of graphs and morphisms
that satisfy them. Source (target) patterns describe rule applications in an extended
context (the application condition) beyond the left (right) rule side. Target/source
patterns combine both and represent the context after one rule application and
before another. Then, we combine source, target, and target/source patterns in
k-sequences of s/t (source/target) patterns (Def. 12).

Definition 11 (source, target, and target/source pattern [5]). A source pattern
(target pattern) over a rule – specifically, over its left (right) side L (R) – is an application
condition src (tar) of the form false or the form ∃(s ∶ L ↪ S, acS) (∃(t ∶ R ↪ T, acT)) with
a composed negative application condition acS (acT) over S (T).

A target/source pattern is a pair of a target and a source pattern (tar, src) which
share the same codomain and application condition, i.e. tar = ∃(t ∶ R ↪ T, acT) and
src = ∃(s ∶ L ↪ T, acT). A pair of morphisms (m′, m) with the same codomain (m′ ∶ R ↪ G
and m ∶ L ↪ G) satisfies a target/source pattern (tar, src), denoted (m′, m) ⊧ (tar, src),
if m′ ⊧ tar and m ⊧ src by a common monomorphism y ∶ T ↪ G, i.e. if there exists a
monomorphism y ∶ T ↪ G such that y ○ t = m′, y ○ s = m, and y ⊧ acT.

Definition 12 (k-sequences of s/t-patterns). Given k ≥ 1, a source pattern src1 over
a rule b1, a target pattern tark over a rule bk and a number of target/source patterns
(tari, srci+1) over a number of rules bi (1 ≤ i ≤ k − 1), seq = src1 ⇒b1 tar1, src2 ⇒b2 ...⇒bk

tark is a k-sequence of s/t-patterns.
Satisfiability of k-sequences of s/t-patterns is defined as follows:
Given a sequence of transformations (of length k) trans = G0 ⇒c1,m1,m′1

...⇒ck ,mk ,m′k
Gk

and a k-sequence of s/t-patterns seq = src1 ⇒b1 tar1, src2 ⇒b2 ... ⇒bk tark, trans satisfies
seq, denoted as trans ⊧ seq, if, for all i with 1 ≤ i ≤ k, ci = bi, mi ⊧ srci, m′i ⊧ tari and, in
particular, for all i with 1 ≤ i ≤ k − 1, (m′i , mi+1) ⊧ (tari, srci+1).

Two k-sequences of s/t-patterns seq, seq′ are equivalent (seq ≡ seq′), if for all transfor-
mation sequences trans it holds that trans ⊧ seq⇔ trans ⊧ seq′.

The idea of k-sequences of s/t-patterns (or simply s/t-pattern sequences) is to
not only describe subsequent transformations but, with source and target patterns,
additional context in which those transformations occur. As such, an s/t-pattern
sequence is a symbolic encoding for the set of transformation sequences that
satisfy it. The construction of specific s/t-pattern sequences for the verification
of k-inductive invariants will be explained in the next section.

Example 13 (s/t-pattern sequence). Fig. 4 shows a 2-sequence of s/t-patterns seq =
src1 ⇒b1 tar1, src2 ⇒b2 tar2, where rules bi = ⟨Li ↩ Ki ↪ Ri⟩ (i = 1, 2) are s2a and a2f
from variant 1 (Example 1). In particular, src1 = ∃s1 and src2 = ∃s2 are source

18

3. k-Induction and Symbolic Encoding of Sequences

isAt

next

acc
isAt

next

fast

isAt
next

next

slow

next
tr3:Track tr3:Track tr3:Track

tr2:Track tr4:Track tr1:Track

s:Shuttle

tr1:Track tr2:Track tr4:Track tr2:Track tr4:Track

s:Shuttle s:Shuttle
next

next next

isAt

tr2:Track tr4:Track

s:Shuttle
fast

next
isAt

acc

tr2:Track tr4:Track

s:Shuttle
next isAt

acc

tr1:Track tr2:Track

s:Shuttle
next

isAt slow

next
tr2:Track tr1:Track

s:Shuttle

𝑠1: 𝐿1 ↪ 𝑆1 𝑡1: 𝑅1 ↪ 𝑇1 𝑠2: 𝐿2 ↪ 𝑇1 𝑡2: 𝑅2 ↪ 𝑇2

Figure 4: Example sequence of patterns seq = src1 ⇒b1 tar1, src2 ⇒b2 tar2

patterns, tar1 = ∃t1 and tar2 = ∃t2 are target patterns, and (tar1, src2) is a tar-
get/source pattern. The transformation sequence trans (Example 3, Figure 2) satis-
fies seq (trans ⊧ seq). On the other hand, no transformation sequence from variant 2

(Example 2) could satisfy seq due to the negative application condition in s2a.
Note that src1 ⇒b1 tar1 and src2 ⇒b2 tar2 would also be valid 1-sequences of

s/t-patterns.

Since we will need to compare elements of s/t-pattern sequences to (assumed)
forbidden patterns, we establish a connection between source and target patterns
and (forbidden) patterns with respect to pattern implication:

Lemma 14 (reduction to pattern [5]). Let ac = ∃(s ∶ L ↪ S, acS) be an application condi-
tion over L with acS being a composed negative application condition. For the reduction to
a pattern ac∅ = ∃(iS ∶ ∅ ↪ S, acS) of ac we have: For each graph G with m ∶ L ↪ G such
that m ⊧ ac, we have G ⊧ ac∅.

Proof. Consider an arbitrary graph G with a monomorphism m ∶ L ↪ G such that
m ⊧ ac. By definition of satisfiability, there exists a monomorphism g ∶ S ↪ G such
that g ⊧ acS. For iG ∶ ∅ ↪ G, we have iG = g ○ iS and with g ⊧ acS, we have iG ⊧ ac∅.
By definition of satisfiability, this implies G ⊧ ac∅, concluding the proof.

L �
s

��

�

m ⊧ ac

!!

∅
o

iS

��

~

iG = g ○ iS

}}

SacS▷ �

g
��

G

å

19

k-Inductive Invariant Checking for Graph Transformation Systems

4. k-Inductive Invariant Checking

Our formal approach to verify a composed forbidden pattern as a k-inductive
invariant consists of the following steps: We split the composed forbidden pattern
into its individual forbidden patterns (step 1, section 4.1). Then, we construct
a finite set of k-sequences of s/t-patterns per forbidden pattern such that these
sequences represent all transformation sequences leading to the forbidden pattern
(step 2, Section 4.2). Finally, we analyze each s/t-pattern sequence in each set for
possible violations of (assumed) forbidden patterns earlier in the sequence (step 3,
Section 4.3). Sequences with such violations can be discarded; all others present
counterexamples with respect to the validity of the k-inductive invariant.

In addition to our formal approach to k-inductive invariant checking (Sections 4.1–
4.3), we also explain the basic scheme of our implementation (Section 4.4).

4.1. Step 1: Separation of Forbidden Patterns

The following lemma is the formal basis for investigating individual forbidden
patterns and transformation sequences that lead (see Section 2.1) to those patterns.
It is based on the contraposition of Definition 9; its intention is to justify the
procedure of finding all possible violations of individual forbidden patterns (the
implication’s precondition below) and trying to disprove them by finding violations
earlier in the path (postcondition). The latter loosely corresponds to step 2 and 3

(Sections 4.2 and 4.3) below.

Lemma 15. Given a typed graph transformation system GTS = (R, TG) and a composed
(assumed) forbidden pattern F = ⋀i∈I ¬Fi (H = ⋀j∈J ¬Hj), F is a k-inductive invariant
for GTS under H, if the following holds for each k-sequence of transformations trans =
G0 ⇒R ...⇒R Gk:

∃n(Gk ⊧ Fn) ⇒ (∃z, v(0 ≤ z ≤ k ∧Gz ⊧ Hv) ∨ ∃z, v(0 ≤ z ≤ k − 1∧Gz ⊧ Fv))

Proof. We can rearrange the formula from Definition 9 (for all sequences of trans-
formations trans = G0 ⇒R G1 ⇒R ...⇒R Gk):

∀z(0 ≤ z ≤ k − 1⇒ Gz ⊧ F ∧H) Ô⇒ (Gk ⊧ F ∨Gk /⊧ H)
⇐⇒¬(Gk ⊧ F ∨Gk /⊧ H) Ô⇒ ¬∀z(0 ≤ z ≤ k − 1⇒ Gz ⊧ F ∧H)
⇐⇒ (Gk /⊧ F ∧Gk ⊧ H) Ô⇒ ∃z(0 ≤ z ≤ k − 1∧Gz /⊧ F ∧H)
⇐⇒ (Gk /⊧ F) Ô⇒ (∃z(0 ≤ z ≤ k − 1∧Gz /⊧ F ∧H)∨Gk /⊧ H)
⇐⇒ (Gk /⊧ F) Ô⇒ (∃z(0 ≤ z ≤ k − 1∧ (Gz /⊧ H∨Gz /⊧ F)) ∨Gk /⊧ H)
⇐⇒∃n(Gk ⊧ Fn) ⇒ ∃z, v(0 ≤ z ≤ k ∧Gz ⊧ Hv) ∨ ∃z, v(0 ≤ z ≤ k − 1∧Gz ⊧ Fv)

20

4. k-Inductive Invariant Checking

4.2. Step 2: Construction of k-Sequences and Context Propagation

The following theorem describes the construction of finite sets of s/t-pattern se-
quences, which represent all transformation sequences leading to a specific for-
bidden pattern. Those sequences are possible violations of the desired k-inductive
invariant.

Theorem 16 (construction of sequences). There is a construction Seqk such that for
every pattern F = ∃(iP, acP), rule set R, and k, Seqk(R, F) is a set of k-sequences of s/t-
patterns and for each transformation sequence trans to R of length k that leads to F, there
is a seq ∈ Seqk(R, F) with trans ⊧ seq.

Construction. Seqk is inductively constructed as follows (with appropriate indexes and
index sets u, j and U, Ju, respectively), starting with Seq1 (left figure):

1. For each rule bu = ⟨(Lu ↩ Ku ↪ Ru), acLu , acRu⟩ ∈ R, Shift(iRu , F) = ⋁j∈Ju taru,j is a
disjunction of target patterns over Ru of the form taru,j = ∃(tj, acTj).

2. For each such target pattern taru,j, src′u,j = L(bu, taru,j) is a source pattern over Lu

of the form src′u,j = false or src′u,j = ∃(sj, ac′Sj
).

3. For the latter case, srcu,j = ∃(sj, ac′Sj
∧ Shift(sj, acLu)) is a source pattern.

4. For each such pair of source and target pattern srcu,j and taru,j, srcu,j ⇒bu taru,j is a
1-sequence of s/t-patterns.

5. Finally, we define Seq1(R, F) = {srcu,j ⇒bu taru,j ∣ bu ∈ R∧ j ∈ Ju} as the set of these
sequences.

Lu�

sj

��

◁acLu

Ku�

��

� //?oo Ru�

tj

��

∅?
iRuoo

�

iP

��

=

Sj
◁

ac
′

S j

Dj
� //?oo Tj

acT
j ▷

P_
pjoo

acP▷

Lu�

sj

��

◁acLu

Ku�

��

� r //?loo Ru�

tj

��

∅?
iRuoo

�

iL ��
= L�

s ��
Sj
◁

ac
′

S j

Dj
� //?oo Tj

acT
j ▷

S_
s′joo

acS▷

Given Seqk(R, F), we construct Seqk+1(R, F) as follows (right figure).

1. For each sequence seq = src1 ⇒ ...⇒ tark ∈ Seqk(R, F) with src1 = ∃(s ∶ L ↪ S, acS)
and each bu = ⟨(Lu ↩ Ku ↪ Ru), acLu , acRu⟩ ∈ R, Shift(iRu ,∃(iS, acS)) = ⋁j∈Ju taru,j
is a disjunction of target patterns over Ru with taru,j = ∃(tj, acTj).

1’. For each such target pattern taru,j, src∗1 = ∃(s
′
j ○ s, acTj) is a source pattern.

2. For each such target pattern taru,j, src′u,j = L(bu, taru,j) is a source pattern over Lu

of the form src′u,j = false or src′u,j = ∃(sj, ac′Sj
).

3. For the latter case, srcu,j = ∃(sj, ac′Sj
∧ Shift(sj, acLu)) is a source pattern.

21

k-Inductive Invariant Checking for Graph Transformation Systems

4. For each such pair of source and target pattern srcu,j and taru,j, srcu,j ⇒bu taru,j, src∗1 ⇒
...⇒ tark is a k+1-sequence of s/t-patterns.

5. Finally, we define Seqk+1(R, F) = {srcu,j ⇒bu taru,j, src∗1 ⇒ ...⇒ tark ∣ bu ∈ R∧ j ∈
Ju ∧ seq ∈ Seqk(R, F)} as the set of these sequences.

Also, given a set of rules R and a composed forbidden pattern F = ⋀i∈I ¬Fi with forbidden
patterns Fi, we define Seqk(R,F) = ⋃i∈I Seqk(R, Fi).

Proof. The statement is proven by induction as follows:

L1�

sj

��=

o

m1⊧acL1

��

◁acL
1

K1�

��

� //?oo
�

		

R1�

tj

��

�

m′1 ��

∅?
iR1oo

	

iG1⊧∃(iP,acP)

��

�

iP

��

=

SjM

q⊧ac′S||

◁
ac′ S j

Dj
� //?oo Tj

acT
j ▷

P?pj
oo

acP▷

G0 K′1
� //?oo G1

Induction base. Let trans = G0 ⇒b1,m1,m′1
G1 be a transformation sequence leading

to F = ∃(iP ∶ ∅ ↪ P, acP), i.e. G1 ⊧ F. Hence, iG1 ⊧ F and with m′1 ○ iR1 = iG1 , we get
m′1 ○ iR1 ⊧ F. By the Shift-lemma, we have m′1 ⊧ Shift(iR1 , F) and, considering the
Seq-construction, m′1 ⊧ tar1,j for a specific j ∈ J1 (and tar1,j = ∃(tj, acTj)).

G0 ⇒b1,m1,m′1
G1 implies m1 ∶ L1 ↪ G0 with m1 ⊧ acL1 . With m′1 ⊧ tar1,j and the

L-construction, we have m1 ⊧ L(b1, tar1,j) and, considering the construction above,
m1 ⊧ src′1,j (where src′1,j = ∃(sj, ac′Sj

)). More specifically, there exists a monomor-
phism q ∶ Sj ↪ G0 such that q ○ sj = m1 and q ⊧ ac′Sj

. Because of m1 ⊧ acL1

and the Shift-construction, q ○ sj ⊧ acL1 yields q ⊧ Shift(sj, acL1), which leads to
q ⊧ ac′Sj

∧ Shift(sj, acL1) and m1 ⊧ src1,j with src1,j = ∃(sj, ac′Sj
∧ Shift(sj, acL1)). Then,

seq = src1,j ⇒b1 tar1,j ∈ Seq1(R, F) and with m′1 ⊧ tar1,j and m1 ⊧ src1,j, we have
trans ⊧ seq.

L0�

sj

��=

p

m0⊧acL0

��

◁acL
01

K0�

��

� //?oo
�

		

R0�

tj

��

�

m′0
��

∅?
iR0oo

�

iL ��

�

iG0=m1○iL

��

�

iS��

= L�
s
��

�

m1⊧∃(s,acS)=src1

~~

SjM

q⊧ac′Sj
||

◁
ac′ S j

Dj
� //?oo Tj �

y′

--

acT
j ▷

S?
s′j

oo
�
y

��

acS▷

G′ K′0
� //?oo G0

22

4. k-Inductive Invariant Checking

Inductive step. Let Seqk(R, F) be a set of sequences such that for each k-sequence
of transformations trans that leads to F, there is a k-sequence of s/t-patterns seq ∈
Seqk(R, F) such that trans ⊧ seq.

Consider a k+1-sequence of transformations trans′ = G′ ⇒b0,m0,m′0
G0 ⇒b1,m1,m′1

... ⇒bk ,mk ,m′k
Gk that leads to F. Then, trans = G0 ⇒b1,m1,m′1

... ⇒bk ,mk ,m′k
Gk is a k-

sequence of transformations that leads to F. By assumption, there is a k-sequence
of s/t-patterns seq = src1 ⇒b1 ... ⇒bk tark ∈ Seqk(R, F) such that trans ⊧ seq and
hence, m1 ⊧ src1 with src1 = ∃(s ∶ L ↪ S, acS) and L being the left side of b1. By
Lemma 14, we have G0 ⊧ src1,∅ (where src1,∅ = ∃(iS, acS) = ∃(s ○ iL, acS)). G0 ⊧ src1,∅

implies iG0 ⊧ src1,∅ and, with iG0 = m1 ○ iL = m′0 ○ iR0 , we gain m′0 ○ iR0 ⊧ src1,∅. By the
Shift-lemma, we have m′0 ⊧ Shift(iR0 , src1,∅).

Delving into the details of the Shift-construction, m1 ⊧ src1 implies the existence
of a monomorphism y ∶ S ↪ G0 such that y ○ s = m1 and y ⊧ acS. With m′0 ∶ R0 ↪ G0

and by E ′-M pair factorization [8], there exist a graph T and monomorphisms
t ∶ R0 ↪ T, s′ ∶ S ↪ T, and y′ ∶ T ↪ G0 such that y′ ○ s′ = y, y′ ○ t = m′0, and that
(t, s′) are jointly surjective. Then, we have m′0 ⊧ ∃(t, Shift(s′, acS)) and, considering
the Seqk+1-construction, m′0 ⊧ tar0,j for a specific j ∈ J0 (and tar0,j = ∃(tj, acTj), s′ = s′j,
t = tj, T = Tj for that j).

Furthermore, y′ ○ s′j = y and y ○ s = m1 imply y′ ○ s′j ○ s = m1. Since y ⊧ acS and by
the Shift-construction (acTj = Shift(s′j, acS)), we have y′ ⊧ acTj . Thus, m1 ⊧ src∗1 with
src∗1 = ∃(s

′
j ○ s, acTj) and, by assumption, trans ⊧ seq∗ with seq∗ = src∗1 ⇒b1 ...⇒bk tark.

Also, the existence of y′ implies (m′0, m1) ⊧ (tar0,j, src∗1).
Because of G′ ⇒b0,m0,m′0

G0, we have m0 ∶ L0 ↪ G′ with m0 ⊧ acL0 . With the L-
construction, we get m0 ⊧ L(b0, tar0,j) and, considering the Seqk+1-construction, m ⊧
src′0,j (where src′0,j = ∃(sj, ac′Sj

)) and more specifically, there exists a monomorphism
q ∶ Sj ↪ G′ such that q ○ sj = m0 and q ⊧ ac′Sj

. Because of m0 ⊧ acL0 and the
Shift-construction, q ○ sj ⊧ acL yields q ⊧ Shift(sj, acL0), which leads to q ⊧ ac′Sj

∧
Shift(sj, acL0) and m0 ⊧ src0,j with src0,j = ∃(sj, ac′Sj

∧ Shift(sj, acL0)).
By construction of Seqk+1(R, F), we have seq′ = src0,j ⇒b0 tar0,j, src∗1 ⇒b1 ... ⇒bk

tark ∈ Seqk+1(R,F) and, with m0 ⊧ src0,j, (m′0, m1) ⊧ (tar0,j, src∗1), and trans ⊧ seq∗,
we get trans′ ⊧ seq′. This concludes the inductive proof.

To encode all situations in which a forbidden pattern is violated after a rule
application, Seq1(R, F) first builds target patterns for all overlappings of right
rule sides and the forbidden pattern (cf. Shift(iRu , F) in 1). Then, for each of those
target patterns, the respective source pattern – the context before rule applica-
tion – is computed (L(bu, taru,j), 2). Finally, the left application condition of the
applied rule is transferred from its left rule side to the context of the source pattern

23

k-Inductive Invariant Checking for Graph Transformation Systems

(Shift(sj, acLu), 3). All pairs of a source and a target pattern thusly created then
constitute a 1-sequence of s/t-patterns in Seq1(R, F) (4, 5).

Given the set of sequences created by Seqk, Seqk+1 repeats this process until the
sequences reach a fixed length k. In particular, it creates all overlappings of right
rule sides and leftmost source patterns of k-sequences (Shift(iRu ,∃(iS, acS)), 1) to
create target patterns, then adds the newly accumulated context to the leftmost
source patterns (src∗1 = ∃(s

′
j ○ s), acTj , 1’). 2–5 mirror the respective computations

of Seq1. Since all involved constructions (particularly Shift and L) produce finite
results, Seqk always yields finite results for a fixed k.

Our construction shows similarities to the notion of E-concurrent rules from [8].
In particular, consider a 1-sequence seq = src ⇒b tar as an element of Seq1(F,R)
and with b = ⟨(L ↩ K ↪ R), acL, true⟩, F = ∃(∅ ↪ P, acP), src = ∃(s ∶ L ↪ S, acS), and
tar = ∃(t ∶ R ↪ T, acT), and consider a hypothetical rule b′ = ⟨(P ↩ P ↪ P), acP, true⟩.
Then, given E isomorphic to T with the respective morphisms t ∶ R ↪ T and
p ∶ P ↪ T as an E-dependency relation for b and b′ (see [8]), we get the E-concurrent
rule b⋆E b′ as ⟨(S ↩ D ↪ T), acS, true⟩. Put in a more declarative manner, satisfaction
of seq by a transformation sequence trans = G0 ⇒b,m,m′ G1 is equivalent to the
existence of the transformation G0 ⇒b⋆Eb′,m,m′ G1.

Similar analogies apply for longer sequences and the respective constructions.
However, since our analysis specifically requires intermediate patterns in our s/t-
pattern sequences, which are not explicitly represented in an E-concurrent rule, we
do not use E-concurrent rules to represent transformation sequences. Instead, we
rely on s/t-pattern sequences and the Seq-construction introduced above.

Theorem 16 states that all transformation sequences of length k that lead to a
forbidden pattern F have a representative s/t-pattern sequence in Seqk(R, F). We
also proof that each s/t-pattern sequence is meaningful in the sense that every
transformation sequence it represents actually leads to the forbidden pattern:

Lemma 17. Given a set of rulesR, a pattern F, and the set Seqk(R, F), for each k-sequence
of s/t-patterns seq ∈ Seqk(R, F), every transformation sequence trans with trans ⊧ seq
leads to F.

Proof. The statement is proven by induction as follows:
Induction base. Let seq = src1 ⇒b1 tar1 be an arbitrary 1-sequence of s/t-patterns

such that seq ∈ Seq1(R, F) with b1 ∈ R and F = ∃(iP, acP). Consider an arbitrary
transformation sequence trans = G0 ⇒b1,m1,m′1

G1 such that trans ⊧ seq. Hence, we
have m′1 ⊧ tar1 and, by construction, m′1 ⊧ Shift(iR1 , F). Then, m′1 ○ iR1 ⊧ F and with
iG1 ∶ ∅ ↪ G1 and iG1 = m′1 ○ iR1 , we gain iG1 ⊧ F, implying G1 ⊧ F and thus, trans
leads to F. Consequently, for every s/t-pattern sequence seq in Seq1(R, F), every
transformation sequence trans with trans ⊧ seq leads to F.

24

4. k-Inductive Invariant Checking

L1�

sj

��

o

m1⊧acL1

��

◁acL
1

K1�

��

� //?oo
�

		

R1�

tj

��

�

m′1 ��

∅?
iR1oo

	

iG1⊧∃(iP,acP)

��

�

iP

��

=

Sj
◁

ac′ S j

Dj
� //?oo Tj

acT
j ▷

P?pj
oo

acP▷

G0 K′1
� //?oo G1

Inductive step. Let Seqk(R, F) be a set of s/t-pattern sequences such that for
every s/t-pattern sequence in Seqk(R, F), each transformation sequence trans with
trans ⊧ seq leads to F.

Consider Seqk+1(R, F) and seq′ = src0 ⇒b0 tar0, src∗1 ⇒b1 ... ⇒bk tark as an arbi-
trary k+1-sequence of s/t-patterns with seq′ ∈ Seqk+1(R, F). Consider an arbitrary
transformation sequence trans′ = G′0 ⇒b0,m0,m′0

G0 ⇒b1,m1,m′1
...⇒bk ,mk ,m′k

Gk such that
trans′ ⊧ seq′. By construction, there is a k-sequence of s/t-patterns seq = src1 ⇒b1

... ⇒bk tark with seq ∈ Seqk(R, F) and for trans = G0 ⇒b1,m1,m′1
... ⇒bk ,mk ,m′k

Gk, we
have trans ⊧ seq. By assumption, trans leads to F and hence, Gk ⊧ F. Consequently,
trans′ leads to F, which concludes the inductive proof.

Example 18. Fig. 4 in Example 13 also serves as an example of one sequence (of
many) found in Seq2(R, F) – F as in Fig. 1(b) – for variant 1 of our example.
However, the context of the second rule application described by the target pattern
tar2 does not yet take accumulated context of subsequent Seqk-constructions into
account; in particular, it lacks the fourth track (tr1) required in transformation
sequences satisfying seq. Also, note that our transformation sequence trans with
trans ⊧ seq (Example 13) leads to F (cf. Lemma 17).

For variant 2 of our example system, the Seq2-construction for the case above
would calculate Shift(s1, acL), where acL is the additional negative application condi-
tion of graph rule s2a (Fig. 1(f)). Since acL – forbidding the existence of a subsequent
switch – actually exists in S1, the result of Shift(s1, acL) would (upon evaluation)
default to false. Since no transformation sequence can satisfy such a sequence of
s/t-patterns, the sequence is invalid as a counterexample, which would become
apparent in our analysis in step 3 (Section 4.3).

Repeating the Seqk-construction only accumulates context in backward direc-
tion by reverse rule applications (via L). Similarly, acquired context can also be
propagated in forward direction. In particular, our construction below uses L to
recursively propagate context from the leftmost source pattern over the respective
rules through the whole sequence. To justify the process, Lemma 19 establishes that
the set of all transformation sequences represented by the s/t-pattern sequences in

25

k-Inductive Invariant Checking for Graph Transformation Systems

Seqk equals the set of transformation sequences represented by the propagated s/t-
pattern sequences in Seqk. Although that set of transformation sequences remains
unchanged, forward propagation enriches our symbolic representation in order to
discard false negatives in the subsequent analysis step.

Lemma 19 (forward propagation over sequences). Given a set of graph rules R,
a pattern F, and the set of sequences constructed by Seqk(R, F), we describe forward
propagation as a function prop such that for all seq ∈ Seqk(R, F), we have seq ≡ prop(seq).

Construction. We construct prop recursively as follows:

prop(src1 ⇒b1 tar1) = src1 ⇒b1 tar′1
prop(src1 ⇒b1 tar1, src2 ⇒b2 tar2, ..., srck ⇒bk tark)

=src1 ⇒b1 tar′1, prop(comb(tar′1, src2) ⇒b2 tar2, ..., srck ⇒bk tark),

where tar′1 = L(b−1
1 , src1) and

comb(false, src2) = false

comb(tar′1, false) = false

comb(tar′1, src2) = ∃(t′1 ○ s′2 ○ s2, acT′1
)

L1acL1▷ �

s1

��

K1�

��

� //?oo R1�

t1

��

∅?oo
�

��
L2acL2▷ �

s2 ��
S1�

t′0 ��

acS1▷ D1
� //?oo T1

acT
1 ▷

�
t′1 ��

S2_
s′2oo

ac S 2
▷

T′0acT′0
▷ T′1acT′1

▷

as in the diagram on the right, with src1 = ∃(t′0 ○ s1, acT′0
), tar1 = ∃(t1, acT1), tar′1 =

∃(t′1 ○ t1, acT′1
) = L(b−1

1 , src1), and src2 = ∃(s′2 ○ s2, acS).
Note that for the first call of prop on a sequence constructed by Seqk, we have src1 =

∃(s1, acS1) and T′0 and T′1 will not exist. For the purpose of prop and comb, T′0 and S1 can
be treated as isomorphic (with acT′0

= acS1); then, T1 and T′1 are isomorphic as well, t′1 is an
isomorphism, and acT1 = acT′1

.

Proof. We will show the required statement by structural induction.
Induction base. Let seq = src1 ⇒b1 tar1 be a s/t-pattern sequence constructed

as part of a Seqk- and prop-construction. Then, prop(seq) = src1 ⇒b1 tar′1 with
tar′1 = L(b−1

1 , src1). Further, let trans = G0 ⇒b1,m1,m′1
G1 be a transformation sequence.

We need to show trans ⊧ seq⇔ trans ⊧ prop(seq).
Only if. Assume trans ⊧ seq. Then, m1 ⊧ src1 and with the L-construction we have

m′1 ⊧ L(b−1
1 , src1), i.e. m′1 ⊧ tar′1. m1 ⊧ src1 and m′1 ⊧ tar′1 imply trans ⊧ prop(seq).

If. Assume trans ⊧ prop(seq). Then, m′1 ⊧ tar′1, i.e. m′1 ⊧ L(b−1
1 , src1) and with the

L-construction we have m1 ⊧ src1. By construction of Seqk, there is an underlying
pattern src′1 = L(b1, tar1) (with src′1 = ∃(s1, acS1) as in the diagram above) such that
m1 ⊧ src′1 and hence, m′1 ⊧ tar1, implying trans ⊧ seq.

26

4. k-Inductive Invariant Checking

L1acL1▷

(1)

�

s1

��
=

o

m1⊧acL1

◁acL
1

K1

(2)

�

��

� //?oo
�

R1�

t1

��

m′1

��

∅?
iR1oo

�

iL2 ��
L2�

s2 ��

m2⊧∃(s2,acS2)=src2

��

T0 �

""

S1

(3)

?oo
◁

ac S 1

D1

(4)

�

r+1
//?oo

�

d′1 ��

T1�

t′1 ��

�

y′

acT
1 ▷

S2?
s′2oo

�

y

��

acS2 ▷

T′0acT′0
▷

(5)

h

vv

D′1
� r′1 //
�

k′1 ��

_oo T′1 �

x′ ''
(6)ac T

′

1
▷

G0 K′1
� r∗1 //?oo G1

Inductive step. Let seq′ = src1 ⇒b1 tar1, src2 ⇒b2 ...⇒bk+1
tark+1 be a k+1-sequence

of s/t-patterns constructed as part of a Seqk-construction. Given a transformation
sequence trans′ = G0 ⇒b1,m1,m′1

G1 ⇒b2,m2,m′2
... ⇒bk+1,mk+1,m′k+1

Gk+1, we need to show
trans′ ⊧ seq′⇔ trans′ ⊧ prop(seq′).

Only if. Assume trans′ ⊧ seq′. Then, we have m1 ⊧ src1, which implies m′1 ⊧
L(b−1

1 , src1) and m′1 ⊧ tar′1 with tar′1 = ∃(t
′
1 ○ t1, acT′1

) and pushouts (3) and (4).
Furthermore, trans′ ⊧ seq′ implies (m′1, m2) ⊧ (tar1, src2) (where tar1 = ∃(t1, acT1)

and src2 = ∃(s′2 ○ s2, acT1)). Thus, there exists a monomorphism y′ ∶ T1 ↪ G1 such
that y′ ○ t1 = m′1, y′ ○ s′2 ○ s2 = m2, and y′ ⊧ acT1 .

By pushout decomposition, (G1, r∗1 , y′) is a pushout and hence, y′ ○ r+1 = r∗1 ○ k′1 ○ d′1.
Since (4) is also a pushout, there is a monomorphism x′ ∶ T′1 ↪ G1 such that
x′ ○ r′1 = r∗1 ○ k′1 and x′ ○ t′1 = y′. Then, by pushout decomposition, (G1, r∗1 , x′) is
a pushout (6) over r′1 and k′1, implying x′ ⊧ acT′1

. Furthermore, we have x′ ○ t′1 ○
s′2 ○ s2 = y′ ○ s′2 ○ s2 = m2, i.e. m2 ⊧ comb(tar′1, src2). With x′ ○ t′1 ○ t1 = m′1, we get
(m′1, m2) ⊧ (tar′1, comb(tar′1, src2)) and, by inductive hypothesis, trans′ ⊧ prop(seq′).

If. Assume trans′ ⊧ prop(seq′). Then, we have m1 ⊧ src1 and, for the respective tar-
get/source pattern, (m′1, m2) ⊧ (tar′1, comb(tar′1, src2)), i.e. there exists a monomor-
phism x′ ∶ T′1 ↪ G1 such that x′ ⊧ acT′1

, x′ ○ t′1 ○ t1 = m′1, x′ ○ t′1 ○ ○s′2 ○ s2 = m2, and
(3) and (4) are pushouts. There also exists a monomorphism y′ ∶ T1 ↪ G1 with
y′ = x′ ○ t′1 such that y′ ○ t1 = m′1 and y′ ○ s′2 ○ s2 = m2. Since m1 ⊧ src1 and by construc-
tion of Seqk, there is a monomorphism q ∶ S1 ↪ G0 such that q ⊧ acS1 . Since (4)+ (6)
and (3) + (5) are pushouts and by the L-construction, we get y′ ⊧ acT1 and hence,
(m′1, m2) ⊧ (tar1, src2). With the inductive hypothesis, we have trans′ ⊧ seq′.

Example 20. Fig. 5 shows the 2-sequence of s/t-patterns seq′ = prop(seq). The differ-
ence to seq (Fig. 4, Example 13) lies in the additional context (tr1) in target pattern
tar2. This also exemplifies the intention of calculating prop: additional information
may make a difference in our subsequent analysis (step 3, below).

27

k-Inductive Invariant Checking for Graph Transformation Systems

isAt

next

acc

isAt

next

fast

isAt next

next

slow

next

tr3:Track tr3:Track tr3:Track

tr2:Track tr4:Track tr1:Track

s:Shuttle

tr1:Track tr2:Track tr4:Track tr2:Track tr4:Track

s:Shuttle s:Shuttle
next

next next

isAt

tr2:Track tr4:Track

s:Shuttle
fast

next
isAt

acc

tr2:Track tr4:Track

s:Shuttle
next isAt

acc

tr1:Track tr2:Track

s:Shuttle
next

isAt slow

next
tr2:Track tr1:Track

s:Shuttle

𝑠1: 𝐿1 ↪ 𝑆1 𝑡1: 𝑅1 ↪ 𝑇1 𝑠2: 𝐿2 ↪ 𝑇1
𝑡2: 𝑅2 ↪ 𝑇2

tr1:Track
next

Figure 5: Sequence seq′ = prop(seq) = src1 ⇒b1 tar1, src2 ⇒b1 tar′2, with seq ≡ seq′

4.3. Step 3: Analysis of Sequences

Our final and central theorem describes the main result of our approach and
formalization: the analysis of s/t-pattern sequences created by our earlier steps.

Theorem 21 (k-inductive invariant checking). Let GTS = (R, TG) be a graph trans-
formation system and F = ⋀i∈I ¬Fi (H = ⋀j∈J ¬Hj) be composed (assumed) forbidden
patterns. Let Seqk(R, F) be the set of k-sequences constructed from the pattern F and
Seqk(R,F) = ⋃i∈I Seqk(R, Fi). Let, for a source (target) pattern srcz (tarz), srcz,∅ (tarz,∅)
be the reduction of srcz (tarz) to a pattern.
F is a k-inductive invariant for GTS under H if, for all sequences prop(seq) = src1 ⇒b1

...⇒bk tark with seq ∈ Seqk(R,F), one of the following conditions holds:

1. ∃z, v(1 ≤ z ≤ k ∧ (srcz,∅ ⊧ Hv ∨ srcz,∅ ⊧ Fv)). 2. ∃v(tark,∅ ⊧ Hv).

Proof. According to Lemma 15, we need to show that for all k-sequences of trans-
formations G0 ⇒R ...⇒R Gk, it holds that:

∃n(Gk ⊧ Fn) ⇒ ∃z, v(0 ≤ z ≤ k ∧Gz ⊧ Hv) ∨ ∃z, v(0 ≤ z ≤ k − 1∧Gz ⊧ Fv)

Consider an arbitrary k-sequence of transformations to R (with corresponding
graphs) trans = G0 ⇒R ... ⇒R Gk such that ∃n(Gk ⊧ Fn) with, for ease of reading,
Fn = F. More specifically, trans = G0 ⇒b1,m1,m′1

... ⇒bk ,mk ,m′k
Gk for rules bi ∈ R and

matches (comatches) mi (m′i) and trans leads to F.
By Theorem 16, there is a k-sequence of s/t-patterns seq ∈ Seqk(R, F) with trans ⊧

seq and trans ⊧ prop(seq) (Lemma 19). By precondition, one of the following is true:

1. There exist z, v with 1 ≤ z ≤ k such that srcz,∅ ⊧ Hv or srcz,∅ ⊧ Fv. Because of
trans ⊧ prop(seq), we have mz ⊧ srcz and, with mz ∶ Lz ↪ Gz−1 and Lemma
14, we gain Gz−1 ⊧ srcz,∅ and thus, Gz−1 ⊧ Hv or Gz−1 ⊧ Fv. Thus, F is a
k-inductive invariant for GTS under H.

28

4. k-Inductive Invariant Checking

2. There exists v such that tark,∅ ⊧ Hv. Because of trans ⊧ prop(seq), we have
m′k ⊧ tark and, with m′k ∶ Rk ↪ Gk and Lemma 14, we gain Gk ⊧ tark,∅ and thus,
Gk ⊧ Hv. Thus, F is a k-inductive invariant for GTS under H.

Example 22. For k = 2, there is a counterexample for variant 1 (Fig. 5, Example 20).
All sequences of length 2 for variant 2 would be discarded by Theorem 21. Hence,
¬F is a 2-inductive invariant for variant 2, but not for variant 1.

Our approach is sound in the sense that for every violating transformation
sequence, a symbolic counterexample (s/t-pattern sequence) will be found. It is not
necessarily complete: spurious counterexamples can occur, because the theorem
above only describes a sufficient condition. Addressing this approach-inherent
drawback requires a more complex notion of pattern implication, which is, in
general, an undecidable problem [13]. However, previous [5] and current evaluation
show the applicability of our approach even without such extensions.

4.4. Implementation

Our implementation closely follows the formalization established above; its basic
scheme is shown in Algorithm 1. Given a fixed value for k, a set of graph rules R,
and a composed forbidden pattern F to be verified as a k-inductive invariant under
a composed assumed forbidden pattern H, the tool first constructs all 1-sequences
of s/t-patterns leading to forbidden patterns by applying Theorem 16 (line 5, first
iteration). Next, the tool analyzes the sequences for (assumed) forbidden patterns
(Theorem 21, lines 8–10) and discards invalid counterexamples (line 10). The al-
gorithm then iterates (lines 3–10) over the process of prolonging the remaining
sequences (Theorem 16, line 5), applying forward propagation (Lemma 19, lines 6–
7), and analyzing the sequences (Theorem 21, lines 8–10) until the sequences’ length
reaches k. If all such sequences have been discarded, F is a k-inductive invariant
under H. Otherwise, the remaining sequences serve as counterexamples. Because
of the finiteness of all involved constructions, this algorithm always terminates.

In order to convert our inductive or declarative constructions and theorems
into imperative functions suitable to describe our algorithm, we introduced minor
changes to their respective signatures. In particular, executing Seqi(R, F) for a
specific i > 1 requires the result of Seqi−1(R, F) (cf. Theorem 16). Hence, in our
algorithm, Seqi has the set of s/t-pattern sequences of length i − 1 corresponding to
R and F as a third parameter, the first and second remaining the set of rules and
the forbidden pattern. For i = 1, that set should be empty. While the signature of
prop remains unchanged, the function analyze implements the analysis formalized

29

k-Inductive Invariant Checking for Graph Transformation Systems

by Theorem 21: accepting a s/t-pattern sequence, a set of forbidden patterns, and a
set of assumed forbidden patterns as input, its Boolean result signals whether or
not any (assumed) forbidden pattern occurs in the sequence in the way described
by Theorem 21 such that the sequence can be discarded as a counterexample.

Algorithm 1: Basic scheme of verification algorithm
input : an integer k with k ≥ 1, a set R of graph rules, sets F and H of

(assumed) forbidden patterns
output : a set of k-sequences of s/t-patterns as counterexamples

1 foreach F ∈ F do
2 sequences[F]← ∅ /* initialization of map of sequence sets */

3 for i ← 1 to k do
4 foreach F ∈ F do
5 sequences[F]← Seqi(F,R, sequences[F]) /* Theorem 16 */
6 foreach seq ∈ sequences[F] do
7 seq← prop(seq) /* Lemma 19, no effect for length 1 */

8 foreach seq ∈ sequences[F] do
9 if analyze(seq,F ,H) then /* Theorem 21 */

10 sequences[F]← sequences[F]∖ seq

11 return ⋃F∈F sequences[F]

30

5. Evaluation

5. Evaluation

In the following, we discuss the experimental evaluation of our approach, which
we implemented as an extension of our tool described in [1] and [5]. We considered
variants 1 (Example 1 and Appendix A.1) and 2 (Example 2 and Appendix A.2) of
our running example as two cases where a k-inductive invariant cannot and can
(for k = 2) be established, i.e., as cases for an unsafe and a safe system. Variants
3 (Appendix A.3) and 4 (Appendix A.4) present two more elaborate cases, which
include sensor faults and a single fault assumption.

First, we used our existing tool for the verification of (1-)inductive invariants
[5] for all example variants (k = 1). Then, we used our extensions implementing
the algorithm formalized in this report (k > 1). We considered configurations with
and without forward propagation1 (Lemma 19), configurations that compute all
counterexamples (denoted by full), and configurations that enforce termination as
soon as one counterexample of length k has been found (stop on ce).

Our results2 are shown in Table 1. The numbers in brackets denote the number
of rules, forbidden properties, and assumed forbidden properties for the respective
variants. Columns k, c, and t denote the length of the path for the inductive step,
the number of counterexamples, and runtime in seconds, respectively. Column
r shows the verification result, which can take the values false (f) for an unsafe
system, fn for false negatives (spurious counterexamples), f+fn for a combination of
both, true (t) for a safe system, or na (not applicable).

The term false negative refers to counterexamples, i.e. s/t-pattern sequences of
the respective length k, for which there cannot exist a satisfying transformation
sequence that describes an actual violation of the k-inductive invariant. Such coun-
terexamples may occur (1) if forward propagation is not considered, which leads to
incomplete information during the analysis, and (2) if a more complex (potentially
undecidable) notion of pattern implication is required (cf. Section 4.3). However,
since all forbidden and assumed forbidden patterns in our examples are of the
simple form F = ∃(iP ∶ ∅ ↪ P, true), the second type of false negatives cannot occur
here. Hence, all counterexamples resulting from experiments that include forward
propagation are true negatives (f) and could be instantiated as transformation
sequences that violate the k-inductive invariant.

1To allow verification without forward propagation, Theorem 21 can be modified by
considering all seq ∈ Seqk(R,F) instead of all prop(seq) ∈ Seqk(R,F).

2Setup: 64-bit system, two cores at 2.8 GHz, 8 GB main memory, Eclipse 4.5.1, Java 8,
Windows 7. Java heap space limit was set to 1 GB, with the exception of variant 4 with
forward propagation and k = 6, which required 4 GB.

31

k-Inductive Invariant Checking for Graph Transformation Systems

Table 1: Results for 1- and k-inductive invariant checking ([5]/current approach)

example
(# rules/
forbidden/
assumed)

without forward propagation with forward propagation

full stop on ce full stop on ce
k c t r c* t r c t r c* t r

variant 1

(7/1/15),
unsafe

1 6 < 1 f 1 < 1 f na na
2 9 < 1 f 1 < 1 f 9 < 1 f 1 < 1 f
3 47 1.0 f 1 < 1 f 47 1.0 f 1 < 1 f
4 217 2.8 f 1 < 1 f 217 2.9 f 1 < 1 f
5 1102 15.4 f+fn 1 < 1 f/fn 1063 15.6 f 1 < 1 f
6 6211 95.7 f+fn 1 < 1 f/fn 5551 94.1 f 1 < 1 f

variant 2

(7/1/15),
safe

1 6 < 1 f 1 < 1 f na na
2 0 < 1 t 0 < 1 t 0 < 1 t 0 < 1 t
.. 0 < 1 t 0 < 1 t 0 < 1 t 0 < 1 t

variant 3

(10/1/16),
unsafe

1 9 < 1 f 1 < 1 f na na
2 15 < 1 f+fn 1 < 1 f/fn 6 < 1 f 1 < 1 f
3 128 1.5 f+fn 1 < 1 f/fn 27 1.1 f 1 < 1 f
4 737 10.3 f+fn 1 < 1 f/fn 100 2.7 f 1 < 1 f
5 4389 78.7 f+fn 1 < 1 f/fn 444 12.1 f 1 < 1 f
6 28514 741.0 f+fn 1 < 1 f/fn 2011 74.2 f 1 1 f

variant 4

(10/1/16),
safe

1 6 < 1 f 1 < 1 f na na
2 9 < 1 fn 1 < 1 fn 0 < 1 t 0 < 1 t
.. fn 1 < 1 fn 0 < 1 t 0 < 1 t

For the full case with forward propagation, the property is not a k-inductive
invariant (up to k = 6) for the erroneous variant 1, as expected (cf. Examples 1

and 22). The corrections resulting in variant 2 (Example 2) lead to a safe system
where the property can be established as a 2-inductive invariant. Likewise, variant
4 is a fixed version of the erroneous variant 3. While the computational effort for
variants 2 and 4 is minimal, variants 1 and 3 show strongly increasing numbers
for counterexamples and computation time. This will almost always be the case
for erroneous systems. However, in both cases, execution with the stop on ce option
will quickly return results for manual inspection of unsafe systems.

As explained before, execution without forward propagation can lead to false
negatives. In particular, without forward propagation the safety property cannot
be established even for the (actually safe) variant 4. Also, the high number of false
negatives in variant 3 leads to even higher numbers of (false) counterexamples for
subsequent values of k and significantly higher computation times.

To establish the base of induction (see Lemma 10) for a graph grammar with an
initial graph, we used the model checker GROOVE [9] to (successfully) check all
paths of length 1 (k − 1 = 2− 1) from the initial graph for variants 2 and 4.

An important issue is the choice of k for the verification. There exist cases (vari-
ants 2 and 4) where the desired property can be established as a k-inductive

32

5. Evaluation

invariant for small k, but not as a 1-inductive invariant. Even for the (erroneous)
variant 3 (with forward propagation), increasing k from 1 to 2 reduces the number
of counterexamples. Closer inspection shows that several counterexamples for k = 1
rely on the application of rule a2f’ and that the respective s/t-pattern sequences (of
length 1) do not appear as part of sequences (counterexamples) of greater length
(for increasing k). In other words, increasing the value of k (beyond 1) yields the
information that rule a2f’ is not (ultimately) responsible for the violation of our
forbidden pattern. More generally, verification with increasing values for k may
allow for a more precise analysis of an erroneous system.

Therefore, if the estimated value of k for an invariant is not known, we suggest to
verify systems with increasing k, starting with 1, and to use counterexamples to fix
system errors, as seen in variants 1 (fixed in variant 2) and 3 (fixed in 4). While we
are confident that the technique is also applicable for different examples of similar
size and values for k, we cannot yet generalize that claim for larger examples.
However, since the approach’s complexity is independent from a system’s state
space, it may be applied where approaches based on the state space are impractical.

33

k-Inductive Invariant Checking for Graph Transformation Systems

6. Conclusion and Outlook

We presented an approach for automatic verification of k-inductive invariants that
supports reasonably expressive graph rules and properties. We have proven and
implemented our approach, which employs a finite symbolic encoding of traces.
Further, our evaluation has demonstrated that k-inductive invariants can be estab-
lished for some examples where inductive invariants are not sufficient.

Moving on, we plan to study further options to enrich k-sequences, optimize our
algorithm, and apply suitable counterexample-guided refinement techniques.

34

6. Conclusion and Outlook

Acknowledgments
This work was partially developed in the course of the project Correct Model
Transformations II (GI 765/1-2), which is funded by the Deutsche Forschungsge-
meinschaft.

We would like to thank Leen Lambers for her comprehensive feedback on a draft
version of this report.

35

k-Inductive Invariant Checking for Graph Transformation Systems

References

[1] B. Becker, D. Beyer, H. Giese, F. Klein, and D. Schilling. Symbolic Invariant
Verification for Systems with Dynamic Structural Adaptation. In Proc. of the
28th International Conference on Software Engineering (ICSE), New York, 2006.
ACM.

[2] C. Blume, H. Bruggink, D. Engelke, and B. König. Efficient Symbolic Imple-
mentation of Graph Automata with Applications to Invariant Checking. In
H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors, Graph Trans-
formations, volume 7562 of LNCS, pages 264–278, Berlin/Heidelberg, 2012.
Springer.

[3] I. B. Boneva, J. Kreiker, M. E. Kurban, A. Rensink, and E. Zambon. Graph Ab-
straction and Abstract Graph Transformations (Amended Version). Technical
Report TR-CTIT-12-26, University of Twente, Enschede, 2012.

[4] A. F. Donaldson, L. Haller, D. Kroening, and P. Rümmer. Software Verifica-
tion Using k-Induction. In E. Yahav, editor, Static Analysis, pages 351–368,
Berlin/Heidelberg, 2011. Springer.

[5] J. Dyck and H. Giese. Inductive Invariant Checking with Partial Negative
Application Conditions. In F. Parisi-Presicce and B. Westfechtel, editors, Graph
Transformation, volume 9151 of LNCS, pages 237–253, Cham, 2015. Springer.

[6] J. Dyck and H. Giese. k-Inductive Invariant Checking for Graph Transfor-
mation Systems. In D. Plump and J. de Lara, editors, Graph Transformation,
volume 10373 of LNCS, pages 142–158, Cham, 2017. Springer.

[7] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. Springer, Secaucus, 2006.

[8] H. Ehrig, U. Golas, A. Habel, L. Lambers, and F. Orejas. M-adhesive trans-
formation systems with nested application conditions. part 1: Parallelism,
concurrency and amalgamation. Math. Struct. Comput. Sci., 24, 2014.

[9] A. H. Ghamarian, M. J. de Mol, A. Rensink, E. Zambon, and M. V. Zimakova.
Modelling and analysis using GROOVE. Int. J. Softw. Tools Technol. Transf.,
14(1):15–40, 2012.

[10] A. Habel and K.-H. Pennemann. Correctness of high-level transformation
systems relative to nested conditions. Math. Struct. Comput. Sci., 19:1–52, 2009.

36

References

[11] B. König and V. Kozioura. Augur 2 – A New Version of a Tool for the Analysis
of Graph Transformation Systems. Electronic Notes in Theoretical Computer
Science, 211:201–210, 2008.

[12] B. König and J. Stückrath. A General Framework for Well-Structured Graph
Transformation Systems. In P. Baldan and D. Gorla, editors, CONCUR 2014 –
Concurrency Theory, volume 8704 of LNCS, pages 467–481, Berlin/Heidelberg,
2014. Springer.

[13] K.-H. Pennemann. Development of Correct Graph Transformation Systems. PhD
thesis, University of Oldenburg, 2009.

[14] A. Schmidt and D. Varró. CheckVML: A Tool for Model Checking Visual
Modeling Languages. In P. Stevens, J. Whittle, and G. Booch, editors, UML
2003 – The Unified Modeling Language, volume 2863 of LNCS, pages 92–95,
Heidelberg, 2003. Springer.

[15] M. Sheeran, S. Singh, and G. Stålmarck. Checking Safety Properties Using
Induction and a SAT-Solver. In W. A. Hunt and S. D. Johnson, editors, Formal
Methods in Computer-Aided Design, pages 127–144, Berlin/Heidelberg, 2000.
Springer.

[16] D. Steenken. Verification of lnfinite-State Graph Transformation Systems via Ab-
straction. PhD thesis, University of Paderborn, 2015.

37

k-Inductive Invariant Checking for Graph Transformation Systems

A. Running Example and Variants

In the following, we outline all details of the four variants considered in our running
example and evaluation.

As established in Example 1, variant 1 (Section A.1) exhibits unsafe behavior,
because its rules do not check for switches ahead of a shuttle. Variant 2 (Section A.2)
is a fixed version of variant 1 such that our property can be established as a
2-inductive invariant. Variants 3 (Section A.3) and 4 (Section A.4), which were
introduced in Section 5 for evaluation purposes, describe two more elaborate cases
involving a single fault assumption and sensor faults when checking for switches.
Similar to variants 1 and 2, variant 4 is a corrected version of the unsafe system in
variant 3.

For all variants, we have an assumed forbidden property excluding the existence
of multiple shuttles, which requires additional clarification. Since shuttle behavior
is completely independent of other shuttles, the forbidden property could, in
theory, also be established for multiple shuttles. Directly including the possibility
of multiple shuttles collides with the consideration of subsequent reverse rule
applications (of k-inductive invariant checking), because our sequential approach
does not (yet) encode the parallel nature of behavior (here: shuttle movement).

A.1. Variant 1

All elements of variant 1 are depicted in Figure 6, including:

• the type graph: Figure 6(a),
• the forbidden pattern: Figure 6(b),
• the state diagram denoting the shuttle’s transitions between modes slow,
acc(elerate), fast, and brake: Figure 6(c),

• the rules, realizing movement and mode transitions: Figures 6(d), 6(e), 6(f),
6(g), 6(h), 6(i), and 6(j),

• the assumed forbidden patterns (which, negated and conjunctively joined,
are a 1-inductive invariant for the system): Figure 6(k).

Due to the absence of negative application conditions checking for switches
ahead of a shuttle, the forbidden pattern is not a k-inductive invariant for variant 1.

38

A. Running Example and Variants

Track
next

Shuttle
isAt

slow fast

brake acc

(a) Type graph for vari-
ants

t1:Track

s:Shuttle

isAt

fast

t2:Track

t3:Track

next

next ∃

(b) Forbidden graph con-
straint F

slow acc

fast brake

s2a

a2f

f2f
f2b

a2b b2s
s2s

(c) Mode transi-
tions

t1:Track t2:Track
next

s:Shuttle

isAt --
isAt ++

slow

(d) Rule s2s

t1:Track t2:Track
next

s:Shuttle
isAt -- isAt ++

brake++ -- fast

(e) Rule f2b

t1:Track t2:Track
next

s:Shuttle
isAt -- isAt ++

brake++ -- acc

(f) Rule a2b

t1:Track t2:Track
next

s:Shuttle
isAt -- isAt ++

slow++ -- brake

(g) Rule b2s

t1:Track t2:Track
next

s:Shuttle
isAt -- isAt ++

acc ++ -- slow

(h) Rule s2a

t1:Track t2:Track
next

s:Shuttle
isAt -- isAt ++

fast++ -- acc

(i) Rule a2f

t1:Track t2:Track
next

s:Shuttle
isAt -- isAt ++

fast

(j) Rule f2f

next

t1:Track t2:Track

t3:Track

next

next ∃ next
s1:Shuttle

s2:Shuttle
∃

t1:Track t2:Track

∃

t1:Track t2:Track
next

next
∃

s:Shuttle

fast fast

∃ s:Shuttle

brake fast

∃ s:Shuttle

slow fast

∃ s:Shuttle

acc fast

∃ s:Shuttle

brake brake

∃ s:Shuttle

slow brake

∃ s:Shuttle

acc brake

∃ s:Shuttle

slow slow

∃ s:Shuttle

acc slow

∃ s:Shuttle

acc acc

∃
next

t1:Track t2:Track

s:Shuttle

isAt2 ∃ isAt1

(k) Assumed forbidden patterns

Figure 6: Rules and properties of variant 1

39

k-Inductive Invariant Checking for Graph Transformation Systems

A.2. Variant 2

All elements of variant 2 are depicted in Figure 7, including:

• the type graph: Figure 7(a),
• the forbidden pattern: Figure 7(b),
• the state diagram denoting the shuttle’s transitions between modes slow,
acc(elerate), fast, and brake: Figure 7(c),

• the rules, realizing movement and mode transitions: Figures 7(d), 7(e), 7(f),
7(g), 7(h), 7(i), and 7(j),

• the assumed forbidden patterns (which, negated and conjunctively joined,
are a 1-inductive invariant for the system): Figure 7(k).

In contrast to variant 1, this variant’s rules (specifically, s2a, a2f, and f2f) include
negative application conditions to check for switches when transitioning to modes
acc or fast. As shown in our evaluation, the forbidden property is a 2-inductive
invariant for this variant.

To establish the forbidden property for a graph grammar starting from an initial
graph, it has to be a k-inductive invariant (inductive step) and we have to check the
property’s absence in the first k − 1 steps from the initial state (base of induction,
see Lemma 10). As explained in Section 5, we used the model checker GROOVE to
check the base of induction. We modeled the specific initial topology depicted in
Figure 8(a), obtained the state space (Figure 8(b)) reachable by one step (by bounded
model checking for k − 1 = 2 − 1) from the specific initial topology, and found no
occurrence of our forbidden property. This proves the respective graph grammar’s
safety for that initial topology: all reachable graphs will not have a shuttle driving
on a switch while in mode fast.

We can argue that beyond that specific topology, all graph grammars that share
the same shuttle behavior in the first step (k−1) can be considered safe. The specific
track topology beyond the tracks reachable by the shuttle in one step has no effect
on the base of induction. By definition, it also has no effect on the validity of the
2-inductive invariant. Thus, we can even infer the absence of the forbidden property
for an inifinite number of graph grammars.

40

A. Running Example and Variants

Track
next

Shuttle
isAt

slow fast

brake acc

(a) Type graph for vari-
ants

t1:Track

s:Shuttle

isAt

fast

t2:Track

t3:Track

next

next ∃

(b) Forbidden graph con-
straint F

slow acc

fast brake

s2a

a2f

f2f
f2b

a2b b2s
s2s

(c) Mode transi-
tions

t1:Track t2:Track
next

s:Shuttle

isAt --
isAt ++

slow

(d) Rule s2s

t1:Track t2:Track
next

s:Shuttle
isAt -- isAt ++

brake++ -- fast

(e) Rule f2b

t1:Track t2:Track
next

s:Shuttle
isAt -- isAt ++

brake++ -- acc

(f) Rule a2b

t1:Track t2:Track
next

s:Shuttle
isAt -- isAt ++

slow++ -- brake

(g) Rule b2s

t1:Track t2:Track
next

s:Shuttle
isAt -- isAt ++

acc ++ -- slow

t3:Track

t4:Track

next

next
¬∃

(h) Rule s2a

t1:Track t2:Track
next

s:Shuttle
isAt -- isAt ++

fast++ -- acc

t3:Track

t4:Track

next

next
¬∃

(i) Rule a2f

t1:Track t2:Track
next

s:Shuttle
isAt -- isAt ++

fast

t3:Track

t4:Track

next

next
¬∃

(j) Rule f2f

next

t1:Track t2:Track

t3:Track

next

next ∃ next
s1:Shuttle

s2:Shuttle
∃

t1:Track t2:Track

∃

t1:Track t2:Track
next

next
∃

s:Shuttle

fast fast

∃ s:Shuttle

brake fast

∃ s:Shuttle

slow fast

∃ s:Shuttle

acc fast

∃ s:Shuttle

brake brake

∃ s:Shuttle

slow brake

∃ s:Shuttle

acc brake

∃ s:Shuttle

slow slow

∃ s:Shuttle

acc slow

∃ s:Shuttle

acc acc

∃
next

t1:Track t2:Track

s:Shuttle

isAt2 ∃ isAt1

(k) Assumed forbidden patterns

Figure 7: Rules and properties of variant 2

41

k-Inductive Invariant Checking for Graph Transformation Systems

(a) Initial graph (and track topology) (b) State space

Figure 8: Example topology and generated state space for k − 1 = 1

A.3. Variant 3

All elements of variant 3 are depicted in Figure 9, including:

• the type graph: Figure 9(a),
• the forbidden pattern: Figure 9(b),
• the state diagram denoting the shuttle’s transitions between modes slow,
acc(elerate), fast, and brake: Figure 9(c),

• the rules, realizing movement and mode transitions: Figures 9(d), 9(e), 9(f),
9(g), 9(h), 9(i), 9(j), 9(k), 9(l), and 9(m),

• an additional assumed forbidden pattern H16 that models the single fault
assumption: Figure 9(n),

• the assumed forbidden patterns (which, negated and conjunctively joined
(including ¬H16), are a 1-inductive invariant for the system): Figure 9(o).

In comparison to variant 2 (as depicted in Figure 7), the rule a2f has an additional
negative application condition to prevent the shuttle from driving in mode fast
when there is a switch directly ahead. However, rule f2f does not have such a
condition, which will result in the forbidden property not being a k-inductive
invariant. The additional rules s2a’, a2f’, and f2f’ model an erroneous execution
of the respective rules due to a sensor fault; due to missing negative application
conditions those rules do not check for a switch.

The additional assumed forbidden property (H16) depicted in Figure 9(n) models
the assumption that only a single (sensor) fault occurs. Under this assumption
(and the other assumed forbidden properties), the forbidden property should be a
2-inductive invariant; however, the missing condition in rule f2f leads to a missing
check that is not registered as a sensor fault. Thus, the assumption of a single fault
does not exclude a second sensor fault in rule f2f and hence, the property is not a
2-inductive invariant.

42

A. Running Example and Variants

Track
next

isAt

slow fast

brake acc

Shuttle
fault

(a) Type graph

t1:Track

s:Shuttle

isAt

fast

t2:Track

t3:Track

next

next ∃

(b) Forbidden graph con-
straint F

slow acc

fast brake

s2a
s2a‘

a2f
a2f‘

f2f
f2f‘

f2b

a2b b2s s2s

(c) Mode transi-
tions

t1:Track t2:Track
next

s:Shuttle

isAt --
isAt ++

slow

(d) Rule s2s

t1:Track t2:Track
next

s:Shuttle
isAt -- isAt ++

brake++ -- fast

(e) Rule f2b

t1:Track t2:Track
next

s:Shuttle
isAt -- isAt ++

brake++ -- acc

(f) Rule a2b

t1:Track t2:Track
next

s:Shuttle
isAt -- isAt ++

slow++ -- brake

(g) Rule b2s

t1:Track t2:Track
next

s:Shuttle
isAt -- isAt ++

acc ++ -- slow

t3:Track

t4:Track

next

next
¬∃

(h) Rule s2a

t1:Track
next

s:Shuttle
isAt -- isAt ++

fast++ -- acc

t3:Track

t4:Track

next

next ¬∃

t4:Track

next
¬∃

t2:Track

(i) Rule a2f

t1:Track
next

s:Shuttle
isAt -- isAt ++

fast

t3:Track

t4:Track

next

next ¬∃

t2:Track

(j) Rule f2f

t1:Track t2:Track
next

isAt -- isAt ++

acc ++ -- slow

s:Shuttle

fault ++

(k) Rule s2a’

t1:Track t2:Track
next

isAt -- isAt ++

fast ++ -- acc

s:Shuttle

fault ++

(l) Rule a2f’

t1:Track t2:Track
next

isAt -- isAt ++

fast

s:Shuttle

fault ++

(m) Rule f2f’

s:Shuttle

fault

 ∃
fault

(n) H16

next

t1:Track t2:Track

t3:Track

next

next ∃ next
s1:Shuttle

s2:Shuttle
∃

t1:Track t2:Track

∃

t1:Track t2:Track
next

next
∃

s:Shuttle

fast fast

∃ s:Shuttle

brake fast

∃ s:Shuttle

slow fast

∃ s:Shuttle

acc fast

∃ s:Shuttle

brake brake

∃ s:Shuttle

slow brake

∃ s:Shuttle

acc brake

∃ s:Shuttle

slow slow

∃ s:Shuttle

acc slow

∃ s:Shuttle

acc acc

∃
next

t1:Track t2:Track

s:Shuttle

isAt2 ∃ isAt1

(o) Assumed forbidden patterns

Figure 9: Rules and properties of variant 3

43

k-Inductive Invariant Checking for Graph Transformation Systems

A.4. Variant 4

All elements of variant 4 are depicted in Figure 10, including:

• the type graph: Figure 10(a),
• the forbidden pattern: Figure 10(b),
• the state diagram denoting the shuttle’s transitions between modes slow,
acc(elerate), fast, and brake: Figure 10(c),

• the rules, realizing movement and mode transitions: Figures 9(d), 10(e), 10(f),
10(g), 10(h), 10(i), 10(j), 10(k), 10(l), and 10(m),

• an additional assumed forbidden pattern H16 that models the single fault
assumption: Figure 10(n),

• the assumed forbidden patterns (which, negated and conjunctively joined
(including ¬H16), are a 1-inductive invariant for the system): Figure 9(o).

In comparison to variant 3 (Figure 9), rule f2f has been fixed; the missing negative
application condition has been added. Thus, the forbidden property is a 2-inductive
invariant under the assumed forbidden properties.

As explained in Section 5, we also used GROOVE to check the absence of the
forbidden property in the first k − 1 = 1 step(s) from the specific initial topology de-
picted in Figure 8(a). Then, with the nature of our property as a 2-inductive invari-
ant we can conclude that the forbidden property does not occur (see Lemma 10).

44

A. Running Example and Variants

Track
next

isAt

slow fast

brake acc

Shuttle
fault

(a) Type graph

t1:Track

s:Shuttle

isAt

fast

t2:Track

t3:Track

next

next ∃

(b) Forbidden graph con-
straint F

slow acc

fast brake

s2a
s2a‘

a2f
a2f‘

f2f
f2f‘

f2b

a2b b2s s2s

(c) Mode transi-
tions

t1:Track t2:Track
next

s:Shuttle

isAt --
isAt ++

slow

(d) Rule s2s

t1:Track t2:Track
next

s:Shuttle
isAt -- isAt ++

brake++ -- fast

(e) Rule f2b

t1:Track t2:Track
next

s:Shuttle
isAt -- isAt ++

brake++ -- acc

(f) Rule a2b

t1:Track t2:Track
next

s:Shuttle
isAt -- isAt ++

slow++ -- brake

(g) Rule b2s

t1:Track t2:Track
next

s:Shuttle
isAt -- isAt ++

acc ++ -- slow

t3:Track

t4:Track

next

next
¬∃

(h) Rule s2a

t1:Track
next

s:Shuttle
isAt -- isAt ++

fast++ -- acc

t3:Track

t4:Track

next

next ¬∃

t4:Track

next
¬∃

t2:Track

(i) Rule a2f

t1:Track
next

s:Shuttle
isAt -- isAt ++

fast

t3:Track

t4:Track

next

next ¬∃

t4:Track

next
¬∃

t2:Track

(j) Rule f2f

t1:Track t2:Track
next

isAt -- isAt ++

acc ++ -- slow

s:Shuttle

fault ++

(k) Rule s2a’

t1:Track t2:Track
next

isAt -- isAt ++

fast ++ -- acc

s:Shuttle

fault ++

(l) Rule a2f’

t1:Track t2:Track
next

isAt -- isAt ++

fast

s:Shuttle

fault ++

(m) Rule f2f’

s:Shuttle

fault

 ∃
fault

(n) H16

next

t1:Track t2:Track

t3:Track

next

next ∃ next
s1:Shuttle

s2:Shuttle
∃

t1:Track t2:Track

∃

t1:Track t2:Track
next

next
∃

s:Shuttle

fast fast

∃ s:Shuttle

brake fast

∃ s:Shuttle

slow fast

∃ s:Shuttle

acc fast

∃ s:Shuttle

brake brake

∃ s:Shuttle

slow brake

∃ s:Shuttle

acc brake

∃ s:Shuttle

slow slow

∃ s:Shuttle

acc slow

∃ s:Shuttle

acc acc

∃
next

t1:Track t2:Track

s:Shuttle

isAt2 ∃ isAt1

(o) Assumed forbidden patterns

Figure 10: Rules and properties of variant 4

45

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band

ISBN

Titel

Autoren / Redaktion

118

978-3-86956-405-0

Probabilistic timed graph
transformation systems

Maria Maximova, Holger
Giese, Christian Krause

117

978-3-86956-401-2 Proceedings of the Fourth HPI
Cloud Symposium "Operating
the Cloud” 2016

Stefan Klauck, Fabian
Maschler, Karsten Tausche

116

978-3-86956-397-8

Die Cloud für Schulen in
Deutschland : Konzept und
Pilotierung der Schul-Cloud

Jan Renz, Catrina Grella, Nils
Karn, Christiane Hagedorn,
Christoph Meinel

115

978-3-86956-396-1

Symbolic model generation for
graph properties

Sven Schneider, Leen
Lambers, Fernando Orejas

114

978-3-86956-395-4 Management Digitaler
Identitäten : aktueller Status
und zukünftige Trends

Christian Tietz, Chris Pelchen,
Christoph Meinel, Maxim
Schnjakin

113

978-3-86956-394-7

Blockchain : Technologie,
Funktionen, Einsatzbereiche

Tatiana Gayvoronskaya,
Christoph Meinel, Maxim
Schnjakin

112

978-3-86956-391-6

Automatic verification of
behavior preservation at the
transformation level for
relational model transformation

Johannes Dyck, Holger Giese,
Leen Lambers

111

978-3-86956-390-9

Proceedings of the 10th Ph.D.
retreat of the HPI research
school on service-oriented
systems engineering

Christoph Meinel, Hasso
Plattner, Mathias Weske,
Andreas Polze, Robert
Hirschfeld, Felix Naumann,
Holger Giese, Patrick
Baudisch, Tobias Friedrich,
Emmanuel Müller

110

978-3-86956-387-9

Transmorphic : mapping direct
manipulation to source code
transformations

Robin Schreiber, Robert
Krahn, Daniel H. H. Ingalls,
Robert Hirschfeld

109

978-3-86956-386-2

Software-Fehlerinjektion

Lena Feinbube, Daniel Richter,
Sebastian Gerstenberg, Patrick
Siegler, Angelo Haller,
Andreas Polze

108

978-3-86956-377-0

Improving Hosted Continuous
Integration Services

Christopher Weyand, Jonas
Chromik, Lennard Wolf,
Steffen Kötte, Konstantin
Haase, Tim Felgentreff, Jens
Lincke, Robert Hirschfeld

107

978-3-86956-373-2

Extending a dynamic
programming language and
runtime environment with
access control

Philipp Tessenow, Tim
Felgentreff, Gilad Bracha,
Robert Hirschfeld

Technische Berichte Nr. 119

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

k-Inductive Invariant
Checking for Graph
Transformation Systems
Johannes Dyck, Holger Giese

ISBN 978-3-86956-406-7
ISSN 1613-5652

	Title
	Imprint

	Abstract
	1 Introduction
	2 Prerequisites
	2.1. Foundations
	2.2. Formal Model

	3 k-Induction and Symbolic Encoding of Sequences
	4 k-Inductive Invariant Checking
	4.1. Step 1: Separation of Forbidden Patterns
	4.2. Step 2: Construction of k-Sequences and Context Propagation
	4.3. Step 3: Analysis of Sequences
	4.4. Implementation

	5 Evaluation
	6 Conclusion and Outlook
	References
	A Running Example and Variants
	A.1. Variant 1
	A.2. Variant 2
	A.3. Variant 3
	A.4. Variant 4

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

