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Graph repair, restoring consistency of a graph, plays a prominent role in several
areas of computer science and beyond: For example, in model-driven engineering,
the abstract syntax of models is usually encoded using graphs. Flexible edit opera-
tions temporarily create inconsistent graphs not representing a valid model, thus
requiring graph repair. Similarly, in graph databases—managing the storage and
manipulation of graph data—updates may cause that a given database does not
satisfy some integrity constraints, requiring also graph repair.

We present a logic-based incremental approach to graph repair, generating a
sound and complete (upon termination) overview of least-changing repairs. In our
context, we formalize consistency by so-called graph conditions being equivalent to
first-order logic on graphs. We present two kind of repair algorithms: State-based
repair restores consistency independent of the graph update history, whereas delta-
based (or incremental) repair takes this history explicitly into account. Technically,
our algorithms rely on an existing model generation algorithm for graph conditions
implemented in AutoGraph. Moreover, the delta-based approach uses the new
concept of satisfaction (ST) trees for encoding if and how a graph satisfies a graph
condition. We then demonstrate how to manipulate these STs incrementally with
respect to a graph update.
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1 Introduction

Graph repair, restoring consistency of a graph, plays a prominent role in several
areas of computer science and beyond. For example, in model-driven engineering,
models are typically represented using graphs and the use of flexible edit opera-
tions may temporarily create inconsistent graphs not representing a valid model,
thus requiring graph repair. This includes the situation where different views of
an artifact are represented by a different model, i.e., the artifact is described by a
multi-model, see, e.g. [6], and updates in some models may cause a global incon-
sistency in the multimodel. Similarly, in graph databases—managing the storage
and manipulation of graph data—updates may cause that a given database does
not satisfy some integrity constraints [1], requiring also graph repair.

Numerous approaches on model inconsistency and repair (see [11] for an excel-
lent recent survey) operate in varying frameworks with diverse assumptions. In
our framework, we consider a typed directed graph (cf. [7]) to be inconsistent if
it does not satisfy a given finite set of constraints, which are expressed by graph
conditions [8], a formalism with the expressive power of first-order logic on graphs.
A graph repair is, then, a description of an update that, if applied to the given
graph, makes it consistent. Our algorithms do not just provide one repair, but a set
of them from which the user must select the right repair to be applied. Moreover,
we derive only least changing repairs, which do not include other smaller viable
repairs. Our approach uses techniques (and the tool AutoGraph) [16] designed
for model generation of graph conditions.

We consider two scenarios: In the first one, the aim is to repair a given graph
(state-based repair). In the second one, a consistent graph is given together with an
update that may make it inconsistent. In this case, the aim is to repair the graph in
an incremental way (delta-based repair).

The main contributions of the paper are the following ones:

• A precise definition of what an update is, together with the definition of some
properties, like e.g. least changing, that a repair update may satisfy.

• Two kind of graph repair algorithms: state-based and incremental (for the
delta-based case). Moreover, we demonstrate for all algorithms soundness (the
repair result provided by the algorithms is consistent) and completeness (upon
termination, our algorithms will find all possible desired repairs)1.

1Note that completeness implies totality (if the given set of constraints is satisfiable by a
finite graph, then the algorithms will find a repair for any inconsistent graph).
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1 Introduction

Summarizing, most repair techniques do not provide guarantees for the functional
semantics of the repair and suffer from lack of information for the deployment
of the techniques (see conclusion of the survey [11]). With our logic-based graph
repair approach we aim at alleviating this weakness by presenting formally its
functional semantics and describing the details of the underlying algorithms.

The paper is organized as follows: After introducing preliminaries in chapter 2,
we proceed in chapter 3 with defining graph updates and repairs. In chapter 4, we
present the state-based scenario. We continue with introducing satisfaction trees
in chapter 5 that are needed for the delta-based scenario in chapter 6. We close
with a comparison with related work in chapter 7 and conclusion with outlook in
chapter 8. For proofs of theorems and example details we refer to the appendix.
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2 Preliminaries on Graph Conditions

We recall graph conditions (GCs), defined here over typed directed graphs, used
for representing properties on such graphs. In our running example1, we employ
the type graph TG from Fig. 2.1 and we use nodes with names ai and bi to indicate
that they are of type :A and :B, respectively.

GCs state facts about the existence of graph patterns in a given graph, called
a host graph. For example, in the syntax used in our running example, the GC
∃(a, true) means that the host graph must include a node of type :A. Similarly,
∃(a b , true) means that the host graph must include a node of type :A, another
node of type :B, and an edge from the :A-node to the :B-node.

In general, in the syntax that we use in our running example, an atomic GC
is of the form ∃(H, φ) (or ¬∃(H, φ)) where H is a graph that must be (or must
not be) included in the host graph and where φ is a condition expressing more
restrictions on how this graph is found (or not found) in the host graph. For
instance, ∃(a ,¬∃(a be , true)) states that the host graph must include an :A-
node such that it has no outgoing edge e to a :B-node. Moreover, we use the
standard boolean operators to combine atomic GCs to form more complex ones.
For instance, ∃(a ,¬(∃(a be , true) ∧ ¬∃(a e , true))) states that the host graph
must include an :A-node, such that it does not hold that there is an outgoing edge e
to a :B-node and node a has no loop. In addition, as an abbreviation for readability,
we may use the universal quantifier with the meaning ∀(H, φ) = ¬∃(H,¬φ). In
this sense, the condition φ from Fig. 2.1, used in our running example, states that
every node of type :A must have an outgoing edge to a node of type :B and that
such an :A-node must have no loop.

Formally, the syntax of GCs [8], expressively equivalent to first-order logic on
graphs [5], is given subsequently. This logic encodes properties of graph extensions,
which must be explicitly mentioned as graph inclusions. For instance, the GC
∃(a ,¬∃(a be , true)) in simplified notation is formally given in the syntax of
GCs as ∃(iH,¬∃(a ↪−→ (a be ), true)), where iH denotes the inclusion ∅ ↪−→ H
with H the graph consisting of node a. This is because it expresses a property of
the extension iH. Moreover, therein the GC ¬∃(a ↪−→ (a be ), true) is actually a
property of the extension a ↪−→ (a be ).

Definition 1 (Graph Conditions (GCs) [8]) The class of graph conditions ΦGC
H for

the graph H is defined inductively:

• ∧S ∈ ΦGC
H if S ⊆fin ΦGC

H .

1We refer to chapter 1 with pointers to related work including diverse use cases in
Software Engineering for graph repair with more complex and motivating examples.
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2 Preliminaries on Graph Conditions

:A :B
:E2

:E1 ¬∃(a ,¬(∃(a be , true) ∧ ¬∃(a e , true)))

Figure 2.1: The type graph TG (left) and the GC ψ (right) for our running example

• ¬φ ∈ ΦGC
H if φ ∈ ΦGC

H .

• ∃(a : H ↪−→ H′, φ) ∈ ΦGC
H if φ ∈ ΦGC

H′ .

In addition true, false, ∨S, φ1 ⇒ φ2, and ∀(a, φ) can be used as abbreviations, with their
obvious replacement.

A mono m : H ↪−→ G satisfies a GC ψ ∈ ΦGC
H , written m |=GC ψ, if one of the following

cases applies.

• ψ = ∧S and m |=GC φ for each φ ∈ S.

• ψ = ¬φ and not m |=GC φ.

• ψ = ∃(a : H ↪−→ H′, φ) and ∃q : H′ ↪−→ G. q ◦ a = m ∧ q |=GC φ.

A graph G satisfies a GC ψ ∈ ΦGC
∅ , written G |=GC ψ or G ∈ JψK, if iG |=GC ψ.
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3 Graph Updates and Repairs

In this section, we define graph updates to formalize arbitrary modifications of
graphs, graph repairs as the desired graph updates resulting in repaired graphs, as
well as further desireable properties of graph updates.

In particular, it is well known that a modification or update of G1 resulting in
a graph G2 can be represented by two inclusions or, in general two monos, which
we denote by (l : I ↪−→ G1, r : I ↪−→ G2), where I represents the part of G1 that is
preserved by this update. Intuitively, l : I ↪−→ G1 describes the deletion of elements
from G1 (i.e., all elements in G1 \ l(I) are deleted) and r : I ↪−→ G2 describes the
addition of elements to I to obtain G2 (i.e., all elements in G2 \ r(I) are added).

Definition 2 (Graph Update) A (graph) update u is a pair (l : I ↪−→ G1, r : I ↪−→ G2)

of monos. The class of all updates is denoted by U .

Graph updates such as (iG : ∅ ↪−→ G, iG : ∅ ↪−→ G) where G is not the empty
graph delete all the elements in G that are added by r afterwards. To rule out such
updates, we define an update (l : I ↪−→ G1, r : I ↪−→ G2) to be canonical when the
graph I is as large as possible, i.e. intuitively I = G1 ∩ G2. Formally:

Definition 3 (Canonical Graph Update) If (l : I ↪−→ G1, r : I ↪−→ G2) ∈ U and every
(l′ : I′ ↪−→ G1, r′ : I′ ↪−→ G2) ∈ U and mono i : I ↪−→ I′ with l′ ◦ i = l and r′ ◦ i = r
satisfies that i is an isomorphism then (l, r) is canonical, written (l, r) ∈ Ucan.

G1 I G2

I′
l r

l′ r′
i

An update u1 is a sub-update (see [14]) of u whenever the modifications defined
by u1 are fully contained in the modifications defined by u. Intuitively, this is the
case when u1 can be composed with another update u2 such that (a) the resulting
update has the same effect as u and (b) u2 does not delete any element that was
added before by u1. This is stated, informally speaking, by requiring that I is the
intersection (pullback) of I1 and I2 and that G2 is its union (pushout).

Definition 4 (Sub-update [14]) If u = (l : I ↪−→ G1, r : I ↪−→ G2) ∈ U , u1 = (l1 :
I1 ↪−→ G1, r1 : I1 ↪−→ G3) ∈ U , u2 = (l2 : I2 ↪−→ G3, r2 : I2 ↪−→ G2) ∈ U , (r′1 : I ↪−→
I1, l′2 : I ↪−→ I2) is the pullback of (r1, l2), and (r1, l2) is the pushout of (r′1, l′2) then u1 is a
sub-update of u, written u1 ≤u2 u or simply u1 ≤ u.

G1 I1 G2 I2 G3

I

l1 r1 l2 r2

r′1 l′2

l r

Moreover, we write u1 <u2 u or u1 < u when u1 ≤u2 u and not u ≤ u1.
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3 Graph Updates and Repairs

We now define graph repairs as graph updates where the result graph satisfies the
given consistency constraint ψ.

Definition 5 (Graph Repair) If u = (l : I ↪−→ G1, r : I ↪−→ G2) ∈ U , ψ ∈ ΦGC
∅ , and

G2 |=GC ψ then u is a graph repair or simply repair of G1 with respect to ψ, written
u ∈ U (G1, ψ).

To define a finite set of desirable repairs, we introduce the notion of least changing
repairs that are repairs for which no sub-updates exist that are repairs also.

Definition 6 (Least Changing Graph Repair) If ψ ∈ ΦGC
∅ , u = (l : I ↪−→ G1, r :

I ↪−→ G2) ∈ U (G1, ψ), and there is no u′ ∈ U (G1, ψ) such that u′ < u then u is a least
changing graph repair of G1 with respect to ψ, written u ∈ Ulc(G1, ψ).

Note that every least changing repair is canonical according to this definition.
Moreover, the notion of least changing repairs is unrelated to other notions of
repairs such as the set of all repairs that require a smallest amount of atomic
modifications of the graph at hand to result in a graph satisfying the consistency
constraint. For instance, a repair u1 adding two nodes of type :A may be a least
changing repair even if there is a repair u2 adding only one node of type :B.

A graph repair algorithm is stable [11], if the repair procedure returns the identity
update (idG : G ↪−→ G, idG : G ↪−→ G) when graph G is already consistent. Obvi-
ously, a graph repair algorithm that only returns least changing repairs is stable,
since the identity update is a sub-update of any other repair.
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4 State-Based Repair

In this section, we introduce two state-based graph repair algorithms. Such algo-
rithms compute for a given graph, a set of graph repairs restoring consistency.

Definition 7 (State-Based Graph Repair Algorithm) A state-based graph repair al-
gorithm takes a graph G and a GC ψ ∈ ΦGC

∅ as inputs and returns a set of graph repairs
in U (G, ψ).

Throughout the remainder of this paper, we assume that at least one finite graph
satisfies the GC ψ, implying that at least one graph repair exists for any incon-
sistent graph. Note that the tool AutoGraph [16] can be used to verify this
condition as follows: It determines the operation A that constructs a finite set of
all minimal graphs satisfying a given GC ψ. Formally, A(ψ) = ∩{S ⊆ JψK | ∀G′ ∈
JψK. ∃G ∈ S. ∃m : G ↪−→ G′.true}. While AutoGraph may not terminate when
computing this operation due to the inherent expressiveness of GCs, it is known
that AutoGraph terminates whenever ψ is not satisfied by any graph.

In the following first state-based algorithm Repairsb,1, we employ the operation
A to obtaining repairs by computing the set A(ψ ∧ ∃(iG, true)) that contains all
minimal graphs that (a) satisfy ψ and (b) include a copy of G. Every minimal graph
contained in this set then results in one graph repair without deletion.

Definition 8 (State-Based Graph Repair Algorithm Repairsb,1) If G is a graph and
ψ ∈ ΦGC

∅ then Repairsb,1(G, ψ) = {(idG, r : G ↪−→ G′) | G′ ∈ A(ψ ∧ ∃(iG, true))}.

Due to the minimality of the obtained graphs, we compute only least changing
repairs. In particular, if graph G satisfies ψ, we obtain the repair (idG, idG). However,
we do not obtain any repair for graph G′u from Fig. 4.1 and GC ψ from Fig. 2.1
because the loop on node a2 would invalidate any graph including G′u.

Theorem 1 (Functional Semantics of Repairsb,1) The state-based graph repair algo-
rithm Repairsb,1 is sound in the sense of Repairsb,1(G, ψ) ⊆ Ulc(G, ψ), and complete
(upon termination) with respect to non-deleting repairs in Ulc(G, ψ).

Subsequently, we introduce our second state-based algorithm Repairsb,2 that com-
putes all least changing graph repairs. In this algorithm we use the approach of
Repairsb,1 but compute A(ψ ∧ ∃(iGc , true)) whenever an inclusion l : Gc ↪−→ G de-
scribes how G can be restricted to one of its subgraphs Gc. Every graph G′ obtained
from the application of A for one of these graphs Gc then results in one graph
repair returned by Repairsb,2.

To this extent we introduce the notion of a restriction tree (see example in Fig. 4.1)
having all subgraphs Gc of a given graph G as nodes as long as they include the

14



4 State-Based Repair

graph Gmin, which is the empty graph in the state-based algorithm Repairsb,2 but
not in the algorithm Repairdb in chapter 6, and where edges are given in this tree
by inclusions that add precisely one node or edge.

Definition 9 (Restriction Tree RT) If G and Gmin are graphs and S = {l : Gc ↪−→ Gp |
Gmin ⊆ Gc ⊂ Gp ⊆ G, l is an inclusion}, S′ is the least subset of S such that the closure
of S′ under ◦ equals S then a restriction tree RT(G, Gmin) is a least subset of S′ such
that for all two inclusions l1 : G ↪−→ G1 ∈ S′ and l2 : G ↪−→ G2 ∈ S′ one of them is in
RT(G, Gmin).

The algorithm Repairsb,2 is defined using an operation Repairrec recursively
considering the graphs in the restriction tree RT(G, ∅) starting with idG, denoting
the “root” graph G. More precisely, Repairrec is a procedure with three parameters:
a graph G to be repaired, a condition ψ with respect to which we want to repair G,
and an inclusion l : Gc ↪−→ G. The recursive traversal computes for graph Gc not yet
satisfying ψ a set of repairs using A(ψ ∧ ∃(iGc , true)) as explained above and then
descends to the children of Gc. This procedure terminates for graphs Gc already
satisfying ψ leading to the repair (l : Gc ↪−→ G, idGc), since smaller graphs would
always lead to repairs that are not least changing.

Definition 10 (Recursive Repair Operation Repairrec) If G is a graph, ψ is a condi-
tion, and l : Gc ↪−→ G is a mono, then Repairrec(G, ψ, l) = S if one of the following cases
applies.

• If Gc ∈ JψK then S = {(l, idGc)}.

• If Gc /∈ JψK then S = {(l, r : Gc ↪−→ G′) | G′ ∈ A(ψ ∧ ∃(iGc , true))}
∪⋃{Repairrec(G, ψ, l ◦ l′) | l′ : Gd ↪−→ Gc ∈ RT(G, ∅)}.

Considering our running example, the restriction tree in Fig. 4.1 is traversed entirely
using Repairrec except for the four graphs without a border. They are not traversed
as they have the supergraph marked 9 satisfying ψ. The resulting graph repairs for
the condition ψ are given by the graphs marked by 3–6.

The operation Repairrec(G, ψ, iG) returns all least changing graph repairs of G,
but it may generate further repairs that are not least changing. Therefore, we define
our second state-based graph repair algorithm Repairsb,2 to first apply Repairrec

and to then remove all graph repairs that are not least changing.

Definition 11 (Graph Repair Algorithm Repairsb,2) If G is a graph and ψ ∈ ΦGC
∅

then Repairsb,2(G, ψ) is the largest subset of all least-changing repairs that is contained
in Repairrec(G, ψ, idG).

Our second state-based graph repair algorithm is indeed sound and complete
whenever the calls to AutoGraph using A terminate.

Theorem 2 (Functional Semantics of Repairsb,2) The state-based graph repair algo-
rithm Repairsb,2 is sound in the sense of Repairsb,2(G, ψ) ⊆ Ulc(G, ψ), and complete
in the sense of Ulc(G, ψ) ⊆ Repairsb,2(G, ψ), upon termination.

15



4 State-Based Repair

RT(G′u, ∅)

a1 b1 a2 G′u

a1 b1 a2 a1 b1 a2

a1 b1

a1 b1

a1 b1

∅

b1 a2a1 b1 a2 a1 a2

b1 a2a2a1 a2

a2

a2 b1

a1 b1

a1 b1 a2

a1 b1 b2 a2 1

24

3

5

6

7

8

9

Figure 4.1: The restriction tree RT(G′u, ∅) (enclosed by the polygon) and four graph
repairs (marked 3–6) generated using Repairsb,2
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5 Satisfaction Trees

The state-based algorithms introduced in the previous section are inefficient when
used in a scenario where a graph needs repair after a sequence of updates that all
need repair. We thus present in chapter 6 an incremental algorithm reducing the
computational cost for a repair when an update is provided. This algorithm uses
an additional data structure, called satisfaction tree or ST, which stores information
on if and how a graph G satisfies a GC ψ (according to Def. 1). In this section, given
ψ and G, we define how such an ST γ is constructed and how it is updated once
the graph G is updated.

If ψ is a conjunction of conditions, its associated ST γ is a conjunction of STs
and if ψ is a negation of a conditions, its associated γ is a negation of an ST. In
the case when ψ is a ∃(a : H ↪−→ H′, φ), recall that a match m : H ↪−→ G satisfies
ψ if there exists a q : H′ ↪−→ G such that m = q ◦ a and q |=GC φ. For this case,
we keep in ST each q satisfying these two conditions and also each q that satisfies
the first condition, but not the second. More precisely, for the case of existential
quantification, the corresponding ST is of the form ∃(a : H ↪−→ H′, φ, mt, m f ), where
mt and m f are partial mappings (we use sup( f ) to denoted the elements actually
mapped by a partial map f ) that map matches q : H′ ↪−→ G that satisfy m = q ◦ a (for
a previously known m : H ↪−→ G) to an ST for the subcondition φ. The difference
between both partial functions is that mt maps matches q to STs for which q |=GC φ

while m f maps matches q to STs for which q 6|=GC φ. Consider Fig. 5.1b for an
example of an ST γγγu.

The following definition describes the syntax of STs. The STs are defined over
matches into a graph G to allow for the basic well-formedness condition that every
mapped match q satisfies q ◦ a = m.

Definition 12 (Satisfaction Trees (STs)) The class of all Satisfaction Trees ΓST
m for a

mono m : H ↪−→ G contains γ if one of the following cases applies.

• γ = ∧S and S ⊆fin ΓST
m .

• γ = ¬χ and χ ∈ ΓST
m .

• γ = ∃(a, φ, mt, m f ), a : H ↪−→ H′, φ ∈ ΦGC
H′ , mt, m f ⊆fin {(q : H′ ↪−→ G, γ̄) |

q ◦ a = m, γ̄ ∈ ΓST
q }, and mt, m f are partial maps.

The following satisfaction predicate |=GC for STs defines when an ST γ for a mono
m states that the contained GC ψ is satisfied by the morphism m.

Definition 13 (ST Satisfaction) An ST γ ∈ ΓST
m:H↪−→G is satisfied, written |=ST γ, if

one of the following cases applies.

17



5 Satisfaction Trees

• γ = ∧S and |=ST χ (for each χ ∈ S).

• γ = ¬χ and 6|=ST χ.

• γ = ∃(a, φ, mt, m f ) and mt 6= ∅.

The following recursive operation constructs an ST γ for a graph G and a condition
ψ so that γ represents how G satisfies (or not satisfies) ψ. Note that the match m
in the definition of STs above and the construction of an ST below corresponds
to the match m : H ↪−→ G from Def. 1 that we operationalize in the following
definition. For conjunction and negation, we construct the STs from the STs for the
subconditions. For the case of existential quantification, we consider all morphisms
q : H′ ↪−→ G for which the triangle q ◦ a = m commutes and construct the STs for
the subcondition φ under this extended match q. The resulting STs are inserted into
mt and m f according to whether they are satisfied.

Definition 14 (Construct ST (cst)) Given m : H ↪−→ G and ψ ∈ ΦGC
H , we define

cst(ψ, m) = γ, with γ ∈ ΓST
m as follows.

• If ψ = ∧S then γ = ∧{cst(φ, m) | φ ∈ S}.

• If ψ = ¬φ then γ = ¬ cst(φ, m).

• If ψ = ∃(a : H ↪−→ H′, φ), mall = {(q : H′ ↪−→ G, χ) | q ◦ a = m, cst(φ, q) = χ},
mt = {(q, χ) ∈ mall ||=ST χ}, m f = mall \mt, then γ = ∃(a, φ, mt, m f ).

If G is a graph and ψ ∈ ΦGC
∅ , then cst(ψ, G) = cst(ψ, iG).

This construction of STs then ensures that |=ST γ if and only if G |=GC ψ. Note that
|=ST γγγu holds for the ST γγγu from Fig. 5.1b, the GC ψ from Fig. 2.1, and the graph
Gu from Fig. 5.1a.

Theorem 3 (Sound Construction of STs) If m : H ↪−→ G, ψ ∈ ΦGC
H , and cst(ψ, m) =

γ then |=ST γ iff m |=GC ψ.

Subsequently, we define a propagation operation ppgU of an ST γ for a graph
update u = (l : I ↪−→ G, r : I ↪−→ G′) to obtain an ST γ′ such that γ′ = cst(ψ, G′)
whenever γ = cst(ψ, G). This overall propagation is performed by a backward
propagation of γ for l using the operation ppgB followed by a forward propagation
of the resulting ST for r using the operation ppgF.

For backward propagation, we describe how the deletion of elements in G by
l : I ↪→ G affect its associated ST γ. To this end, we preserve those matches
q : H ↪−→ G for which no matched elements are deleted. This is formalized by
requiring a mono q′ : H ↪−→ I such that l ◦ q′ = q. The matches q with deleted
matched elements can not be preserved and are therefore removed.

Definition 15 (Propagate Match (ppgMatch)) If q : H ↪−→ G and l : I ↪−→ G are
monos, then ppgMatch(q, l) is the unique q′ : H ↪−→ I such that l ◦ q′ = q if it exists and
⊥ otherwise.
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5 Satisfaction Trees

a1 b1
e1

a2
e2

Gu

a1 b1
e1

a2

Iu

a1 b1
e1

a2 e3

G′u

lu ru

(a) A graph update u = (lu : Iu ↪−→ Gu, ru : Iu ↪−→ G′u)

γγγu = ¬∃(a ,¬(∃(a be , true)∧¬∃(a e , true)), ∅, {a2 7→ γγγu,1, a1 7→ γγγu,2})

γγγu,1 = ¬(∃(a be , true, {a2 b1
e2 7→ true}, ∅) ∧ ¬∃(a e , true, ∅, ∅))

γγγu,2 = ¬(∃(a be , true, {a1 b1
e1 7→ true}, ∅) ∧ ¬∃(a e , true, ∅, ∅))

(b) The ST γγγu for Gu (see Fig. 5.1a) and ψ (see Fig. 2.1).

γγγI
u = ¬∃(a ,¬(∃(a be , true)∧¬∃(a e , true)), {a2 7→ γγγI

u,1}, {a1 7→ γγγI
u,2})

γγγI
u,1 = ¬(∃(a be , true, ∅, ∅) ∧ ¬∃(a e , true, {a2 e3 7→ true}, ∅))

γγγI
u,2 = ¬(∃(a be , true, {a1 b1

e1 7→ true}, ∅) ∧ ¬∃(a e , true, ∅, ∅))

(c) The ST γγγI
u for Iu (see Fig. 5.1a) and ψ (see Fig. 2.1) that is obtained as the backward

propagation ppgB(γγγu, lu) from γγγu (see Fig. 5.1b) and lu (see Fig. 5.1a).

γγγ′u = ¬∃(a ,¬(∃(a be , true)∧¬∃(a e , true)), {a2
(R1)7→ γγγ′u,1}, {a1 7→ γγγ′u,2})

γγγ′u,1 = ¬(∃(a be , true, ∅(R2), ∅) ∧ ¬∃(a e , true, {a2 e3
(R3)7→ true}, ∅))

γγγ′u,2 = ¬(∃(a be , true, {a1 b1
e1 7→ true}, ∅) ∧ ¬∃(a e , true, ∅, ∅))

(d) The ST γγγ′u for G′u (see Fig. 5.1a) and ψ (see Fig. 2.1) that is obtained as the forward
propagation ppgF(γγγI

u, ru) from γγγI
u (see Fig. 5.1b) and ru (see Fig. 5.1a). Also γγγ′u is

the result of ppgU(γγγu, u) that applies backward and forward propagation. The viable
points for the delta-based repair discussed in chapter 6 are indicated by (R1)–(R3).

Figure 5.1: A graph update and an ST with its propagation over the graph update
where GCs are underlined in STs for readability
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5 Satisfaction Trees

The following recursive backward propagation defines how deletions affect the
maps mt and m f of the given ST. That is, when γ = ∃(a, φ, mt, m f ), we (a) entirely
remove a mapping (m, χ) from mt or m f if ppgMatch(q, l) = ⊥ and (b) construct for
a mapping (m, χ) from mt or m f the pair (ppgMatch(q, l), χ′) where χ′ is obtained
from recursively applying the backward propagation on χ when ppgMatch(q, l) 6=
⊥. The updated pair (ppgMatch(q, l), χ′) must be rechecked to decide to which
partial map this pair must be added to ensure that the resulting ST corresponds to
the ST that would be constructed for G′ directly.

Definition 16 (Backward Propagation (ppgB)) If m : H ↪−→ G, γ ∈ ΓST
m , l : I ↪−→ G,

ppgMatch(m, l) = m′ : H ↪−→ I, and γ′ ∈ ΓST
m′ then ppgB(γ, l) = γ′ if one of the

following cases applies.

• γ = ∧S and γ′ = ∧{ppgB(χ, l) | χ ∈ S}.

• γ = ¬χ and γ′ = ¬ppgB(χ, l).

• γ = ∃(a, φ, mt, m f ), mall = {(q′, χ′) | (q, χ) ∈ mt ∪ m f ∧ ppgMatch(q, l) =

q′ 6= ⊥ ∧ ppgB(χ, l) = χ′}, m′t = {(q, χ) ∈ mall ||=ST χ}, m′f = mall \m′t, and
γ′ = ∃(a, φ, m′t, m′f ).

Note that ppgMatch(iG, l) = iG and, hence, the operation ppgB is applicable for all
ST γ ∈ ΓST

iG
, which is sufficient as we define consistency constraints using GCs over

the empty graph as well.
In the case of forward propagation where additions are given by r : I ↪−→ G′ we

can preserve all matches using an adaptation. But the addition of further elements
may result in additional matches as well that may satisfy the conditions to be
included in the corresponding mt and m f from the ST at hand.

Definition 17 (Forward Propagation (ppgF)) If γ ∈ ΓST
m:H↪−→I , r : I ↪−→ G′, and

γ′ ∈ ΓST
r◦m then ppgF(γ, r) = γ′ if one of the following cases applies.

• γ = ∧S and γ′ = ∧{ppgF(χ, r) | χ ∈ S}.

• γ = ¬χ and γ′ = ¬ppgF(χ, r).

• γ = ∃(a, φ, mt, m f ), mall = {(r ◦ q, γ′) | (q, χ) ∈ mt ∪m f ∧ ppgF(χ, r) = γ′} ∪
{(q, γq) | q ◦ a = r ◦m, (@q′ ∈ sup(mt) ∪ sup(m f ). r ◦ q′ = q), cst(φ, q) = γq},
m′t = {(q, χ) ∈ mall ||=ST χ}, m′f = mall \m′t, and γ′ = ∃(a, φ, m′t, m′f ).

We now define the composition of both propagations to obtain the operation ppgU
that updates an ST for an entire graph update.

Definition 18 (Update Propagation (ppgU)) If m : H ↪−→ G, γ ∈ ΓST
m , l : I ↪−→

G, ppgMatch(m, l) = m′ : H ↪−→ G′, and r : I ↪−→ G′ then ppgU(γ, (l, r)) =

ppgF(ppgB(γ, l), r) ∈ ΓST
m′ .

The overall propagation given by this operation is incremental, in the sense that
the operation cst is only used in the forward propagation on parts of the graph
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5 Satisfaction Trees

a1 b1 a2

G′u

a1 b1 a1 b1

a1 b1 a2 a1 b1 a2

a1 b1

a1 b1 a2

a1 b1 b2 a2

a1 b1 a2

a1 b1 b2 a2

a1 b1 b2 a2

1

2

3

4

Figure 5.2: An example for delta-based graph repair using Repairdb

G′, where the addition of graph elements by r from the graph update results in
additional matches q according to the satisfaction relation for GCs. Finally, we state
that ppgU incrementally computes the ST obtained using cst. The proof of this
theorem relies on the fact that this property also holds for ppgB and ppgF.

Theorem 4 (ppgU is Compatible with cst) If G is a graph, ψ ∈ ΦGC
∅ , l : I ↪−→ G, and

r : I ↪−→ G′ then ppgU(cst(ψ, G), (l, r)) = cst(ψ, G′).
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6 Delta-Based Repair

The local states of delta-based graph repair algorithms may contain, besides the
current graph as in state-based graph repair algorithms, an additional value. In our
delta-based graph repair algorithm this will be an ST.

Definition 19 (Delta-Based Graph Repair Algorithm) Delta-based graph repair al-
gorithms take a graph G, a GC ψ ∈ ΦGC

∅ , and a value q as inputs and return a set of pairs
(u, q′) where u ∈ U (G, ψ) is a graph repair and q′ is a value.

Our delta-based graph repair algorithm Repairdb will be based on the single
step operation Repairdb1. Given a graph G, a GC ψ ∈ ΦGC

∅ , the ST γ that equals
cst(ψ, G), and a graph update u = (l : I ↪−→ G, r : I ↪−→ G′), the single step operation
Repairdb first updates γ using ppgU for the graph update u and then determines
using Repairdb1, if necessary, graph repairs for the resulting ST γ′ according to
the repair rules described in the following. The algorithm Repairdb then uses
Repairdb1 in a breadth first manner to obtain multi-step repairs.

For our example from Fig. 5.1a, such a multi-step repair of G′u is given in Fig. 5.2
where the graph updates are obtained resulting in the graphs marked 1–3, of which
only the graph marked 1 satisfies ψ. The algorithmRepairdb then computes further
graph updates resulting in the graph marked 4 also satisfying ψ.

The operation Repairdb1 for deriving single-step repairs depends on two local
modifications. Firstly, a GC ∃(a : H ↪−→ H′, φ) occurring as a subcondition in the
consistency constraint ψ may be violated because, for the match m : H ↪−→ G that
locates a copy of H in the graph G under repair, no suitable match q : H′ ↪−→ G can
be found for which q ◦ a = m and q |=GC φ are satisfied. The operation Repairadd
resolves this violation by (a) using AutoGraph to construct a suitable graph Hs

and by (b) integrating this graph Hs into G resulting in G′ such that a suitable
match q : H′ ↪−→ G′ can be found.

Definition 20 (Local Addition Operation Repairadd) If a : H ↪−→ H′, φ ∈ ΦGC
H′ ,

m : H ↪−→ G, Hs ∈ A(∃(iH, ∃(a, φ))), k : H ↪−→ Hs, and (m̄ : Hs ↪−→ G′, r : G ↪−→ G′) is
the pushout of (m, k) then r ∈ Repairadd(a, φ, m).

G G′

HH′ Hs
a

m

k

m̄
r

In our running example, Repairadd determines a graph repair resulting in the
graph marked 2 in Fig. 5.2. For this repair, we considered the sub-ST marked by
(R2) in Fig. 5.1d, where the morphism m matches the node a from ψ to the node
a2 in G′u, but where no extension of m can also match a node :B and an edge
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6 Delta-Based Repair

between these two nodes. The repair performed then uses a be for the graph
Hs, resulting in the addition of the node b2 and the edge from a2 to b2.

Secondly, a GC ∃(a : H ↪−→ H′, φ) occurring as a subcondition in the consistency
constraint ψ may be satisfied even though it should not when occurring underneath
some negation. Such a violation is determined, again for a given match m : H ↪−→ G,
by some match q : H′ ↪−→ G satisfying q ◦ a = m and q |=GC φ. The local repair
operation Repairdel repairs such an undesired satisfaction by selecting a graph
Hp such that H ⊆ Hp ⊂ H′ using a restriction tree (see Def. 9) and deleting
Gdel = q(H′) \ q(Hp) from G. Technically, we can not use the pushout complement
of a′ and q as it does not exists when edges from G \ Gdel are attached to nodes in
Gdel. Hence, we determine the pushout complement of a′′ and k′, which must be
constructed for this purpose suitably.

Definition 21 (Local Deletion Operation Repairdel ) If a : H ↪−→ H′, q : H′ ↪−→ G,
a′ : Hp ↪−→ H′ ∈ RT(H′, H), m1 : H′ ↪−→ X2 where X2 is obtained from q(H′) by adding
all edges (with their nodes) that are connected to nodes in q(H′) \ q(a′(Hp)), k′ : X2 ↪−→ G
is obtained such that k′ ◦m1 = q, m2 : Hp ↪−→ X1 where X1 is obtained from Hp by adding
all nodes in X2 \ q(H′), a′′ : X1 ↪−→ X2 is obtained such that a′′ ◦m2 = m1 ◦ a′, and (l :
G′ ↪−→ G, m′ : X1 ↪−→ G′) is the pushout complement of (a′′, k′) then l ∈ Repairdel(a, q).

G G′

X2

H′H Hp

X1

m1 m2

a

m
q

a′

a′′

k′ m′
l

In our example, Repairdel determines a repair resulting in the graph marked 1

in Fig. 5.2. For this repair, we considered the sub-ST marked by (R1) in Fig. 5.1d
where the mono m matches the node a from ψ to the node a2 in G′u. The repair
performed then uses Hp = ∅ for the removal of the node a2 along with its adjacent
loop (for which the technical handling in Repairdel is required).

The recursive operation Repairdb1 below derives updates from an ST γ that
corresponds to the current graph G (for our running example, these are γγγ′u and
G′u from Fig. 5.1d). In the algorithm Repairdb, we apply Repairdb1 for the initial
match iG, γ, and true where this boolean indicates that we want γ to be satisfied.
This boolean is changed in Rule 3 whenever the recursion is applied to an ST
¬γ′ because we expect that γ′ is not to be satisfied iff we expect that ¬γ′ is to be
satisfied. For conjunction, we either attempt to repair a sub-ST for b = true in Rule 1

or we attempt to break one sub-ST for b = false. For existential quantification and
b = true, we use Repairadd as discussed before in Rule 4 or we attempt to repair
one existing match contained in m f in Rule 5. Also, for existential quantification
and b = false, we use Repairdel as discussed before in Rule 6 or we attempt to
break one existing match contained in mt in Rule 7.

Definition 22 (Single-Step Delta-Based Repair Algorithm Repairdb1) If m : H ↪−→
G, γ ∈ ΓST

m , and b ∈ B, then (l : I ↪−→ G, r : I ↪−→ G′) ∈ Repairdb1(m, γ, b) if one of the
following cases applies.
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6 Delta-Based Repair

• Rule 1 (repair one subcondition of a conjunction):
b = true,γ = ∧S, χ ∈ S, 6|=ST χ, (l, r) ∈ Repairdb1(m, χ, b).

• Rule 2 (break one subcondition of a conjunction):
b = false,γ = ∧S, χ ∈ S, |=ST χ, (l, r) ∈ Repairdb1(m, χ, b).

• Rule 3 (repair/break the subcondition of a negation):
γ = ¬χ, (l, r) ∈ Repairdb1(m, χ,¬b).

• Rule 4 (repair an existential quantification by local extension):
b = true,γ = ∃(a, φ, mt, m f ), mt = ∅, r ∈ Repairadd(a, φ, m), l = idG.

• Rule 5 (repair an existential quantification recursively):
b = true,γ = ∃(a, φ, mt, m f ), mt = ∅, m f (k) = χ, (l, r) ∈ Repairdb1(k, χ, b).

• Rule 6 (break an existential quantification by local removal):
b = false,γ = ∃(a, φ, mt, m f ), mt(k) 6= ⊥, l ∈ Repairdel(a, k), r = idG′ .

• Rule 7 (break an existential quantification recursively):
b = false,γ = ∃(a, φ, mt, m f ), mt(k) = χ, (l, r) ∈ Repairdb1(k, χ, b).

We define the recursive algorithm Repairdb to apply Repairdb1 to obtain repairs
as iterated applications of single-step repairs computed by Repairdb1.

Definition 23 (Delta-Based Repair Algorithm Repairdb ) If u = (l : I ↪−→ G, r :
I ↪−→ G′) ∈ U , γ ∈ ΓST

iG
, and γ′ = ppgU(γ, u) then Repairdb(u, γ) = S if one of the

following cases applies.

• |=ST γ′ and S = {((idG′ , idG′), γ′)}.

• 6|=ST γ′, S′ = {(u′, ppgU(γ′, u′)) | u′ ∈ Repairdb1(iG, γ′, true)}, and
S = {(u′, γ′) ∈ S′ ||=ST γ′} ∪⋃{(u′′ ◦ u′, γ′′) | (u′, γ′) ∈ S′, 6|=ST γ′, (u′′, γ′′) ∈
Repairdb(u′, γ′), u′′ ◦ u′ 6= ⊥}.1

This computation does not terminate when repairs trigger each other ad infinitum.
However, a breadth-first-computation of Repairdb gradually computes a set of
sound repairs. Obviously, GCs that trigger such nonterminating computations
should be avoided but machinery for detecting such GCs is called for.

Note that the algorithm Repairdb computes fewer graph repairs compared to
Repairsb,2 because repairs are applied locally in the scope defined by the GC ψ.
For example, no repair would be constructed resulting in the graph marked 4

in Fig. 4.1. In general, explicitly also using bigger contexts in ψ results in the
additional computation of less–local graph repairs. For example, the condition
ψ may be rephrased into ψ′ = ψ ∧ ¬∃(a b ,¬∃(a be , true)) to also obtain the
graph repair marked 4 in Fig. 4.1. We now define the updates, which we expect to
be computed by Repairdb1, as those that repair a single violation of the GC ψ by
defining a local update to be embeddable into the resulting update via a double
pushout diagram as in the DPO approach to graph transformation [15].

1If u1 and u2 are updates then u1 ◦ u2 = u if u1 ≤u2 u or u = ⊥ otherwise (see Def. 4).
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6 Delta-Based Repair

Definition 24 (Locally Least Changing Graph Update) If G1 is a graph, ψ ∈ ΦGC
∅ ,

G1 6|=GC ψ, (l : I ↪−→ G1, r : I ↪−→ G2) ∈ Ulc(G1, ψ), G2 |=GC ψ, X1 is a minimal
subgraph of G1 with a violation of ψ that is also a violation of ψ in G, and the diagram
below exists and the right part of it is a DPO diagram then (l, r) is a locally least changing
graph update.

X1 I′ X2

G1 I G2
l r

Repairdb1 indeed generates such locally least changing graph updates because
the graph X1 in this definition corresponds to the H1 and the H2 from an ST
∃(a : H1 ↪−→ H2, φ, mt, m f ) that is subject to Repairadd and Repairdel, respectively.
For example, for Repairadd, the graph H1 in the ST determines a subgraph in G1

that is a violation of the overall consistency condition given by a GC ψ as its match
can not be extended to the graph H2.

We now define the locally least changing graph repairs (which are to be com-
puted by Repairdb such as for example the graphs marked 1 and 4 in Fig. 5.2) as
the composition of a sequence of locally least changing updates where precisely
the last graph update results in a graph satisfying the GC ψ.

Definition 25 (Locally Least Changing Graph Repair) If G1 is a graph, ψ ∈ ΦGC
∅ ,

π = (l1 : I1 ↪−→ G1, r1 : I1 ↪−→ G2) . . . (ln : In ↪−→ Gn, rn : In ↪−→ Gn+1) is a sequence
of locally least changing graph updates, G1 ∈ JψK implies n = 0 and l1 = r1 = idG1 ,
Gi /∈ JψK (for each 2 ≤ i ≤ n), Gn+1 ∈ JψK, (l, r) is the iterated composition of the updates
in π, and (l, r) ∈ U (G1, ψ) is a least changing graph repair then (l, r) is a locally least
changing graph repair.

We now state that our delta-based graph repair algorithm Repairdb returns all
desired locally least changing graph repairs upon termination.

Theorem 5 (Functional Semantics of Repairdb ) Repairdb is sound (i.e., it generates
only locally least changing graph repairs) and complete (upon termination) with respect to
locally least changing graph repairs.

The state-based algorithms Repairsb,1 and Repairsb,2 are inappropriate in environ-
ments where numerous updates that may invalidate consistency are applied to
a large graph because the procedure of AutoGraph has exponential cost. The
incremental delta-based algorithm Repairdb is a viable alternative when additional
memory requirements for storing the ST are acceptable. The AutoGraph appli-
cations for this algorithm have negligible costs because they may be performed a
priori and must only be performed for subconditions of the consistency constraint,
which can be assumed to feature reasonably small graphs only.

Finally, a classification of locally least changing repairs is useful for user-based
repair selection. Delta preserving repairs defined below represent such a basic
class, containing only those repairs that preserve the update resulting in a graph
not satisfying GC ψ, i.e., it may be desirable to avoid repairs that revert additions
or deletions of this update. In our example, the repair related to the graph marked
4 in Fig. 5.2 is not delta preserving w.r.t. u from Fig. 5.1a.
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6 Delta-Based Repair

Definition 26 (Delta Preserving Graph Repair) If ψ ∈ ΦGC
∅ , u2 = (l2 : I2 ↪−→

G2, r2 : I2 ↪−→ G3) ∈ U (G2, ψ) is a graph repair, u1 = (l1 : I1 ↪−→ G1, r1 : I1 ↪−→ G2) is
a graph update, and there exists a graph update u such that u1 <u2 u then u2 is a delta
preserving graph repair with respect to u1.
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7 Related Work

According to the recent survey on model repair [11], and the corresponding exhaus-
tive classification of primary studies selected in the literature review, published
online [12], we can see that the amount and wide variety of existing approaches
makes a detailed comparison with all of them infeasible.

We consider our approach to be innovative, not only because of the proposed
solutions, but because it addresses the issues of completeness and least changing for
incremental graph repair in a precise and formal way. From the survey [11, 12] we
can see that only two other approaches [10, 17] address completeness and least
changing, relying also on constraint-solving technology. The main difference with
our approach is that they are not incremental. In particular, the work of Schoen-
boeck et al. [17] proposes a logic programming approach allowing the exploration
of model repair solutions ranked according to some quality criteria, re-establishing
conformance of a model with its metamodel. Soundness and completeness of these
repair actions is not formally proven. Moreover, the least changing bidirectional
model transformation approach of Macedo et al. [10] has only a bounded search
for repairs, relying on a bounded constraint solver.

Some recent work on rule-based graph repair [9] (not covered by the survey) ad-
dresses the least-changing principle by developing so-called maximally preserv-
ing (items are preserved whenever possible) repair programs. This state-based
approach considers a subset of consistency constraints (up to nesting depth 2)
handled by our approach, and is not complete, since it produces repairs including
only a minimal amount of deletions. Some other recent rule-based graph repair
approach [13, 18] (also not covered by the survey) proposes so-called change pre-
serving repairs (similar to what we define as delta-preserving). The main difference
with our work is that we do not require the user to specify consistency-preserving
operations from which repairs are generated, since we derive repairs using con-
straint solving techniques directly from the consistency constraints.

Finally, there is a variety of work on incremental evaluation of graph queries (see
e.g. [2, 4]), developed with the aim of efficiently re-evaluating a graph query
after an update has been performed. Although not employed with the specific
aim of complete and least changing graph repair, this work is related to our newly
introduced concept of satisfaction trees, also using specific data structures to record
with some detail the set of answers to a given query (as described for graph
conditions, for example, also in [3]). It is part of ongoing work to evaluate how STs
can be employed similarly in this field of incremental query evaluation.
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8 Conclusion and Future Work

We presented a logic-based incremental approach to graph repair. It is the first ap-
proach to graph repair returning a sound and complete overview of least changing
repairs with respect to graph conditions equivalent to first-order logic on graphs.
Technically, it relies on an existing model generation procedure for graph condi-
tions together with the newly introduced concept of satisfaction trees, encoding if
and how a graph satisfies a graph condition.

As future work, we aim at supporting partial consistency and gradually improv-
ing it. We are confident that we can extend our work to support attributes, since
our underlying model generation procedure supports it. Ongoing work is the sup-
port of more expressive consistency constraints, allowing path-related properties.
Moreover, we are in the process of implementing the algorithms presented here
and evaluating them on a variety of case studies. The evaluation also pertains to the
overall efficiency (for which we employ techniques for localized pattern matching)
and includes a comparison with other approaches for graph repair. Finally, we
aim at presenting new and refined properties distinguishing between all possible
repairs supporting the implementation of interactive repair selection procedures.
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A Proofs

We provide additional notions, theorems, and proofs (including the proofs for the
theorems contained in the main body of this paper).

Proof 1 (for Theorem 1) The soundness of Repairsb,1 follows directly from the formal
results on AutoGraph from [16]. For completeness consider that Repairsb,1 only re-
turns repairs (l, r) where l is the identity. Hence, Repairsb,1 only returns non-deleting
repairs. For the mono r we also rely on the completeness guaranteed by AutoGraph

according to from [16].

Proof 2 (for Theorem 2) Since the definition ofRepairsb,2 ensures that non-least chang-
ing repairs are removed prior to returning the derived set, we only have to show that
the updates obtained are indeed repairs. This proof proceeds by induction following the
traversal of the generates restriction tree RT(G, ∅). The soundness of Repairsb,2 then
again follows immediately from the formal results on AutoGraph from [16] as for
Repairsb,1. Moreover, on the one hand, when we would traverse the entire restriction we
would clearly consider all possible restrictions l of the given graph G and, on the other
hand, AutoGraph ensures again the completeness of the morphisms r using the repairs.
Hence, for completeness we argue that the stopping condition for graphs Gc that satisfy the
condition ψ does not limit completeness. For this, observe that every repair that would be
obtained by some direct or indirect child of a graph Gc from the restriction tree satisfying ψ

would not be least changing due to the repair (l : Gc ↪−→ G, idGc) constructed for Gc.

See below for the proof of Fig. 4.

Proof 3 (for Theorem 3) By induction on ψ mainly showing that m′t and m′f are defined
in the case of the exists operator for the correct matches q : Hi ↪−→ G, which follows from
the fact that all matches are considered by construction and that the check for satisfaction
on the corresponding ST is performed as required.

Proof 4 (for Theorem 5) Firstly, totality of the Repairdb follows from completeness for
termination computation and from the breadth-first-search suggested even for the case of a
nonterminating computation.

By induction on the recursive execution of Repairdb we conclude that only iterated
compositions of updates are returned. Moreover, as shown subsequently these updates are
locally least changing updates as defined in Def. 24 due to the operation Repairdb1. Simi-
larly, the entire enumeration of all possible updates obtained from Repairdb1 is sufficient
for completeness when Repairdb1 is complete with respect to the locally least changing
updates.

Now, Repairdb1 performs a recursive descent throughout the provided ST to determine
sub-ST that are incorrectly violated or incorrectly satisfied. For completeness notice that for
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the case of conjunction, Repairdb1 considers all possible repairs of sub-ST independently
from each other by selecting one sub-ST that needs repair or by selecting some sub-ST that
can be broken to achieve the desired repair result. For the existential quantification we have
the two cases given by Repairadd and Repairdel discussed below but also the possible
recursive cases where violations are resolved for the sub-ST given for some existing matches.
Thereby the recursive procedure descents to an arbitrary violation of the given ST leading
to completeness when Repairadd and Repairdel are complete in this respect.

For Repairadd, we clearly only obtain locally least changing repairs where the graph X1

in the definition of locally least changing graph repairs is the domain of the mono a in an
ST ∃(a, φ, mt, m f ). Also, due to the construction using AutoGraph and again relying
on the formal results from [16] we also obtain completeness with respect to the addition of
elements computed in this step. Note that the mono r is then the identity for an application
of the locally least changing repair definition.

For Repairdel, we clearly only obtain locally least changing repairs where the graph
X1 in the definition of locally least changing graph repairs is the codomain of the mono a
in an ST ∃(a, φ, mt, m f ). Also, due to the construction of the restriction tree employed in
this step we obtain a complete consideration of possible restrictions of the graph X1. Note
that the mono l is then the identity for an application of the locally least changing repair
definition.

The following notion of wellformedness requires that γ and ψ have the same
structure, that every match q that could be used when checking for G |=GC ψ is
matched by mt and m f when q |=GC φ and q 6|=GC φ, respectively, where φ is the
current subcondition in ψ. Note that |=ST γγγu holds for the ST γγγu from Fig. 5.1b.

Definition 27 (ST Wellformed for GC) A mono m : H ↪−→ G and an ST γ ∈ ΓST
m are

wellformed for a GC ψ ∈ ΦGC
H , written wf(m, γ, ψ), if one of the following cases applies.

• γ = ∧S1, ψ = ∧S2, i : S1 ↪→→ S2
1, and wf(m, χ, i(χ)) (for each χ ∈ S1).

• γ = ¬χ, ψ = ¬φ, and wf(m, χ, φ).

• γ = ∃(a, φ, mt, m f ), ψ = ∃(a, φ), sup(mt) ∪ sup(m f ) = {q : H′ ↪−→ G | q ◦ a =

m}, wf(q, χ, φ) (for each (q, χ) ∈ mt ∪ m f ), |=ST χ (for each (q, χ) ∈ mt), and
|=ST ¬χ (for each (q, χ) ∈ m f ).

An ST γ ∈ ΓST
iG

is wellformed for a GC ψ ∈ ΦGC
∅ , written wf(γ, ψ), if wf(iG, γ, ψ).

Theorem 6 (Sound Construction of STs (wellformedness)) If m : H ↪−→ G is mono,
ψ ∈ ΦGC

H , and cst(ψ, m) = γ then wf(m, γ, ψ).

Proof 5 (for Theorem 6) Similar to the proof of Theorem 3 above.

Moreover, the recursive operation ppgB incrementally computes the ST that would
be obtained using cst.

1The function i is required to be surjective as indicated by the arrow ↪→→.
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Lemma 1 (ppgB is Compatible with cst) If G is a graph, ψ ∈ ΦGC
∅ , and l : G′ ↪−→ G

then ppgB(cst(ψ, G), l) = cst(ψ, G′).

Proof 6 (for Lemma 1) By induction on the common structure of the two STs and ψ

mainly showing that the mappings mt and m f are equal in the case of the exists operator.
This means that they are both defined for the correct matches q : Hi ↪−→ G, which follows
from the fact that no additional matches can be found since l restricts the graph, that only
matches are removed that could not be preserved, and that the preserved matches have
been inserted in the correct map m′t or m′f depending on whether the corresponding ST is
satisfied.

Lemma 2 (Backwards Propagation (ppgB) Preserves Wellformedness) If γ∈ ΓST
iG

,
ψ ∈ ΦGC

∅ , l : G′ ↪−→ G, ppgB(γ, l) = γ′, and wf(γ, ψ) then wf(γ′, ψ).

Proof 7 (for Lemma 2) By induction on the common structure of γ and ψ mainly show-
ing that m′t and m′f are defined in the case of the exists operator for the correct matches
q : Hi ↪−→ G, which follows from the fact that no additional matches can be found since l
restricts the graph, that only matches are removed that could not be preserved, and that the
preserved matches have been inserted in the correct map m′t or m′f depending on whether
the corresponding ST is satisfied.

As for ppgB, we state that ppgF incrementally computes the ST that would be
obtained using cst.

Lemma 3 (ppgF is Compatible with cst) If G is a graph, ψ ∈ ΦGC
∅ , and r : G ↪−→ G′

then ppgF(cst(ψ, G), r) = cst(ψ, G′).

Proof 8 (for Lemma 3) By induction on the common structure of the two STs and ψ

mainly showing that the mappings mt and m f are equal in the case of the exists operator.
This means that they are both defined for the correct matches q : Hi ↪−→ G, which follows
from the fact that all old matches can be preserved and that all additional matches are
contained for newly constructed STs, and that the obtained matches have been inserted in
the correct map m′t or m′f depending on whether the corresponding ST is satisfied.

Lemma 4 (Forwards Propagation (ppgF) Preserves Wellformedness) If γ ∈ ΓST
iG

,
ψ ∈ ΦGC

∅ , r : G ↪−→ G′, ppgF(γ, r) = γ′, and wf(γ, ψ) then wf(γ′, ψ).

Proof 9 (for Lemma 4) By induction on the common structure of γ and ψ mainly show-
ing that m′t and m′f are defined in the case of the exists operator for the correct matches
q : Hi ↪−→ G, which follows from the fact that all old matches can be preserves and that all
additional matches are contained for newly constructed STs, and that the obtained matches
have been inserted in the correct map m′t or m′f depending on whether the corresponding
ST is satisfied.

Proof 10 (of Fig. 4) From Lemma 1 and Lemma 3.

Theorem 7 (Update Propagation (ppgU) Preserves Wellformedness) If γ ∈ ΓST
iG

,
ψ ∈ ΦGC

∅ , r : G ↪−→ G′, ppgF(γ, r) = γ′, and wf(γ, ψ) then wf(γ′, ψ).

Proof 11 (for Theorem 7) From Lemma 2 and Lemma 4.
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B Example of Single-Step Delta-Based
Repair

Example 1 (Single-Step Delta Based Graph Repair Algorithm Repairdb1) In this
example, we present two delta based graph repairs computed using Repairdb1.

• The repair step R1 removes the node a2 with the loop and establishes a graph satisfying
ψ. The ST γγγ′u contains the match k that is consistent with the previous match m and
the morphism a from the existential quantification. The mono a′ is also given as a
restriction of a. The morphism q is obtained from a′ and k by adding all edges (in this
example e3) to the image of k that are connected to a node that is not in the image of
a′ (in this example a). Finally, we construct the pushout complement of (a′′, k′) and
obtain (l, m′).

a1 b1
e1

a2 e3

G′u

a1 b1
e1

a2 e3X2

a
H′

∅H ∅ Hp

∅ X1

q1
q2

a

m
k

a′

a′′

k′ m′

l

• The repair step R2 adds node b2 and an edge from a2 to b2 but establishes a graph
satisfying ψ. The repair is necessary because for the match m there is no consistent
extension with respect to the mono a. Then AutoGraph is used to create the mono
k that leads to a graph for which such a mono can be found (the graph may contain
further elements but the subcondition is true in this cases not requiring further graph
elements). Finally, to integrate these additional elements into the current graph, we
construct the pushout.

a1 b1
e1

a2 e3

G′u

a1 b1
e1

b2 a2
e2 e3

aa be a bea

m

k

m̄

r
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