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When realizing a programming language as virtual machine (VM), implementing
behavior as part of the VM, as primitive, usually results in reduced execution times.
But supporting and developing primitive functions requires more effort than main-
taining and using code in the hosted language since debugging is harder, and the
turn-around times for VM parts are higher. Furthermore, source artifacts of primitive
functions are seldom reused in new implementations of the same language. And
if they are reused, the existing application programming interface (API) usually is
emulated, reducing the performance gains. Because of recent results in tracing dy-
namic compilation, the trade-off between performance and ease of implementation,
reuse, and changeability might now be decided adversely.

In this work, we investigate the trade-offs when creating primitives, and in particu-
lar how large a difference remains between primitive and hosted function run times
in VMs with tracing just-in-time compiler (JIT). To that end, we implemented the al-
gorithmic primitive BitBlt three times for RSqueak/VM. RSqueak/VM is a Smalltalk
VM utilizing the PyPy RPython toolchain. We compare primitive implementations
in C, RPython, and Smalltalk, showing that due to the tracing JIT, the performance
gap has lessened by one magnitude to one magnitude.
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1 Introduction

Dynamically typed programming languages are usually implemented as process
virtual machines (VMs). With the increasing popularity of these languages, VM im-
plementation techniques have evolved to the point where most mature vMs utilize
some form of dynamic compilation, such as a method just-in-time compiler (JIT), or a
tracing JIT. Another large part of a VM are basic behavioral blocks, so called primitives.
Some of these primitives are unavoidable, because their behavior cannot adequately
be expressed in the implemented language. But some primitives, named algorith-
mic primitives henceforth, exist only because primitive functions evaluate faster than
identical functions implemented in the hosted language (the language implemented
by the vM).

Supporting and developing primitive functions requires more effort than main-
taining code in the hosted language since debugging is harder, and the turn-around
times for VM parts are higher. In contrast to programs implemented in the hosted
language, source artifacts of primitive functions are seldom reused in new imple-
mentations of the same language. And if they are reused, the existing API usually is
emulated, reducing the performance gains.

Additionally, when using tracing dynamic compilation, primitives should be visi-
ble to the trace recorder, to not circumvent the speed gains. Making existing primi-
tives visible increases the effort to introduce such systems, and to implement new
primitives in VMs with tracing JIT.

As a result, having algorithmic primitives being part of the vM impedes language
reimplementation and vM maintenance.

In a tracing JIT, some of the optimizations from ahead-of-time compiler (AOT)
work particularly good, and are well suited to optimize traces of primitives. This
reduces the run time gap between behavior implemented as primitive and hosted.
Especially type specialization, inlining, and loop unwinding are applicable when
applied to former primitives, because the traces are volatile.

In this work, we investigate what trade-offs exist around primitives, and in particu-
lar how large a difference remains between primitive and hosted function execution
times, when applying those optimizations.

In order to compare performance and implementation effort, we implemented
two algorithmic primitives for RSqueak/VM [10] on the different abstraction levels
available. RSqueak/VM is a Smalltalk VM using the PyPy RPython toolchain, and
as such comes with a tracing JIT.

The first primitive, fill, is a simple function which sets all fields of an numeric array
to the same constant value. The second, more complex primitive is BitBlt, which
takes bits from one two dimensional bitfield and merges them with a rectangular
part of another bitfield. BitBlt allows for bit-precise positioning and cropping. We



1 Introduction

implemented BitBIt not only in RPython and Smalltalk, but also connected and
reused an existing C implementation.

Besides providing wall times and relative run times of repeated execution of those
two primitives on the current standard Squeak vMs, we informally evaluate the other
trade-offs. In particular, the run time difference has shrunk by one magnitude to one
magnitude.

While there are attempts to reduce the amount of primitives in PyPy [17], and
to reimplement existing primitives in JavaScript[27], to our knowledge there are no
publications showing success, or explaining the reasons.

Recent achievements in tracing JIT optimization techniques have closed the speed
gap between primitive functions and their hosted equivalents to one magnitude,
because they work especially well on former primitives. As a result, and given the
benefits of hosted language implementation, the decision to add another primitive
to a VM might now be decided adversely.

Our experiences with improving RSqueak/VM and implementing primitives mul-
tiple times allow us to make the following contributions:

* We discuss possible trade-offs when implementing behavior as primitive in
contrast to in the hosted language.

* We quantify how large a runtime gap is remaining between well optimizable
functions implemented as primitive in contrast to in the hosted language, and
thus in how far speed is still a trade-off for algorithmic primitives.

Outline The remainder of this work is structured as follows. Chapter [2]introduces
into the background. It describes different types of primitives, and goes into detail
about the trade-offs to weight when implementing behavior as primitive. Based on
these trade-offs, Chapter [3| highlights the benefits of a reduced number of primitives.
It explains tracing JIT optimization techniques, and in how far meta-tracing differs
from tracing traditional. Chapter [4|discusses implementation details about the vM
and the two primitives used for evaluation, fill and BitBlt. The performance of both
primitives is measured in Chapter |5, which also presents our experiences during
implementation. The work ends with related work from both, academia and industry,
presented in Chapter||and the conclusion and future work in Chapter



2 Building Blocks of Behavior in Virtual
Machines

This chapter explains the concept of virtual machines (VMs), why they are chosen as
implementation pattern for dynamically typed programming languages, and what
functions they encompass. We will discuss what types of built in behavior are part
of VMs, and trade-offs when implementing behavior as part of the VM in detail.

Vocabulary

In the context of this work, a function is a group of statements, which may be ordered.
It has zero or more arguments, and a return value. Upon invocation, the statements
are executed with regard to their order, if any. Depending on language semantics,
unknown identifiers are looked up in the list of arguments, local variables, scope,
and global state. The language semantics also determine the return value. It might be
the value of the last statement, a value indicated by a special keyword /statement, or
aneutral value, like null, nil, or None. Methods are a specialization of functions. They
have an additional implicit argument, the receiver, and additional scope, such as the
receivers named instance variables, among other. Whenever talking about functions
in context of generic programming languages, this explicitly includes methods, in
this work.

The functions this work focuses on are explained in Section 2.2 Different language
communities have created different jargons, calling them primitives in Smalltalk, built-
ins in Python, or natives in Java. In this work, we adhere to the Smalltalk jargon.

Especially in the implementation and evaluation part of this work, we reference
the PyPy project. The PyPy project consist of a Python interpreter, and a tool chain.
The tool chain translates a subset of Python, RPython, to C, and optionally generates
a tracing dynamic compiler. In order to avoid confusion, we refer to the Python
interpreter as the PyPy interpreter, and to the toolchain as PyPy. The Python subset
compiled by the PyPy toolchain is named RPython, for reduced or restricted Python.

2.1 Virtual Machines
Traditionally, programming languages were compiled to machine code, either via

assembler, or, less commonly, via C. This results in fast binaries, if there is enough
information, such as type information, for the compiler to optimize. Creating such a

10



2.2 Primitive Building Blocks

compiler for dynamic languages is hard, and it usually yields bad performance since
few information is available at compile time.

In contrast to that, the currently more dominant way to implement programming
languages with garbage collection and dynamic types is splitting the implementation
into a compiler and an ‘execution engine’, the vM. The compiler translates source
code to an intermediate representation, which is subsequently executed by the vMm.
The compiler can be quite simple, because the language’s behavior is defined by the
VM.

In its basic version, the VM can be implemented as an interpreter stepping through
the intermediate representation. The VM can collect runtime information to enable
optimization of the dynamic parts.

Besides allowing simpler implementations, splitting the language implementation
into compiler and VM also yields the advantages of smaller program representation
and better portability.

A VM is mainly responsible for the execution and memory management. Depend-
ing on the execution model of the programming language that may include stack
management, a fetch-decode-execute cycle, calling primitive behavior, and exception
handling. In the case of a simple stack-based bytecode interpreter for a dynami-
cally typed object oriented language, this means that during execution, the vM has
a method with bytecodes, and a frame. The frame gives access to the receiver, the
object the methods self-references are bound to, local variables, the current program
counter, and a stack. Stepping through the bytecodes, the interpreter pushes onto
and pops from the stack according to each bytecode, and sends messages. Message
sends include looking up the correct method to invoke, building a frame for it and
filling the frame with receiver and arguments.

Besides execution, a VM usually manages memory. The VM allocates space, allows
read and write access, resolves references, and collects garbage.

2.2 Primitive Building Blocks

When invoking behavior in languages implemented as VM, there are ways to call
functions which are not implemented in the hosted language (the language imple-
mented by the vM). Some of those functions are grouped into libraries and called
using a foreign function interface (FFI). Other functions are part of the runtime. They
are implemented as parts of the interpreter, in linked libraries, or by some extension
mechanism provided by the VM. This second group of functions consists of primitives.
Usually, there is a big set of primitives implemented as part of the VM.

If a primitive is used often, it might have a shortcut. In bytecode based implemen-
tations, this means reserving a bytecode which will directly invoke the according
behavior. This reduces the number of function names to be saved near the call site,
and may elide the lookup of the function name, thus saving space and time. De-
pending on the language implementation, such bytecodes might be the only way to
achieve some behavior, e.g. integer addition on the Java virtual machine (JvM)[30].

11
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In most languages, there is no difference between calling a primitive or calling a
hosted function, i.e. primitive invocation is transparent. In the following, we show
three different ways how primitives can be invoked, and how the vM knows which
primitive to invoke, and how they are documented.

In Smalltalk [20], a method can have an annotation, called pragma. The pragma
can indicate a primitive by number [20| pg. 52], or by module-name-pair. When
calling a method with primitive annotation, the primitive function is run instead of
the method’s body. The VM invokes the method’s body only if the primitive fails,
e.g. because the parameters were of the wrong types. It may contain error handling
behavior, or the exact same behavior the primitive does, expressed in Smalltalk.
Named primitives may return an error code upon failing, which is then available as
temporary (local) variable.

In file-organized languages, such as Python, calling primitives is like calling an im-
ported function. The only difference is that the imported function is not implemented
in the hosted language. Primitives in such languages are usually documented in text
form, explaining a functions signature, arguments, side-effects, and return value.

In Self [37], primitives are indicated by their selectors (slot names). Every access
to a slot whose name starts with underscore (_) should call a primitive function. If
that function fails, the VM raises an error to be caught by the caller.

In the following paragraphs, we present a grouping of primitives based on their
behavior. The groups are ordered according to the necessity for having them in a
VM. We discuss them only briefly. A more detailed explanation of a taxonomy, and
the sequence would exceed the scope of this work.

Memory Primitives This set of primitives is closely related to the memory design
of the programming language. In object-oriented languages, memory primitives pro-
vide means to create new objects, access their fields, their size, and trigger garbage
collection. The behavior supplied by these primitives might be implemented as byte-
codes, because they are used frequently.

Mathematical Primitives While arithmetics and boolean operations can be imple-
mented using memory access, branching, and constants, they are used often and
have a magnitudes faster implementation in the actual machine. This group of prim-
itives consists of basic arithmetic operations such as addition, multiplication, and
inverses, but also trigonometric functions, modulo, truncation, exponential func-
tions, numeric type conversion, and root functions. The binary value primitives are
and, or, xor, bit-shift, sometimes also not (—a = a @ 13, for 32 bit integers). Another
bigger subgroup of mathematical primitives are comparison operations, such as
smaller, smaller or equal, equality, identity, and their inverses.

Foreign Function Interface FFI Usually, VMs offer a way to interface with existing
libraries. The greatest common denominator among FFIs are C calling conventions.
A FFI usually requires explicit naming of the library to find the functions in, and
marshalling for function arguments and demarshalling of return values. While in

12
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primitives, the callee is responsible for type conversions, in FFI, the caller has to
explicitly convert types.

System Calls Most process VMs offer a way to access system resources, such as
the file system, system clock, or the network. Some offer an abstracted API trying to
merge similar concepts of different operating systems, giving access to the greatest
common denominator of functionality. This way, they try to promote operating sys-
tem independent programming. The goal of a programming language determines,
whether this set of primitives includes input and output (1/0)-operations, or not.

VM Specific Primitives Depending on the implementation, the vM might offer
additional entry points, for example to register callbacks for mouse and keyboard
handling, for green threading, or for timed behavior. Furthermore, the collected
runtime information might be available to the hosted language, i.e. accessible using
primitives.

Algorithmic Primitives Some behavior can be sufficiently expressed in the hosted
language, but is never the less available as primitive. Primitives are generally con-
sidered to be faster than the same function implemented in the hosted language.
This work focuses on this group of primitives, showing why current optimization
techniques are well suited and in how far the execution time gap has closed as a re-
sult. Reasons for implementing behavior as primitive, or in the hosted language, are
explored in the following chapter. Common examples are copying blocks of mem-
ory from one collection to another, simple loops which are run regularly, sorting
algorithms, and integer arithmetics for arbitrarily large numbers.

2.3 Trading in the Basement

Whenever programmers make the decision to implement a function as a primitive,
they have to weigh the behavior, speed, and security against changeability, reuse,
and ease of implementation. In the following, we discuss each of these trade-offs in
detail.

2.3.1 Primitive Behavior

Some behavior cannot be expressed in the hosted language. Therefore, such behavior
has to be implemented as part of the VM. Among others, this may be as primitive,
as bytecode, or as node in an abstract syntax tree.

For example, starting the garbage collection of the VM the program is hosted on is
behavior which is part of the VM. And because of its low frequency of being called,
it is likely implemented as primitive.

13
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2.3.2 Speed

The goal of reduced execution time is the main reason for creating primitives which
could be implemented in the hosted language. The reasoning behind the reduced
runtime is that every method call needs a new frame. Even if that does not mean
creating a heap object, it means saving frame and stack pointer, copying the argu-
ments (including the receiver, for object oriented languages) to the new frame, and
initializing local variables. Depending on language semantics, implementing behav-
ior primitive may also remove costly method lookups, repeated access boundary
checks, and repeated boxing/unboxing of basic values such as integers, floats, or
strings.

Speed concerns can also be a reason to not implement behavior as primitive. Trac-
ing optimizations record every operation in the hosted language, but operations
done by the VM in primitives is not visible. Implementing behavior outside of the
visibility of the optimization machinery forbids it to take those operations into ac-
count, forcing it to create safe borders whenever leaving traces for primitives. On
traces exits, the vM has to create a valid frame for the primitive to operate in, and, if
applicable, box the arguments and intermediate results. If a VM utilizes tracing opti-
mizations, it needs to be able to trace primitives. The easiest way to make a primitive
visible to the tracing machinery is not having it, i.e. implementing it in the hosted
language.

2.3.3 Programming Process

Developing a VM has different properties regarding the development process and
the ease of debugging, relative to the hosted language.

First, the round-trip times may differ. The round-rip time is measured between
editing the code and seeing changed behavior. The round-trip time depends on
features such as incremental compilation, and the general speed of the VM. In order
to see the results of a VM change, the VM has to be recompiled, and then, the program
needs to run again to the point of failure. If the source of the hosted program changes,
the vM only has to rerun, skipping the compilation step.

During debugging, if the VM is developed in a language which itself translates to
C, it might have the problem of translucent abstractions. Even though programmers
writes code on one abstraction level, they need to be aware of specifics of lower ab-
straction levels. And when they debug on that lower level, they might have to match
the translated sources with their own code, further increasing the effort required,
and thus impeding debugability.

Last, the steps taken within a primitive are usually hidden from the hosted lan-
guage. This has two implications. First, this means a stepwise debugger can but
step over the primitive, since it has no intermediate representation to step through.
Second, the primitives source code is hidden in the VM sources, and usually also in
a different programming language. Thus, they require explicit documentation, and
are not easily understandable.

14



2.3 Trading in the Basement

2.3.4 Reuse

Most widely used languages have more than one implementation. Examples are
CPython, IronPython, and PyPy, all of which implement Python, MRI (or CRuby),
JRuby, Rubinius, and Topaz, which implement Ruby, and the Cog VM, RSqueak/VM,
and RoarVM, which implement Squeak Smalltalk. Even if different vMs might not
be compatible at the level of intermediate representation, any behavior not imple-
mented in the hosted language needs to be supplied by the vM. Subsequently, any
code which is not part of the original VM increases the amount of work needed to
reimplement that language. In other words, any complex behavior implemented in
the hosted language based on a small set of basic primitives can be taken and used
directly, in contrast to programs which rely on hot loops implemented primitive, or
C-compatibility for vM interfaces. Furthermore, a VM reimplementation may decide
to not adhere to C-interfaces, or to reduce the number of primitives. In such cases,
changes to the existing codebases of libraries are required.

Unfortunately, such changes break compatibility with existing language implemen-
tations, leading to either increased effort to offer two versions of popular libraries
with only small differences for the language implementations, or a decision to only
support one of the VMs.

2.3.5 Changeability

When behavior is implemented as primitive, changing it usually requires recompil-
ing the VM, or the according extension. Since rebuilding requires additional sources
and a build environment, this not only affects the round-trip times, but also encum-
bers changing primitives at all.

On the other hand, there might be behavior which should not be subject to change.
By fixing that behavior in form of a primitive, it is possible to assert a certain behavior
by controlling the vM binary.

Summary

For dynamic programming languages, virtual machine (VM) is the most prominent
pattern of implementation. VMs have several building blocks, of which basic behav-
ioral building blocks are the focus of this work. There are different ways to access
such primitive behavior, of which all known to us are shown above. Implementing be-
havior as primitive usually results in reduced execution times, sacrificing readability,
changeability, reuse, and ease of implementation.

The following chapter gives reasons why reimplementing primitives in the hosted
programming language may be wanted, and why it is feasible when using tracing
dynamic compilation.

15



3 Reimplementing Algorithmic
Primitives

Due to the advent of tracing just-in-time compilers (JITs), we argue that it is feasible to
reimplement primitives which where created solely for execution time improvements
in dynamically typed languages. We argue that some optimization techniques used
in ahead-of-time compilers (AOTs) can be used, and used more efficiently, in tracing
JITS.

3.1 Reducing the Number of Primitives

In every VM language implementation, there is behavior which cannot be expressed
in the hosted language. Therefore, all such language implementations have prim-
itives, if they do not opt to not offer that behavior. Unfortunately, having many
primitives introduces some problems.

There are few languages which have just one implementation. Some of those lan-
guage implementations are not source but immediate representation compatible, e.g.
bytecode compatible. As a result, every primitive in the reference implementation
has to be mirrored in all the other implementations. First, a small set of primitives al-
leviates reimplementation. Second, behavior which is not implemented as primitive
will work without additional effort.

Since primitives are part of the VM, there is no symbolic stepwise debugging into
primitives, to our knowledge. And if there is the goal to understand the primitive,
it’s source is usually not collocated with the primitives signature definition.

This missing information about atomic steps within primitives also means, that
tracing JITs are blind to primitives. In order to inline a primitives behavior, it has
to provide it some other way. Coping with this problem only increases the effort
to introduce a tracing JIT to a VM, or to introduce new primitives to a vM with
tracing JIT. Any defects (bug sources) identified within primitives may have longer
change-cycles, both in round-trip time during development, and for publishing.

In conclusion, we argue that reducing the number of primitives will alleviate vMm
development, and portability between the hosted language implementations.

3.2 Tracing Hot Loops

In a VM with JIT, a dynamic compiler compiles hot (frequently executed) code to
machine code and the VM caches it for reuse. A method JIT compiles blocks of code,

16



3.3 Optimizing traces

i.e. functions. A tracing JIT does not adhere to the structures supplied by the language,
but records traces (sequences of operations), and compiles those.

A vM with tracing JIT usually tracks not only the frequency at which a code block
is run, but also type and branching information. Once the JIT finds a sequence or
loop it is confident will be run again often, the JIT compiles it to machine code. When-
ever the program goes into that loop again, instead of interpreting the intermediate
representation, the VM jumps into the compiled trace. If, for some reason, the path
taken with the new arguments leads to different control flow, the JIT faults back to
the intermediate representation. In order to ensure that the control flow is the same
for different arguments, guard expressions are inserted into the trace asserting types,
values, or value-bounds. If the same guard expression is violated repeatedly, the JIT
might compile an additional trace starting at that side exit, and stitch together those
traces, creating trace trees [18].

In order to keep all traces in memory with low access delay, unused traces are
discarded to allow new traces to be compiled. Usually, tracing JITs have a long warm-
up time. The VM counts type specific at possible entry points, and in order to generate
the trace, it runs the trace in an interpreter recording every operation. Algorithmic
primitives have properties such that their traces will optimize well. They usually
have narrow type signatures and behave rather static.

3.3 Optimizing traces

The information gathered by tracing JITs are so similar to those available to AOTs, that
the most common optimization techniques used there, can also be used in tracing
JITs. Additionally, the JIT can use some optimizations not available or feasible to
AOTs for two reasons.

First, the generated traces are volatile. That means that the space-time trade-off
can be decided differently for optimizations such as loop unwinding or inlining. A
tracing JIT only applies them in hot loops, and drops them when those cool, whereas
after ahead-of-time compilation, the inflated code stays and consumes space.

Second, a tracing JIT can always go back to interpretation if an assumption turns
out to be false. This is especially important for constant folding and branch pruning.

In the following sections, we discuss a number of optimizations which are used in
both, AOT and tracing JITs, namely function folding and constant propagation, type
specialization, inlining, loop unwinding, loop peeling, and branch pruning.

3.3.1 Folding Functions and Propagating Constants

There are groups of functions which will always yield the same result, given the
same arguments [7], or which can be parenthesized differently due to associativ-
ity properties. Examples for foldable functions are arithmetic operations and true
functions. The compiler can remove the function call and directly assign the result,
when it sees such a function, and can prove that the arguments are constant. When

17



3 Reimplementing Algorithmic Primitives

a variable has a constant value, the compiler can substitute references to it with its
value.

While constant folding is also applicable in an AOT, tracing JITs can assume more
values to be constant and thus elide more functions calls. Most branching also adds
to the number of constant values.

In a VM with a tracing JIT, there might be the possibility to indicate to the tracing
machinery, that a variable should be guarded and its value can assumed to be con-
stant when compiling a trace. To our knowledge, if at all, this hint is only available in
the interpreter implementation. This hint is called promotion [35]], or “The Trick” [28]
and originates in the partial evaluation community. When used, it increases the num-
ber of constants and thus the efficiency of function folding. Promotion can be used
to implement type specialization.

3.3.2 Specializing for Types

One of the main problems when trying to compile dynamically typed languages
is the absence of type information. But, as Garret et al. [19] have shown, even in
object oriented dynamically typed languages, the types are rather stable, i.e. the
same messages are send to objects of only few different types. Since a tracing JIT
records all operations, it can also record types for both, callee and arguments. If the
tracing JIT supports promotion, type specialization is but a special case of promotion.

As a result of type specialization, method lookups may be cached, boxed types
can be substituted by their unboxed version within traces, and some object layout
guards can be removed.

3.3.3 Inlining Functions

When a compiler inlines a function, it substitutes the function call by the operations
the function has. As a result, the execution engine, central processing unit (CPU)
or VM, does not need to look up the correct function and build a frame. Inlining is
only possible, if the function lookup can be dropped because of type information
gathered or inferred.

When a tracing JIT creates a trace, it tracks every basic operation from the beginning
of the loop until its end. This means that the JIT inlines any visible functions. Example
for invisible (and thus not inline-able) functions are those in loaded libraries, FFI-calls,
and depending on the recording also primitives which are not explicitly made visible.

AOTs always have to balance the cost of inlining with the anticipated speedup.
If the compiler inlines a function, it has to copy the function body to every call
site. Inlining is desirable for medium length functions with very few call sites and
single instruction functions with many call sites. But if the compiler cannot conclu-
sively identify every call site, it has to preserve the original function, increasing the
copy-count by one, which virtually prohibits inlining long functions. Moreover, the
expected speedup is small, if a function is called few times, e.g. only during initial-
ization. Therefore, the space cost is not feasible for functions which are not called in
loops. Unfortunately, identifying those hot call sites is nontrivial.
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3.3 Optimizing traces

3.3.4 Unwinding Loops

Whenever the body of a loop is small compared to the overhead of maintaining the
loop, both AOT and JIT may unwind loops. They can either unroll the loop completely,
copying the body for every iteration after one another, or only partially, increasing
the loop step length and replicating the body accordingly.

Loop unwinding requires the number of iterations of the loop to be constant, or
multiple of some constant. Providing this constraint is usually the biggest challenge
when implementing loop unwinding.

3.3.5 Peeling Loops

Loop peeling is a special form of loop splitting. Loop splitting is an optimization tech-
nique where one loop is split into multiple, which iterate over different contiguous
part of the original loops range. As a result, the body of the loop can be optimized
with different range constraints. Loop peeling means that the compiler splits off only
the first or last iteration.

Analyzing the loop body to identify where to split is time-consuming. Therefore,
loop splitting is feasible only in AOT.

But peeling of the first iteration helps to identify loop invariants in an easy and
fast way, as shown by Ardo et al. [2]. As a result, this version of loop-peeling is used
by tracing JITs. Once the JIT identified loop invariants, it can remove repeated guard
expressions and reuse values from the last iteration.

3.3.6 Pruning Branches

A tracing JIT optimizes for one trace. That means, it does not allow branching. When
state results in changed control flow, a guard expression at the missing branch will
fail. Either the interpreter will pick up at that point, or if the same guard expres-
sion fails frequently another trace may continue. The effect of pruning all unlikely
branches is that the sophisticated prefetching mechanisms available in modern CPUs
will only fail in guard expressions. Every next opcode is just the next in memory. As
a side effect, branches which are not taken do not use up memory.

AOTs have a similar mechanism. By analyzing code, they try to identify likely
and unlikely branches, then they reorder those alternatives in such a way that the
likely branches are written to memory first. From a compilers point of view, this
means switching one conditional jump to the other, and then moving some memory
around. The effect is similar, since prefetching mechanisms can identify constant
offset jumps and follow them, and the likely branch ends with a constant offset
jump opcode skipping the unlikely alternative. Nevertheless, assumptions which
can be made because of the branching, are not valid once the control flow merges,
while traced computations usually can only merge at the loop start. As a result,
the constraints introduced by a branch are also valid after they merged, improving
constant propagation and function folding optimizations.
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3 Reimplementing Algorithmic Primitives

3.4 Meta-tracing Just-In-Time Compiler

With PyPy [8] and SPUR [6], there exist two toolchains which come with a meta-
tracing JIT. Instead of tracing the program implemented in the hosted programming
language, they trace an interpreter executing said program. To allow the meta-tracing
framework to compile traces, which are efficient for the hosted language, those frame-
works generally rely on annotations in the interpreter.

With respect to reimplementing primitives, annotated and restructured meta-
tracing JITs [9] should behave very similar to tracing JITs. With promoting, type-
specialization can be achieved. The other optimizations are the same when tracing
or meta-tracing. For meta-tracing, there are some annotations, which support con-
stant folding by declaring VM functions to be true functions, and which support loop
unwinding by explicitly telling the JIT to do so.

Apart from that, meta-tracing moves the visibility problem and as a result solves
it for the interpreter-implementor. Any primitives implemented as part of the traced
interpreter are visible. Nevertheless, the behavior which the interpreter is combined
from, the primitives it is based on, still suffers from the visibility problem.

Summary

Implementing primitives in the hosted programming language increases readability,
changeability, reusability, and ease of implementation. Due to the advances in tracing
NT techniques, the speed-up when creating primitives might not warrant sacrificing
all these benefits.

Arguing in favor of reimplementation, we show some of the common optimization
techniques which can be used by both, ahead-of-time compilers (AOTs) and tracing
just-in-time compilers (JITs), and why a dynamic compiler might actually have an
edge in using those techniques.

The next chapter describes implementations of a simple and a complex primitive,
both of which are part of the RSqueak/VM research vMm.
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4 An Example

In this chapter, we describe two algorithmic primitives, BitBlt and Fill. Both are
part of modern Squeak Smalltalk vMs. The implementation we show here is part of
RSqueak/VM. We describe both primitives, since they are of different complexity
and optimize differently. For BitBlt, we describe three implementations.

4.1 RSqueak/VM

RSqueak/VM|is a Smalltalk-80o VM. It is a reimplementation of the Squeak Inter-
preter VM [10]], which in turn is a reimplementation of the Smalltalk-8o VM [26].
RSqueak/VM aims to be a fast enough alternative to the existing Squeak Smalltalk
VMs, in order to be used and extended in research.

RSqueak/VM uses the tracing JIT generation tool chain which is part of PyPyf}
PyPy translates an interpreter implemented in RPython to C, and offers the possibil-
ity to also generate a tracing JIT for said interpreter. As a result, RSqueak/VM offers
three levels of abstraction for implementing primitives. From high to low abstrac-
tion, those are Smalltalk, the hosted language, RPython, the vM-implementation
language, and C, accessible via RPython FFI.

4.2 Filling an Array

The fill primitiveP|sets every element of an array to a constant value. The array may
be an array containing words, or bytes. It is a simple representative for the group of
algorithmic primitives. Listing [4.1illustrates how a primitive-calling method looks,
and what the alternative Smalltalk implementation with identical behavior is.

This primitive can only be called on byte- and word-arrays, therefore the receiver
types are limited. The argument is always an integer. If the receiver is a byte array,
the argument needs to fit in one byte. As a result, the arguments types and range
are bounded. On the other hand, the implementation for the vM [Listing has to
check these assumptions, because the vM-language requires type-safety.

Listing presents the RPython code implementing fill. Every primitives in
RSqueak/VM use a decorator. The decorator manages the primitive table. Every

Thttp://bitbucket.org/PyPy/lang-smalltalk (accessed April 1, 2015).
2http://www.pypy.org (accessed April 1, 2015).
3Fill's primitive number is 145.
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4 An Example

Listing 4.1: The Smalltalk declaration of primitive fill field in SequenceableCollec-
tion, together with a correct implementation in case the primitive fails

atAllPut: aNumber
<primitive: 145>
1 to: self size do: [:index | self at: index put: aNumber]

Listing 4.2: RSqueak/VM'’s fill field primitive

@expose_primitive (145, unwrap_spec=[object, pos_32bit_int])
def func(interp, s_frame, w_arg, new_value):
if disinstance(w_arg, model.W_BytesObject):
if new_value > 255:
raise PrimitiveFailedError
for i in xrange(w_arg.size()):
w_arg.setchar (i, chr(new_value))
elif (disinstance(w_arg, model.W_WordsObject)
or isinstance(w_arg, model.W_DisplayBitmap)):
for i in xrange(w_arg.size()):
w_arg.setword(i, new_value)
else:
raise PrimitiveFailedError
return w_arg

primitive has to tell it at which number to register. The decorator can manage the
stack for the primitive. It checks that there are all the arguments required, retrieves
them, and checks their types, and unwraps any boxed basic type arguments for the
primitive function. The decorator also pushes the returned value onto the stack. In
case the primitive fails, by raising a PrimitiveFailedError error, the decorator resets
the stack to its initial state and tells the VM to invoke the alternative behavior.

In this case, the decorator registers the function in slot 145, it ensures that there are
two arguments, an unspecified object and an integer. Upon success, the decorator
pushes the receiver, w_arg, onto the Smalltalk stack.

The primitive itself has to switch on the first arguments type, the receivers type,
to check for the correct upper bound of new_value. The replacement loop in lines 6 f.
and 10f. is identical to the Smalltalk implementation, although replicated for each
type because of different interfaces.

4.3 Transfering Bits
BitBlt is an algorithm which combines one rectangular block of bits in a conceptually

two dimensional array to another. The conceptually two dimensional arrays are
wrapped in form objects which remember width and height. The unique feature of
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4.3 Transfering Bits

BitBIt is that it supports bit-wise specification of source and target rectangle. To that
end, BitBlt rotates and combines consecutive words of memory.

BitBIt has its roots in graphical operations for one bit displays. “The first instance of
this operation was coded by Dan Ingalls and Diana Merry at Xerox PARC in 1975'[21].
An example is copying letters from the font-specification to a paragraph form, which
in turn is copied in parts to the world form, which is the display. Figure[.1]illustrates
this. BitBlt not only supports replacing target with source words, but also combining
them, or ignoring both, i.e. filling with a color. Current BitBlt implementations, like
WarpBIt[26], can also operate on more information per pixel, for example with 2 bit
for red, green, blue, and alpha, 8 bit in total. Colorful pixels require more combination
rules, allowing for additive or subtractive mixing of colors, or expansion of 1 bit form
values to 16 bit colors. We measured only 1bit BitBlt performance.

0 10 20 30 40 50 60 70 80
0
destForm
destX = 67 10
destY = 10
20
30
40
width = 7
height = 13
oo 0 10 240 250 260 270
0 R ' ..E. ke
sourceForm HH 4 H
sourceX = 248 10 s fl T finshadlii
sourceY = 0 ULt L L L L bt el ol LU LL aasgiaiii;

Figure 4.1: BitBlt transfers rectangular areas from one array to the other, accurate to
the bit. In this image, a paragraph is composed from letters copied from the font

form[20} pg. 335]-

In contrast to BitBlt’s semantic, Squeak Smalltalk implements BitBlt not as a message-
send to forms, but wraps the algorithm in a BitBlt object which has a field for every
argument. In order to invoke the primitive, the program needs to send #copyBits to
a correctly initialized BitBIt object.

In Smalltalk-80, copying to the screen is the same as copying to any other form,
except that one of the forms has been told prior that it should represent the dis-
play. The RSqueak/VM implementation transparently expands values and writes
to display-memory, if it writes to the display form. Nevertheless, 1 bit display forms
maintain a cached copy of the screen, to enable faster access, and because the display
memory supplied by the Simple DirectMedia Layer library (SDL) is sometimes filled
with zeros.
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4 An Example

4.3.1 ...in Smalltalk

The Smalltalk implementation mirrors the BitBlt simulation published in the Blue-
book [20]. Due to the age of the Bluebook, there are some features missing, like
additional combination rules, having the source form as an optional argument, or
switching from 16 to 32 bit word size. Unfortunately, implementing BitBlt in Smalltalk
has two problems, which also impede tracing.

First, Smalltalk has a different semantic when it comes to bit-shifts and some
arithmetic operations. If any of these operations over- or underflow in a machine-
oriented language, the result is still of the same range as the arguments, only that
a global flag is set which indicates that the last result is incomplete. In contrast, the
Smalltalk VM transparently creates LargePositivelnteger, which have a larger range,
but arithmetics with such integer is magnitudes slower.

Second, the primitive integer type Smalllnteger only covers the 31bit range. As
a result, 32 bit integer are LargePositivelnteger. In RSqueak/VM, we added a spe-
cial type for 32-bit LargePositivelnteger, which are used transparently in place of
LargePositivelnteger, and are supported by the fast arithmetic primitive functions.
Nevertheless, this increases the type variety when tracing. Resulting in several very
similar traces for the same loop, which the VM switches between according to the
result types.

4.3.2 ...in RPython

For caching information on objects that are used by RSqueak/VM, and to use the
optimized data structures supplied by RPython, RSqueak/VM uses shadows [10].
Shadows are RPython objects hidden from Smalltalk, which are attached to Smalltalk
objects. Shadows are used because in Squeak Smalltalk, any object can be used as
class, or as context, if only it has enough slots and those are filled with valid data.

Just like most objects which are used by RSqueak/VM, the RPython implementa-
tion of BitBIt uses these shadows. We attach shadows to objects used as BitBIt, or as
source or target form. In contrast to other shadows, if adding them fails, the primitive
fails instead of stopping the vM. Form shadows are the only shadows which might
detach from an object.

The BitBlt shadow behaves like any BitBltSimulation object from a Squeak image.
It checks the source and target form, reduces the actual clipping rectangle taking
into account the targeted rectangle and the actual sizes, prepares bit-masks to escape
the first and last word of each line, calculates whether to start at the top or bottom,
left or right, and copies the bits.

The form shadow allows direct access to the forms information required during
the copy loop: depth, width, height, and offset in x and y. While the original imple-
mentation uses direct memory access, we switched to indirect accesses in order to
allow switching different BitBlt implementations on the fly. The C implementation
might force layout changes to boxed arrays.

The algorithm as such is a port of our updated Smalltalk version of the original
Bluebook code. The only difference are some type annotations and value coercions.
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4.3 Transfering Bits

The latter are required to be able to run the RPython code on a Python vM and have
identical behavior to the translated program.

4.3.3 ...in C

The C implementation differs from the other two implementations because we reuse
code which is part of the current Interpreter VM. In Squeak Smalltalk, whenever a
primitive is not numbered but named, the VM looks up the primitive function in the
accordingly named shared library. If the library is present, the vM loads it, initializes
it, and then sets the interpreter. The interpreter is a structure containing the interface
between VM and library. It is in effect a function table.

In RSqueak/VM, we replicated this structure, providing the functions needed
by BitBIt. For building the C-interface, we used the decorator idiom also found in
RSqueak/VM’s primitives and many other PyPy projects.

The decorator has multiple arguments, which specify input and output of the
function it decorates. The decorator fetches and checks the arguments. The loop for
adapting the arguments is written and annotated in such a way, that PyPy can unroll
it and remove unused branches during the initial translation.

In the end, our VM creates the so called InterpreterProxy structure from all the
functions registered by name and signature.

While some of the functions of the InterpreterProxy used by BitBlt are trivial to im-
plement, there is one particular function which required more effort since it breaks
the abstractions: firstindexableField. When given a words- or bytes-array, firstIndex-
ableField should return the pointer where the collection starts, in order to allow the
plugin direct memory access. Unfortunately, this is not possible with RPython lists,
requiring manual memory management for such collections and conversion between
the two formats.

The plugin itself is written in Slang [26]]. Slang is a small subset of Smalltalk which
can be translated to C directly. It allows for only a restricted set of methods and
types. While Slang looks like Smalltalk and mostly behaves the same way when
interpreted as Smalltalk, there are two constructs required for its execution that
hindered using the sources of the current BitBlt-plugin as basis for the Smalltalk
and RPython implementation. First, Slang allows for inlined C code, which cannot
be understood by Smalltalk. Second, the aforementioned InterpreterProxy is the
receiver of plenty of messages in Slang.

Summary

This chapter gives two example of primitives implemented on different abstraction
levels in the RSqueak/VM Smalltalk vM. The first example fills a field with a con-
stant value. It is a simple and easy primitive with a simple implementation on both
abstraction levels supplied, Smalltalk and RPython.

The second example, BitBlt, copies blocks of memory accurate to the bit. BitBlt
is the biggest algorithmic primitive found in RSqueak/VM. This chapter described
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4 An Example

BitBlt implementations in Smalltalk, and RPython, and how we connected an exiting
Slang implementation to RSqueak/VM.

The next chapter evaluates both primitives presented here with respect to two
existing Squeak Smalltalk VMs, and gives some insights into the problems of imple-
menting primitives.
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5 Measuring the Gap

This chapter consists of two parts. First, we show in how far tracing former primitives
reduces their execution times, and how large a gap remains to vM-level primitives.
For this, we present numbers measured on the RSqueak/VM. Second, we discuss
what influence implementing behavior as primitive has on the implementation effort,
focusing on programming process, reuse, and changeability.

5.1 Running Primitives

We measured the speed of execution for both primitives shown in the previous
chapter on an idle 64-bit Ubuntu 12.04 with an 3.2.0 Linux kernel. The translation
toolchain is PyPy bleeding edge revision 858acbyc946f from August 8, 2013, building
on GCC 4.6.3 in a 32 bit chroot. The machine has an Intel Core i7-3520M 2.9 GHz
CPU and 7.53 GiB RAM. The VMs all run single-threaded. We used RSqueak/VM in
revision 9dbs38bbabs4. All Benchmarks run in a modified Squeak 2.2 mini-imagd
as far as possible.

We measure wall times. For measuring time, we use the Smalltalk facilities, namely
Time class>>#millisecondsToRun:. As the message name indicates, the resolution
is milliseconds. When measuring execution times of JITs, there is always the question
whether to take into account the time the JIT needs to identify a hot loop. As Bolz and
Tratt [9]] argue, there is gain in measuring both times. While JIT-implementors often
take the stance that in long-running processes, warming up times are irrelevant,
others argue that most processes are short-running. Therefore, we measured the
Smalltalk primitives twice, in order to show the penalty involved when not warming
up the JIT.

Smalltalk uses green-threading. It provides a semi-cooperative scheduler with
several priorities. As long as there are no interrupts, a thread can run as long as it
wants to. If there is an interrupt resulting in an higher priority process to continue,
the scheduler pre-empts the current process. For every measurement, we start the
normal VM, but tell the main user interface (UT)-loop to stop itself after initializa-
tion. Stopping the UI-process removes any influence the operating system (0S)’s
window manager might have. Prior to starting the image, RSqueak/VM can inject
an additional process, which starts the benchmark. The benchmark process will be
scheduled once the main process terminated itself. The benchmarks print their re-

Yhttp://bitbucket.org/pypy/lang-smalltalk/src/9db538bbab54/images/minibluebookdebug.image (ac-
cessed April 1, 2015).
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5 Measuring the Gap

Table 5.1: BitBlt benchmark on a RSqueak/VM, minimum runtime and arithmetic
mean runtime with standard deviation (in ms)

n C RPython  Smalltalk warmed-up Smalltalk cold
100 6 28 444 1480
6.66 = 0.48 29.6 X177 458 £17.8 1510 £ 23.8
1000 73 293 1300 3550
76.5 £8.50 299 £10.6 1330 £ 26.7 3620 £ 55.6
20000 884 5710 20300 24600
896 £ 20.7 /79 £ 111 20600 £ 117 24800 £ 112

sults to the command line using a set of primitives originally introduced to alleviate
debugging.

All measured primitives evaluate fast. Usually, they evaluate faster than one mil-
lisecond, the measurement resolution. Therefore, we measure the time of execution
in a loop. The loop for both our benchmarks contains only the call to the primitive,
because general interpretation of Smalltalk might be a magnitude slower, especially
when creating new objects. In case of BitBlt, we trigger several different BitBlt op-
erations. Because every call to the according primitive is so fast, the overhead of
maintaining the loop is also part of the measured time. Nevertheless, the influence
should be minimal since the JIT dynamically optimizes the loop in all cases. The
measure n gives the number of times the loop is repeated.

In order to have a baseline, we took measure in both, a classic Smalltalk Interpreter
VM version 3.7-7, the newest Interpreter vM which still can run the 2.2 image, and
a recent version of the Cog VM, which has a method JIT and generally is the fastest
VM for Squeak Smalltalk around. Because current Cog versions do not run Squeak
2.2, the benchmarks were run in a modified Squeak 4.4 image.

5.2 Taking Measure

Table|5.1}and Figure both show the same data, the minimum wall time to n times
loop through some BitBIt operations. If we switch off the JIT in RSqueak/VM, just
computing the first data point takes 24.8 s, 370 times longer than the RPython run
time. Therefore, we did not collect those.

Figure5.4|and Table |5.2[show the relative running times for the Interpreter vy,
the Cog VM, and the RSqueak/VM. The numbers are based on the minimal wall
times within the 30 samples for the largest n. The base times are the C-reference
times, except for the RSqueak/VM Fill data point, because we have only an RPython
primitive implementation. We decided to use the minimum of the sample times for
the same, largest n. The minimum wall times are closest to actual running times,
with minimal time spent on garbage collection or scheduling.
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5 Measuring the Gap

Filling an Array with a Constant Value
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ples presented in Chapter (less is better)
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5.3 Explaining the Gap

Table 5.2: Absolute and relative running times for the Interpreter vM, the Cog VM,
and the RSqueak/VM for the two example primitives (in ms). The RSqueak/VM
Fill running times are relative to the Cog Fill C time.

C RPython Smalltalk
Interpreter Fill 2,863 1 X 180,387 63 X
CogFill 2,894 1 x 167,256 58 X
RSqueak/VM Fill - 8,418 13X 16,979 6 X
Interpreter BitBlt 650 1X 389,663 599 X
Cog BitBIt 796  1X 336,494 423 X
RSqueak/VM BitBlt 884 1x 5711 6X 20,313 23 X

Figures[5.2land |5.4|display a wide value range. We decided to cut the x-axis at 33
and 65 respectively in order to get a good enough resolution for the smaller values.
The added numbers give the exact height of the cut bars.

The comparison Figure|s.4|{shows that the relative speed improved from 63 and 57
to two, or 599 and 417 to 25 respectively, resulting in a speed up between 31 and 18.

5.3 Explaining the Gap

RSqueak/VM is still in development. While some of the simple, but effective changes
explained by Bolz and Tratt [9]| have been applied, there is still room for improvement.
This can be seen by the base lines in Table Unexpectedly, the RPython imple-
mentation performs rather badly. One reason might be problems with repeatedly
accessing memory and checking bounds every time. Additionally, the RSqueak/VM
is still missing type specialized arrays, which were implemented in other PyPy vMs
at considerable effort.

The time differences between Interpreter vM and Cog are likely a result of Cogs
method JIT. It compiles the benchmarking loop, although the overhead for this loop
is negligible compared to the compilation time.

Figure 5.1/ shows that after an initial increase for further optimizations, the over-
head for compilation is a more or less constant cost. For the first two data points, the
dynamic compilation takes longer than the actual execution, nevertheless, without
compilation, the resulting times would hardly fit in this graphs range. Figure5.1]also
shows that after an initial compilation, once the traces are all there, any more tracing
information gives no additional speed-up. While the dynamic compilation overhead
seems quite large for these numbers, it is in all cases less than 5s.

During the BitBlt Benchmark for n=1000 in Figure the relative running times
seem to favor the RPython implementations. But, just like the Smalltalk implementa-
tions, the RSqueak/VM JIT also optimizes the benchmarking loop. This additional
overhead increases the runtime by the compilation time, thus decreasing the ratios.
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5 Measuring the Gap

Filling an array is a simple primitive in that it does not span multiple functions.
While the expectation was that it would yield similar results for method and tracing
1T, the difference is one magnitude. The reason is that Cog cannot yet inline code,
let alone primitives. As a result, the Cog code is only slightly faster than the naive
interpreter. The magnitude between the Interpreter VM'’s C implementation and
RSqueak/VM'’s traces can be explained by repeated guards, checking the array’s
bounds. In C, those bounds are checked only if the programmer specifically asks for
it, and not in the loop, but rather before. Those repeated guards are not an inherent
problem of PyPy, but a sign for missing hints or structural changes in RSqueak/VM.

5.4 Contesting the Results

One problem with PyPy is that you cannot deactivate the garbage collection. This
might increase running times for reimplemented primitives, because all basic types,
including integer, are boxed, and arithmetic operations repeatedly create those. On
the other hand, if objects are created within a trace and not referenced from outside,
the JIT removes those unnecessary heap allocations. Therefore, the number of created
objects once traces exist should be quite low. Additionally, the benchmarks run the
garbage collector between any two measurements. On Cog and the Interpreter v\,
integer within 31 bit range are tagged, therefore they are not allocated on the heap.
As a result, the object overhead is minimal.

A second ambiguity arises from the youth of RSqueak/VM. Squeak defines a
model of green threading, including interrupts triggered outside the vM, e.g. by
mouse movements across the window, or due to timing. While Cog and the Inter-
preter VM support those, there are still bugs in RSqueak/VM’s implementation. We
prevent the biggest of those scheduling related performance deteriorations by stop-
ping the process responsible for UI prior to benchmarking, but the heartbeats used
for timing are still active in all three VMs.

5.5 Lessons learned

This section evaluates the trade-offs explained in Section namely Programming
Process, Reuse and Changeability. The points raised here are not limited to imple-
menting algorithmic primitives. Some of them are specific to meta-tracing or PyPy.

Programming Process Developing and debugging primitives for the research vM
RSqueak/VM has three major problems. First, Python is slow compared to the trans-
lated artifact. Even when using the PyPy Python interpreter, reaching the defect
might take several minutes. In case of BitBIt, the basic case of drawing the initial
windows takes several minutes when using both primitive and non-primitive im-
plementation. As a result, the programmer either retranslates the VM, or waits for
interpretation, in order to observe a code change.
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5.5 Lessons learned

When deciding to retranslate, there is a second problem. PyPy so far does not
support incremental translation, and due to its structure is unlikely to support it any
time soon [29]]. Any source changes require retranslation of the whole vM sources.
For small vMs like RSqueak/VM, this takes about seven minutes. But translating the
PyPy Python interpreter takes about 45 minutes in the setup described above.

Third, and most problematically, behavior differs between the levels of compu-
tation. If a primitive works when interpreted as Python, it may not work when
translated. Additionally, there might be problems only when using dynamic compi-
lation, which leads to different behavior when translating the vM with and without
NIT. While some of those problems are bugs in the PyPy toolchain, there is an in-
herent problem with changed number semantics. In Python, overflowing arithmetic
operations yield results of different types, while in RPython, potentially overflowing
operations have to be checked explicitly. Additionally, changed number types might
propagate through the flow analysis and extend types far from the problem source.

With regard to the two example primitives, the Fill primitive suffered only from
the translation round-trip problem. But as the code shows (see Figure |4.2|for the
code), the primitive implementation is simple and did not require debugging. On
the other hand, implementing BitBlt illustrated some interesting problems around
the different abstraction levels.

The BitBlt implementation in C was the easiest to debug, because we could use
traditional C tools, and the debug symbols mapped to our source artifacts quite well.
This unfortunately stopped at the bridge to RPython, namely the InterpreterProxy.
There are still memory problems which only occur during dynamic compilation.
Debugging these with C-tools means working with debugging symbols for the gen-
erated sources. The mapping back to RPython is non-trivial, impeding any attempts
at understanding what the infects might have been.

For the BitBlt RPython implementation, the necessity to debug on a low level of
abstraction was less of a problem. It was the last of the three attempts to implement
BitBlt and the source code mirrors the Smalltalk implementation. The main problems
were behavioral differences between RPython and Python, namely out of bounds
array access. Negative and large indices are well-defined in Python. Thus, they raise
no objection when interpreting RPython as Python. But once translated, errors and
segmentation faults occurred, requiring repeated time-consuming translations.

The Smalltalk BitBlt was the first among the implementations. Debugging
Smalltalk requires the Smalltalk debugger to be rendered. But rendering depends on
the BitBlt primitive. As a result, we developed using an existing Smalltalk vM and
just reopened the image in RSqueak/VM for every increment. As a result, the round-
trip times were the shortest compared to the other implementations, because we did
not need to recompile the vM. Now, that we have an alternative, improving upon
the current Smalltalk BitBlt using one of the alternatives is possible, using different
BitBlt classes, or using different copyBits-methods. As a side effect, the Smalltalk
BitBlt-implementation is both hardest and easiest to debug. Hardest, because the
image does not just stop on error, but rather tries to create a debugger window, which
might fail and obscure the actual error source, and easiest, because we can use the
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Squeak IDE. Switching might swap between an in-image Smalltalk version and a
primitive implementation, or between two Smalltalk implementations.

Since Smalltalk compiles method-wise and allows to change classes in a running
system, the round-trip time is the method compilation time: a few hundred millisec-
onds.

Reuse While we show two examples of behavior implemented as primitive here,
the code for the Smalltalk comparison existed and has been used for a long time.
The BitBlt code used here originates from the Smalltalk Bluebook [20], published in
1983. The “#atPutAll’-Method is too old to have a correct timestamp.

More interestingly, there exist several primitives in Squeak, which have a correct
Smalltalk implementation in case the primitive fails. This allows us to open newer
images in older vMs, which might be missing those primitives. Also, there exists a
plugin for named primitives, called MiscPlugin, which does not have to be present
for the image to run. Of the primitives having an alternative implementations, only
one has an implementation in the RSqueak/VM: #replaceFrom:to:with:startingAt:,
which replaces a continuous block of values from one collection with values from a
second collection. In a minimized image, this primitive is used to alter immutable
symbols after creation. The alternative implementation would require several private
methods, which have been removed in the minimized image.

Even in a community as small as Squeak/Pharo Smalltalk, there exist multiple
different vM-implementations, all but one of which would benefit from a small set
of primitives. The Cog VM is an improvement of the Interpreter vM, adding the JIT.
As such, there is one main VM in two variants for Squeak Smalltalk. But then there
are the Roar VM [31], which explored primitives for parallel computation for vMs,
the Potato Virtual Machine Project[23], running on the JvM, and now RSqueak/VM,
as a research vessel built with PyPy.

Changeability All arguments against primitive behavior given in Section ap-
ply. Changing the RPython primitives required a current checkout of the PyPy and
RSqueak/VM sources, and the correct command line arguments to initiate trans-
lation. Being able to change the primitives requires superficial knowledge of the
general VM structure, and knowledge of the decorator used for registering primi-
tives. The PyPy translation works out of the box, if done in a 32 bit-environment.

The additional part needed for the C implementation are the external named
plugins compiled for the Interpreter or Cog VM. Setting up an environment to do
that is more involved [33]. But once the vM compiles, you only need to change two
configuration files to compile plugins to shared libraries.

The Smalltalk implementations on the other hand can be changed within seconds,
without requiring any tools or sources other than those coming with a standard
Squeak image.
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5.5 Lessons learned

Summary

The gap in execution times between primitives and hosted-language behavior is
still one magnitude. But, due to the techniques presented, it has also closed by one
magnitude.

Second, we described our experiences when implementing primitives for the
RSqueak/VM as well as in the hosted language. The debugging experience dif-
fers greatly, mostly because of translucent abstraction and semantic differences in
RPython and Python. Changing a former primitive is easiest and fastest in Smalltalk.

The next chapter presents some projects which promote reimplementing primi-
tives in the hosted languages, as well as other attempts to speed up dynamic language
execution.
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6 Related Work

This chapter presents efforts and academic work related to primitive reimplementa-
tion, and the advancement of JIT technologies. The first two sections describe work
taking the same stance as this takes. The following two section describe different
approaches to algorithmic primitives. The remaining sections present important
academic achievements in creating JIT, and their evolution.

6.1 JavaScript DOM-Operations

JavaScript is a dynamically typed programming language used in web-browsers. All
JavaScript runtimes used in major browsers use some version of dynamic compi-
lation. Most of the browser vendors have already, reimplemented their Document
Object Model (DOM) operations in JavaScript, or plan to do so. There have been few
publications about this particular change, and none with performance results.

Mozillas JavaScript JIT, TraceMonke [18], also traces DOM-operations. Either,
the primitives were reimplemented in JavaScript, or otherwise added into the view
of their tracing JIT [16]]. Neither performance measurements nor details have been
published.

Supposedly, in Internet Explorer 10, all DOM operations were reimplemented in
JavaScript [27]. Unfortunately, we have found no primary source confirming that.

For Chromiun’ﬂ there are plans to reimplement the DOM-API in JavaScript [27].
Chromium uses the V&JavaScript engine. V8 compiles JavaScript to machine code,
and patches fast-paths for property access during runtime. The DOM-API is currently
implemented in C++. Every call to DOM functions result in a runtime switch.

In contrast to the work presented here, the reimplementation of browser specific
DOM libraries in JavaScript improves the overall performance. Reimplementing those
libraries allows the tracing machinery to inline DOM operations, instead of exiting the
traces and escaping all arguments. Those reimplementations are not done because
of increased code understandability, or reuse.

Thttp://wiki.mozilla.org/JavaScript:TraceMonkey (accessed April 1, 2015).
2http://www.chromium.org/| (accessed April 1, 2015).
3http://developers.google.com/v8/intro| (accessed April 1, 2015).
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6.2 PyPy Python Interpreter

The general way to introduce new primitives to Python are CExtensions. While
the PyPy Python interpreter tries to maintain CExtension compatibility, they ex-
plicitly recommend reimplementing extensions in Python [1} 17, comment by M.
Fijatkowski].

The reasons for reimplementation is twofold. First, a missing visibility to the trac-
ing infrastructure results in dropping out of traces for any calls to CExtension func-
tions. Second, the Python CExtension API allows access to garbage collection im-
plementation specific details. CPython uses a reference counting garbage collector.
Since PyPy does not, the counter have to be emulated, which can be quite costly. On
the plus side, once the primitives are implemented in Python, there is the posibility
to alternatively use other Python implementations like Jython.

6.3 Quicktalk

Ballard et al. [5] proposed to enable primitive definitions in a Smalltalk dialect called
Quicktalk, in the trailer of a primitive-calling method definition in stead of the
pragma. As a result, the primitives implementation and the call site are collocated
in the sources. The dialect should behave just like Smalltalk, if copied to a methods
body, thus enabling to use the existing tools. The focus were performance improve-
ments in stable applications. Quicktalk solves some of the issues with programming
process and costs of change to primitives, but it increases the specification for the vm,
introduces another technology, and has some behavioral restrictions which prohibits
it’s use to replace existing algorithmic primitives.

6.4 Multiple Implementations of the Same Primitive

In contrast to replacing the primitive by a hosted function, there is the posibility
to maintain two implementations. In Squeak/Smalltalk, this is realized using prag-
mas [20} pg. 52] to indicate to the VM that the function is equivalent to a primitive.
But if the primitive fails for any reason, the VM invokes the methods body, which
might contain the same behavior. This way, reimplementations of Squeak Smalltalk
may choose not to implement some primitives, while at the same time old VMs are
still fast enough, which might not be the case when completely replacing primitives
by hosted functions.

With JOHN [34], Samimi reported about a prototype language which facilitated
multiple implementations for the same function, using different solving strategies,
with different running times. Given a simple and readable, but slow solution, he
proposed adding faster implementations, with the intuitive implementation to be
the reference for behavior.

In urbit’s Nock [32} 38], access to the underlying platform is intentionally impossi-
ble, prohibiting any references to primitives. Instead, optimizing VMs are supposed
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to analyze the source code and when identifying a known program, to replace it by
faster primitives called ‘jets’, which should be behavioral identical.

All of these aproaches have the problem of maintaining multiple versions of the
same behavior, and that those behaviors have to stay synchronous, especially for
corner cases.

6.5 Tracing Dynamic Languages

Chang et al. [12] were the first to describe a tracing JIT for a dynamic language, Ac-
tionScript, which is a superset of JavaScript. Besides tracing, they explore the impact
of the bytecode set, especially bytecode complexity, and type information on execu-
tion speed. They conclude that despite good performance results in benchmarks, a
tracing compiler cannot overcome a slow interpreter for typical web applications.

Gal et al. [18] expands on the idea of tracing dynamic languages. They explore
the type specializations possible, and they introduce the notion of trace trees, stitch-
ing together traces at side exits and loop-ends, allowing for traces through nested
loops as well as prepending to existing traces. Their implementation and evaluation
example is TraceMonkey, a JavaScript tracing JIT.

6.6 Meta-Tracing Dynamically Typed Languages

With SPUR [6] and PyPy [8], there exist two meta-tracing projects. In meta-tracing,
instead of tracing the application code, the JIT traces the runtime executing said
application. As a result, the JIT is agnostic to specific semantics of the implemented
programming language.

PyPy [8] is a toolchain for creating vMs in RPython. For a interpreter implemen-
tation, it can generate a tracing JIT. To optimize traces, it relies on annotations and
hints [2]. Some structural changes of the interpreter might also yield better perfor-
mance [9g].

SPUR is a collection of JiTs, which run Microsofts Common Intermediate Lan-
guage (cIL) [15]. On top of cr, there runs a JavaScript compiler and runtime im-
plemented in C#. In contrast to PyPy, SPUR removes any interpreter in the chain,
having a system solely based on JiTs. To our knowledge, there have been no language
implementations besides the JavaScript runtime using SPUR.

In SPUR, the JavaScript primitives are implemented as part of the runtime in C#.
Prior to starting the VM, the runtime is translated to ciL and then further to machine
code. Both artefacts are kept, because the primitives should remain visible to the ciL
tracing JIT. In their conclusion, they specifically attribute the performance to being
able to trace through the runtime, i.e. their primitives, thus enforcing the point taken
by the JavaScript implementations in Section
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6.7 The Beginnings of Tracing

Dynamo [4] pioneered the utilization of runtime-information to identify and opti-
mize hot paths for machine code. Because Dynamo optimizes machine code, there
are no primitives. A slightly more recent example for a binary optimization system
is Transmeta Code Morphing [13].

Based on a successor of Dynamo, Sullivan et al. described the first meta-tracer [36].
They traced through an artificial interpreter with Dynamo RIO, using hints to indi-
cate the interpreter loop and backward jumps.

YETI [39], a Java VM, applied the techniques from Dynamo to a statically typed
language, trying to improve the performance of interpretation. YETI identified hot
paths, translating methods, partial methods and traces. Among others, they applied
inlining and indirect jump elimination. Zaleski et al., the YETI team, focused on
creating a VM which could be gradually improved to a tracing VM, fostering the
integration of interpreter and trace-compiler.

6.8 Method jITs

As a predecessor to Tracing JITs, there exist method JITs [14]. Instead of inlining every
operation along a trace, a method JIT compiles frequently used blocks of behavior,
like methods, or loop-bodies, to machine code. In his work on the history of dynamic
translation systems, Aycock classified method JITs as third generation simulators,
and tracing JITs as fourth generation simulators [3].

As an optimization to method compilation, the JIT may cache lookups inline. H51-
zle et al. [24] describe method lookup caches, and in SELF, property lookup was
optimized [11]. Because of the missing type information, method JITs usually have
problems with extensive inlining. In method JITs, loops are not compiled to a single
block of machine code in general.

One of the reference VMs during evaluation, Cog VM, has a method JIT. While the
RSqueak/VM tracing JIT performed much better than the Cog VM method JIT when
tracing former primitives, RSqueak/VM performs worse in more general bench-
marks like binarytrees, nbody, or threadringf| The likely reason is the maturity of
Cog and youth of RSqueak/VM.

In retrospective, an intermediate step to type spezialization is explored in the
SELF system [25]. They proposed specializing on the receiver types, as collected by
an inline cache, generating specialized code for different receiver types.

4http://speed.bithug.org/comparison/ (accessed April 1, 2015).
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6.9 Theoretical Soundness

In [22], Guo et al. provide a model for mathematical soundness of trace optimiza-
tions, proving bisimilarity, confluence, and determinacy. They show that AOT opti-
mizations and trace optimizations are different sets, with neither being a subset of
the other. In particular, they show that traditional forward optimization are sound,
but dead store elimination, a backward data-flow optimization removing variables
which are never read, is unsound.
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7 Conclusion

In this work, we studied the impact dynamic trace compilation has on the decision
to implement behavior as primitive. When implementing behavior as primitive, pro-
grammers trade changeability, reuse, and ease of implementation for speed, and
security. And due to the advent of tracing JITs, the speed argument has lost weight.

We discussed which AOT optimizations are particularly well suited for tracing
JITs in general, and for former primitives in particular. We showed that for the two
primitives fill and BitBlt, the runtime gap has closed by one magnitude.

There is still one magnitude of speed difference remaining, to be closed by future
work. However, we argue that the costs of implementing behavior primitive are
palpable and not increasing the primitive count, or even actively reducing it, is
worth considering.

Future work on primitives, VvMs with tracing JIT, and RSqueak/VM can go into
several directions.

None of the JavaScript-projects have published any data. Gathering and discussing
that data may be fruitful task, even if it just strengthens the arguments against prim-
itives.

RSqueak/VM offers some points of improvement with high potential. Neither the
fact that objects cannot change in size after creation, nor that there might be a set of
objects, which can be assumed constant during trace generation are exploited by the
VM so far.

The current Squeak /Pharo libraries are build with the assumption that Smalllnte-
ger have a range of 31bit. Neither is this exploited in RSqueak/VM, nor is known to
us where the image will break when deciding to change that range and switch from
tagged integers to boxed integers.

While we compared several BitBlt implementations, those were not identical, in
that the C implementation is younger, but includes several optimizations. Iterating
over the Smalltalk implementation and updating it might lessen the gap for this data
point.
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