
Technische Berichte Nr. 127

des Hasso-Plattner-Instituts für
Digital Engineering an der Universität Potsdam

Metric Temporal Graph
Logic over Typed
Attributed Graphs:
Extended Version
Holger Giese, Maria Maximova, Lucas Sakizloglou,
Sven Schneider

Technische Berichte des Hasso-Plattner-Instituts für
 Digital Engineering an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Digital Engineering an der Universität Potsdam | 127

Holger Giese | Maria Maximova | Lucas Sakizloglou | Sven Schneider

Metric Temporal Graph Logic over
Typed Attributed Graphs

Extended Version

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.dnb.de/ abrufbar.

Universitätsverlag Potsdam 2019
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für Digital
Engineering an der Universität Potsdam wird herausgegeben von den Professoren des
Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
https://doi.org/10.25932/publishup-42752
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-427522

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-463-0

mailto:verlag@uni-potsdam.de

Various kinds of typed attributed graphs can be used to represent states of sys-
tems from a broad range of domains. For dynamic systems, established formalisms
such as graph transformation can provide a formal model for defining state se-
quences. We consider the case where time may elapse between state changes and
introduce a logic, called Metric Temporal Graph Logic (MTGL), to reason about such
timed graph sequences. With this logic, we express properties on the structure and
attributes of states as well as on the occurrence of states over time that are related
by their inner structure, which no formal logic over graphs concisely accomplishes
so far.

Firstly, based on timed graph sequences as models for system evolution, we
define MTGL by integrating the temporal operator until with time bounds into
the well-established logic of (nested) graph conditions. Secondly, we outline how
a finite timed graph sequence can be represented as a single graph containing
all changes over time (called graph with history), how the satisfaction of MTGL
conditions can be defined for such a graph and show that both representations
satisfy the same MTGL conditions. Thirdly, we present how MTGL conditions can
be reduced to (nested) graph conditions and, using this reduction, show that both
underlying logics are equally expressive. Finally, we present an extension of the
tool AutoGraph allowing to check the satisfaction of MTGL conditions for timed
graph sequences by checking the satisfaction of the (nested) graph conditions,
obtained using the proposed reduction, for the graph with history corresponding
to the timed graph sequence.

5

1. Introduction

Various kinds of typed attributed graphs are used to represent states of systems
from a broad range of domains. Also, the evolution of such systems can be de-
scribed using a multitude of graph transformation formalisms in which the pos-
sible behavior in form of graph sequences is defined by a set of rules and their
application. In many cases, the analysis of this induced behavior with respect
to a specification in form of a temporal logic that defines the admissible graph
sequences is of paramount importance.

In our running example, from which we derive the lack of suitable specification
formalisms, we consider a dynamic system describing an operating system which
generates timed sequences of (typed attributed) graphs to model the change of the
operating system states over time. In this example, users may create tasks with
identifiers id, the operating system may create handlers specific to task identifiers to
allow for the task execution, and the handlers may produce a result when a task has
been executed (marking the successful handling of the task). To model the states of
the operating system, we employ graphs that store the tasks, the handlers, and the
computed results. In the remainder, we refer in the context of this example to the
sequence property P to be checked w.r.t. the timed graph sequence at hand describing
systems’ state changes over time.

P: Whenever a task T with identifier id is created on a system S, a handler H for
this task (i.e., with a task identifier t_id equal to id of T) must exist. Moreover,
within 120 timeunits, the handler must produce a result R with value success
and, during the computation of the result, no other handler H′ for the same
task (i.e., with the same task identifier t_id) may exist.

We consider the problem that existing specification formalisms for graph-based
systems cannot cover properties such as P. The available (metric) temporal logics,
such as Metric Temporal Logic (MTL) [16], are defined over Kripke structures
abstracting from the system states by labeling each state with a subset of the
finite set of atomic propositions. The commonly used operator until allows then
to formalize the part of property P stating that every graph that contains a task T
is followed by some graph containing some result R before t time units. However,
the existing metric temporal logics do not support the use of bindings of elements
contained in the graphs to express how a certain matched pattern evolves in a
sequence of graphs. Therefore, they are insufficient when e.g. creating different
tasks T and T′ must be followed by creating the corresponding results R and R′

while also treating the deadlines for their existence separately.
As a first contribution, we define Metric Temporal Graph Logic (MTGL) for the

concise specification of systems that generate timed graph sequences. In MTGL,

7

1. Introduction

we express properties on states using the well-known formalism of nested graph
conditions [12, 25] (called GCs for short). The satisfaction of a GC that states the
existence of a graph pattern H in the given graph G results in a match m from
H to G. We extend the logic of GCs to MTGL by extending GCs with the metric
temporal operator until that may appear in the scope of a previously determined
match m. Using this extension, we can express properties, such as property P, on
the structure and attributes of states as well as on the occurrence of states over time
where the preservation/extension of matches during a systems’ evolution increases
the expressiveness beyond the existing temporal logics.

As a second contribution, we outline how a finite timed graph sequence can be
represented as a single graph containing all changes over time (called graph with
history), how the satisfaction of MTGL conditions can be defined for such a graph,
and show that both representations satisfy the same MTGL conditions.

As a third contribution, we show that MTGL conditions can be reduced to GCs
using attribute constraints to encode the metric temporal requirements, while
preserving the satisfaction for finite timed graph sequences. This encoding enables
the direct application of techniques for GCs such as [26].

As a fourth contribution, we present an extension of the tool AutoGraph [26]
allowing to check the satisfaction of MTGL conditions for timed graph sequences
by checking the satisfaction of the GCs obtained using the proposed reduction for
the graph with history corresponding to the timed graph sequence at hand.

The paper is structured as follows. Section 2 discusses related work. Section 3

iterates on technical preliminaries. Section 4 defines timed graph sequences, MTGL,
and the satisfaction of MTGL conditions for timed graph sequences. In Section 5, we
show how to represent a finite timed graph sequence as a single graph with history,
define satisfaction of MTGL conditions for a graph with history, and prove that
both representations satisfy the same MTGL conditions. In Section 6, we introduce
a reduction of MTGL conditions to GCs and show the equivalence of these two
logics. Finally, Section 7 discusses the tool support and Section 8 concludes the
paper with a summary and remarks on future work.

8

2. Related Work

There are several related formal and informal approaches for the specification and
verification of different kinds of sequence properties.

In [13] the satisfaction of CTL (state/sequence) properties is checked where
the tool Groove [10, 11] is used to generate the finite state space of the graph
transformation system (GTS) at hand. In [7] invariants are checked for a GTS with
a possibly infinite state space. The validity of given pre/post conditions for a
program over a GTS has been presented in [24]. In [2, 15] temporal properties for
GTS with infinite state space are checked using the tool Augur2.

In [20] the satisfaction of graph-based probabilistic timed CTL properties is
checked where the tool Henshin [1, 9] is used to generate the finite state space
of a GTS and where the tool Prism [17] is used to model check translations of the
given properties. In [6] a sequence of timed events are checked against sequence
properties given by regular languages based on deterministic finite automata.

The use of bindings, as in this paper, is supported in [3] where bindings are part
of the Metric First-Order Temporal Logic in which system states are represented
by a set of relations that are adapted during the execution of the system.

A visual but informal notation for the specification of sequence properties in-
volving time and graph bindings was introduced in [14].

In conclusion, existing approaches with a formal semantics do not support either
time, bindings, or graphs in a concise manner. Thereby, our graph-based logic
MTGL for graph-based systems complements existing approaches since (a) it eases
usability in graph-based contexts similarly to the usage of GCs that are favored
over first-order logic in these contexts, (b) it enables further developments and
combinations with other graph-based techniques such as those in [26], and, (c)
as to be shown by future tool-based evaluations, it can be expected that domain-
specific tools for checking MTGL conditions are more efficient compared to general-
purpose tools such as shown analogously for GCs in [24].

Task

id : string

System Handler

t_id : string

Result

value : string
on for by to

Figure 2.1.: The type graph TG for our running example where the attributes cts
and dts of sort real used in later sections are omitted in every node and edge to
improve readability

9

3. Typed Attributed Graphs and Graph
Conditions

We now recall typed attributed graphs and nested graph conditions used for repre-
senting system states and properties on these states respectively.

We use symbolic graphs [22] to encode (finite) typed attributed graphs. Symbolic
graphs are an adaptation of E-Graphs [8] where a graph does not contain data
nodes (i.e., elements that represent actual values) but instead node and edge at-
tributes are connected to variables, which replace the data nodes. Symbolic graphs
are also equipped with attribute constraints over these (sorted) variables (e.g. x = 5,
x ≤ 5, and y = “aabb”).

We consider symbolic graphs that are typed over a type graph TG using a typing
morphism type : G → TG. Type graphs restrict attributed graphs to an admitted
subset. For our running example, we employ the type graph TG from Fig. 2.1. An
example of a symbolic graph that is typed over TG is given in Fig. 5.1.

We state the existence and nonexistence of graph patterns in a given symbolic
graph, which is called a host graph, by representing graph patterns by symbolic
graphs and by using monomorphisms (called monos and denoted using ↪−→ sub-
sequently) to extend graph patterns. Formally, we rely on the notion of nested
graph conditions (GCs) [12], which are expressively equivalent to first-order logic
on graphs [5] as shown in [12, 25].

Definition 1 (Graph Conditions (GCs)) The class of graph conditions (GCs) ΦGC
H

for the graph H contains ψ if one of the following cases applies.

• ψ = ∧S and S = {φ1, . . . , φn} ⊆ ΦGC
H .

• ψ = ¬φ and φ ∈ ΦGC
H .

• ψ = ∃(a, φ), a : H ↪−→ H′, and φ ∈ ΦGC
H′ .

GCs allow for further abbreviations such as true, false, ∨S, and ∀(a, φ).

Intuitively, a GC is satisfied if the positive but not the negative patterns given by
the GC can be found in the given host graph. For the case of the exists operator,
a previously determined match m must be extendable using a monomorphism q
according to the monomorphism a from the GC.

Definition 2 (Satisfaction of GCs) A GC ψ ∈ ΦGC
H is satisfied by a monomorphism

m : H ↪−→ G, written m |= ψ, if one of the following cases applies.

10

3. Typed Attributed Graphs and Graph Conditions

• ψ = ∧S and m |= φ for each φ ∈ S.

• ψ = ¬φ and not m |= φ.

• ψ = ∃(a : H ↪−→ H′, φ) and there exists q : H′ ↪−→ G such
that q ◦ a = m and q |= φ (as depicted on the right).

H
=

H′

G

a

m q

A GC ψ over the empty graph is satisfied by a graph G, written G |= ψ, if iG |= ψ where
iG : ∅ ↪−→ G is the initial morphism to G.

To ease presentation, we omit here a more formal and technical handling of requir-
ing a consistent variable assignment and meta-variables needed for conjunctions.

11

4. Metric Temporal Graph Logic

We build upon GCs [12] and the future fragment of MTL [16, 23] to introduce
Metric Temporal Graph Logic (MTGL) by defining its syntax and semantics.

We assume a graph transformation based formalism for the definition of steps
changing a graph while possibly also determining a progress of time. We abstract
from the actual timed graph transformation formalism employed but only assume
that it is capable to generate so-called timed graph sequences (short TGSs), which
contain the graphs, their modifications, and the elapsed time between successive
graphs. In the following, we are concerned with TGSs in which either only the past
states of sequences are given in the form of finite TGSs or where, alternatively, an
infinite TGS describes a nonterminating evolution of a system.

A step from a graph G to a graph G′ where G has remained unchanged for a du-
ration of δ, which may be determined by a timed graph transformation formalism,
is represented by G · (δ, l, r) · G′ in our notion of TGSs. In this representation, the
monos l : IG ↪−→ G and r : IG ↪−→ G′ identify the graph elements that are preserved
from G to G′, i.e., G− l(IG) are the nodes and edges that are present in G but are
deleted to obtain G′ and G′ − r(IG) are the nodes and edges that do not exist in G
but are created to obtain G′.1

Definition 3 (Timed Graph Sequences (TGSs)) We inductively define the class of fi-
nite timed graph sequences (TGSs) Πfin as follows:

• If π = Ginit is the sequence containing only the graph Ginit, then π ∈ Πfin.

• If π ∈ Πfin is a TGS ending with a graph G, l : IG ↪−→ G, r : IG ↪−→ G′ are monos
(for an interface graph IG), and δ ∈ R is the timepoint where the graph G is
changed relative to the previous change, then π · (δ, l, r) · G′ ∈ Πfin.

The class of TGSs Π contains the finite TGSs Πfin from above and all infinite sequences
that have only finite TGSs from Πfin as prefixes.

Moreover, dur(π) denotes the sum of all durations δ contained in π. Additionally, if
dur(π) = ∞, πt denotes the unique graph at time t, i.e., if π = G then πt = G and
if π = G · (δ, l, r) · π′ then (πt = G for t < δ) and (πt = π′t−δ for t ≥ δ). Finally, if
dur(π) = ∞, π[t1,t2] denotes the finite TGS contained in π from πt1 to πt2 .

We do not require that every step modifies the current graph (i.e., we permit G = G′

possibly using l = r = idG). Also, for well-definedness of the satisfaction relation
for TGSs we require that time diverges in every infinite TGS π (i.e., dur(π) = ∞).

1The span G
l←↩ IG

r
↪−→ G′ does not correspond to a rule as used in the DPO approach but rather to

a rule application describing changes between the graphs G and G′.

12

4. Metric Temporal Graph Logic

In our running example, we simplify the presentation by using only inclusions
l and r. The TGS π given in Fig. 4.1 contains five graphs Gi for i ∈ {0, 1, 2, 3, 4}
showing the system states in five different points in time, namely 0, 5, 10, 13, and
15. The corresponding durations where the respective graphs Gi remain unchanged
are denoted by δi for i ∈ {0, 1, 2, 3}.

G2 G3 G4G1G0

S:System∅ T:Task

id = 123

S:System

H:Handler

t_id = 123

e1:on

e2:for

T:Task

id = 123

S:System

H:Handler

t_id = 123

R:Result

value = success

e1:on

e2:for

e3:by e4:to

T:Task

id = 123

S:System

H:Handler

t_id = 123

R:Result

value = success

e1:on

e2:for

e4:to

π: δ1 = 5 δ2 = 3 δ3 = 2δ0 = 5

Figure 4.1.: A TGS π for our running example. For i ∈ {0, 1, 2, 3}, the arrows
δi=⇒ between graphs of the TGS describe changes Gi · (δi, li, ri) · Gi+1 where the

inclusions li and ri are implicitly given by the usage of the same names in all
graphs

T:Task

id = xid

S:System
e1:on∀N ,

S:System H:Handler

t_id = xid
e2:for∃ ,

S:System H′:Handler

t_id = xid
e3:for¬∃ , true

H:Handler R:Result

value = success
e4:byU[0,120] ∃ , true

ψ:

Figure 4.2.: The property P from our running example formalized by the MTGC ψ

The syntax of MTGL is given by Metric Temporal Graph Conditions (short MTGCs)
introduced in the following definition. The distinguishing feature of MTGL is the
extension of the binding of graph elements used by the operator exists in GCs to the
until operator of MTL. This allows for the formalization of properties where a match
into a graph is preserved/extended over multiple timepoints in the subsequently
introduced semantics for TGSs.

Definition 4 (Metric Temporal Graph Conditions (MTGCs)) The class of metric
temporal graph conditions (MTGCs) ΦMTGC

H for the graph H contains ψ if one of
the following cases applies.

13

4. Metric Temporal Graph Logic

• ψ = ∧S and S = {φ1, . . . , φn} ⊆ ΦMTGC
H .

• ψ = ¬φ and φ ∈ ΦMTGC
H .

• ψ = ∃(a, φ), a : H ↪−→ H′, and φ ∈ ΦMTGC
H′ .

• ψ = φ1 UI φ2, I is an interval over R0 , and {φ1, φ2} ⊆ ΦMTGC
H .

Further metric temporal operators can be defined as for MTL and GCs.
For our running example, we formalize the property P from chapter 1 by the

MTGC ψ depicted in Fig. 4.2. In this MTGC, we additionally use the forall-new
operator in the form of ∀N(a : H ↪−→ H′, φ) to match the pattern H′ into the
considered TGS as soon as possible, i.e., precisely at the minimal timepoint, at
which all elements of H′ exist. A formal handling of the forall-new operator is
left for future work. Moreover, we use notational conventions to simplify our
presentation of MTGCs by omitting elements in subconditions. Firstly, we omit
nodes (such as T) if no new edges or attributes are attached to them. Secondly, we
omit edges (such as e1) if no new attributes are attached to them. Finally, we omit
attributes (such as id of T) in general.

The MTGC ψ properly formalizes the property P using the binding capabilities
of MTGL as follows: the nodes T, S, and H (together with the edges e1, e2 as well as
their attributes) are shared among the two subconditions of the until operator. This
implies that the Handler node that must be matched by the right subcondition of
the until operator is the previously bound Handler node H. Similarly, the System
node that may be matched by the left subcondition of the until operator is the
previously bound System node S.

Next we present the MTGL semantics for TGSs that defines when a given TGS
satisfies a given MTGC. For the definition of this semantics, we first introduce the
concept of a match that is preserved over a finite number of steps given by a finite TGS.
In the following, we also call such a preserved match a binding. The preservation
of the match is guaranteed by adapting it according to the renaming determined
by the steps of the TGS for the case where these steps do not remove any element
initially matched.

Definition 5 (Preserved Match for a Finite TGS) A monomorphism m : H ↪−→ G0

is preserved over a finite TGS π that starts in G0 and ends in Gn resulting in a
monomorphism m′ : H ↪−→ Gn, written m π m′, if one of the following cases applies.

• π = G0 = Gn and m = m′.

• π = G0 · (δ, l : IG ↪−→ G0, r : IG ↪−→ G1) · π′ and
there is m′′ : H ↪−→ IG such that m = l ◦ m′′ and
r ◦m′′ π′ m′.

G0 IG G1

H

= =

m

l r

m′′
m′

The fact that the step does not remove elements that are matched by a monomor-
phism m is obtained from the existence of a monomorphism m′′ making the triangle
m = l ◦m′′ commute. The required renaming is then performed by replacing the
match m by r ◦m′′. The monomorphism m′′ is uniquely defined when it exists.

Based on the preservation of matches, we now define the semantics for TGSs.

14

4. Metric Temporal Graph Logic

Definition 6 (Satisfaction of MTGCs by TGSs) A given MTGC ψ ∈ ΦMTGC
H is sat-

isfied by a TGS π, an observation timepoint t ∈ R0 (where 0 ≤ t ≤ dur(π)), and a
monomorphism m : H ↪−→ πt, written (π, t, m) |=TGS ψ, if one of the following cases
applies.

• ψ = ∧S and (π, t, m) |=TGS φ for each φ ∈ S.

• ψ = ¬φ and not (π, t, m) |=TGS φ.

• ψ = ∃(a : H ↪−→ H′, φ) and there is some q : H′ ↪−→ πt such that q ◦ a = m and
(π, t, q) |=TGS φ.

• ψ = φ1 UI φ2 and there is some t′ ∈ I such that
• there is m′ : H ↪−→ πt+t′ s.t. m

π[t,t+t′] m′ and (π, t + t′, m′) |=TGS φ2 and
• for every t′′ ∈ [0, t′) it holds that there is an m′′ : H ↪−→ πt+t′′ such that
m

π[t,t+t′′] m′′ and (π, t + t′′, m′′) |=TGS φ1.

An MTGC ψ over the empty graph is satisfied by a TGS π, written π |=TGS ψ, if
(π, 0, iπ0) |=TGS ψ where iπ0 : ∅ ↪−→ π0 is the initial morphism to the graph at timepoint
0 of π (i.e., the first graph of π).

This semantics is similar to the semantics of GCs for conjunction, negation, and the
exists operator since for the triple (π, t, m) it always holds that the codomain of m
is the graph πt and since the checked MTGC is defined for the domain of m. As for
GCs, we omit here a more formal and technical handling for variable assignments.
The TGS π and the current timepoint t are used in the case for the until operator
where we rely on the preserved match relation from above to change the codomain
of a match from πt to the graphs πt+t′ and πt+t′′ at later timepoints.

Example 1 (TGS satisfies MTGC) Considering our running example, we argue that
the MTGC given in Fig. 4.2 is satisfied by the TGS given in Fig. 4.1. Firstly, the forall-
new operator matches the nodes T, S and the edge e1 in G2 at timepoint 10, which is
the maximal creation timepoint of these three elements. Then, the exists operator matches
the node H together with the edge e2 in G2 at the same timepoint. Finally, the until
operator matches subsequently the node R and the edge e3 in G3 at the timepoint 13 and
the remainder true is trivially satisfied for the timepoint 13. In addition, as also required by
the until operator, for every timepoint in the interval [10, 13) it is not possible to match a
second Handler node H′ that is connected to S. This holds because the graph in π for the
timepoints in this interval is the graph G2, which indeed does not contain such a second
Handler node.

15

5. Mapping of TGSs to Graphs with
History

Subsequently, we are concerned with finite TGSs π (which have a finite number
of steps and therefore also satisfy dur(π) < ∞) for which the satisfaction of an
MTGC ψ is decidable [4] when replacing in ψ right-open intervals [r, ∞) and (r, ∞)

by [r, dur(π)) and (r, dur(π)), respectively. Such an adaptation of intervals leads
to an MTGC ψ′ that is bounded and for which the satisfaction by the finite TGS π is
equivalent (i.e., π |=TGS ψ ⇐⇒ π |=TGS ψ′).

To analyze the satisfaction of an MTGC by a given finite TGS, we now introduce
the notion of graphs with history (in short, GHs) as an equivalent representation of a
given finite TGS. Afterwards, we introduce a semantics operating on this alternative
representation (called in the following semantics for GHs) that is compatible with
the semantics introduced before for TGSs. The translation from finite TGSs to GHs
reduces the size of the representation in terms of the stored data. Moreover, it
decouples the observation of modifications, resulting in a GH, and the subsequent
satisfaction check for possibly several MTGCs.

The notion of GHs for capturing the changes to a current graph over time as
given by a TGS π, requires that the used type graph TG contains for all nodes and
edges the attributes cts and dts of sort real to capture the total timepoint at which
an element was created and (if applicable) deleted, respectively.1

Definition 7 (Graphs with History (GHs)) Let TG be a type graph where all nodes
and edges have attributes cts denoting the timepoint of their creation and dts denoting the
timepoint of their deletion. Then GH is a graph with history (GH) if it is typed over TG
satisfying the following consistency requirements.2

• There is precisely one cts attribute for every graph node and edge.

• There is at most one dts attribute for every graph node and edge.

• For an edge e, the value of the cts attributes of the source and the target nodes of e
are less or equal to the cts attribute of e.

• For an edge e, the value of the dts attributes of the source and the target nodes of e
are greater or equal to the dts attribute of e.

1The total timepoints of additions and removals of attributes and their values can be encoded by
moving attributes into separate nodes, for which their cts and dts attributes then encode the
relevant timepoints.

2Note that the consistency requirements used in this definition are not guaranteed by the formalisms
of E-Graphs or symbolic graphs.

16

5. Mapping of TGSs to Graphs with History

We now define the operation Fold, which converts a finite TGS π (i.e., a TGS with
a finite number of steps) into the corresponding GH GH. This recursive operation
handles the renaming given by the monos l and r in the steps of π and, moreover,
encodes the insertion of additional nodes/edges α by adding attributes cts = t for
these nodes/edges in the constructed GH and by equipping removed nodes/edges
α with an additional attribute dts = t where t is the current total time of the
considered TGS π in both cases.

Definition 8 (Map TGS to GH (Operation Fold)) We define the operation Fold re-
cursively as follows.

• If π = Ginit, then GH = Fold(π) is obtained from Ginit by adding the attributes
cts(α) = 0 to each node or edge α in Ginit.

• If π = π′ · (δ, l : IG ↪−→ G, r : IG ↪−→ G′) · G′ is a TGS, G′H = Fold(π′) is
the GH obtained from the mapping of the TGS π′ using the operation Fold, and
t = dur(π′) is the total time of G′H, then GH = Fold(π) is constructed from G′H
by adding the attributes dts(α) = t + δ to each node or edge α ∈ G − l(IG), by
renaming each node and edge α ∈ l(IG) according to l, by adding each node and
edge α ∈ G′ − r(IG), by renaming each node and edge α ∈ r(IG) according to r,
and by adding the attributes cts(α) = t + δ to each node or edge α ∈ G′ − r(IG).

The following example covers an application of Fold to a finite TGS.

Example 2 (Map TGS to GH) We map the finite TGS π from Fig. 4.1 to the GH GH

shown in Fig. 5.1 using the operation Fold as follows. Since π starts with an empty graph
G0, we first map it into the empty GH. The second state of π given by G1 including the
System node S is added to the TGS after 5 timeunits. We map this TGS state to the GH
by adding S to the empty GH and by, additionally, equipping this node with the creation
timepoint cts = 5. After another 5 timeunits, an additional Task node T, a Handler node H,
and edges e1, e2 between the existing System node S and the new Task node T resp. the new
Handler node H are added to the TGS resulting in the TGS state G2. These changes are
again mapped to the GH by adding the Task node T, the Handler node H, and the edges e1,
e2 to the current version of GH as well as by additionally equipping them with the creation
timepoints cts = 10. In a similar manner the Result node R together with the edges e3

and e4 (see the TGS state G3) are added to the GH with the creation timepoints cts = 13.
Finally, after 2 timeunits, the edge e3 is deleted to obtain the TGS state G4. To reflect this
in the GH, we add to the edge e3 in GH the additional deletion timepoint dts = 15.

T:Task

cts = 10
id = 123

S:System

cts = 5
H:Handler

cts = 10
t_id = 123

R:Result

cts = 13
value = success

e4:to
cts = 13

e1:on
cts = 10

e2:for
cts = 10

e3:by
cts = 13
dts = 15

Figure 5.1.: Mapping of the TGS π from Fig. 4.1 to the GH GH = Fold(π)

17

5. Mapping of TGSs to Graphs with History

For the satisfaction of an MTGC of the form ∃(a : H ↪−→ H′, φ), where the exists
operator is inherited from GCs, it is still required that the pattern that is found so far
(given by some monomorphism m : G ↪−→ GH) in the host graph GH can be extended
to a larger pattern (given by some monomorphism m′ : G′ ↪−→ GH). Additionally, we
have to check that all matched elements are already created (because the GH also
contains the elements created with higher cts values) but not yet deleted (because
the GH also contains the elements deleted at earlier timepoints). For the satisfaction
of an MTGC of the form φ1 UI φ2, where the until operator is inherited from MTL,
it is still required that φ2 must be satisfied at some timepoint t′ in the interval I
relative to the current observation timepoint t and that φ1 is continuously satisfied
(by a possibly varying match for each timepoint) for all timepoints preceding t′.

Definition 9 (Satisfaction of MTGCs by GHs) An MTGC ψ ∈ ΦMTGC
H is satisfied

by a monomorphism m : H ↪−→ GH and an observation timepoint t ∈ R0 , written
(m, t) |=GH ψ, if max({0} ∪ cts(m(H))) ≤ t < min({∞} ∪ dts(m(H))) and one
of the following cases applies.

• ψ = ∧{φ1, . . . , φn} and (m, t) |=GH φi (for all 1 ≤ i ≤ n).

• ψ = ¬φ and not (m, t) |=GH φ.

• ψ = ∃(a : H ↪−→ H′, φ) and there is some q : H′ ↪−→ GH such that q ◦ a = m and
(q, t) |=GH φ.

• ψ = φ1 UI φ2 and there is some t′ ∈ I such that (m, t + t′) |=GH φ2 and for every
t′′ ∈ [0, t′) it holds that (m, t + t′′) |=GH φ1.

An MTGC ψ over the empty graph is satisfied by a GH GH, written GH |=GH ψ, if
(iGH , 0) |=GH ψ where iGH : ∅ ↪−→ GH is the initial morphism to GH.

Note that the reasoning for the satisfaction of the MTGC ψ from Fig. 4.2 by GH =

Fold(π) from Fig. 5.1 proceeds analogously to Ex. 1.
In the following theorem (see the appendix Appendix B for its proof), we state

the compatibility of the two satisfaction relations for the case of finite TGSs showing
that they can be used interchangeably to determine the satisfaction of an MTGC in
this case.

Theorem 1 (Soundness of Operation Fold) If π ∈ Πfin and ψ ∈ ΦMTGC
∅ , then

π |=TGS ψ iff Fold(π) |=GH ψ.

18

5. Mapping of TGSs to Graphs with History

v0:Encoding

num = 0
var = x0

Θ0∃ ,

T:Task

cts = xc,T

dts = xd,T
id = xid

S:System

cts = xc,S
dts = xd,S

e1:on

cts = xc,e1

dts = xd,e1

v1:Encoding

num = 1
var = x1

Θ1∀

x

x
x
x

Θ1b,¬∃ , true ∧

S:System H:Handler

cts = xc,H

dts = xd,H
t_id = xid

e2:for

cts = xc,e2

dts = xd,e2

v2:Encoding

num = 2
var = x2

Θ2∃

x

x
x
x

Θ2b,¬∃ , true ∧

v3:Encoding

num = 3
var = x3

Θ3∃ ,

H:Handler R:Result

cts = xc,R

dts = xd,R
value = success

e3:by

cts = xc,e3

dts = xd,e3

v4:Encoding

num = 4
var = x4

Θ4∃

x

x
x
x

Θ4b,¬∃ , true ∧true

v5:Encoding

num = 5
var = x5

Θ5∧∀ ,

S:System H′:Handler

cts = xc,H′

dts = xd,H′

t_id = xid

e4:for

cts = xc,e4

dts = xd,e4

v6:Encoding

num = 6
var = x6

Θ6¬∃

x

x
x
x

Θ6b,¬∃ , true ∧true

Θ0 = {x0 = 10}
Θ1 = Θ0∪ {x1 = x0}
Θ1b = Θ1∪ {¬ alive(x1, {T, S, e1})}
Θ2 = Θ1∪ {x2 = x1}
Θ2b = Θ2∪ {¬ alive(x2, {T, S, e1, H, e2})}
Θ3 = Θ2∪ {x2 + 0 ≤ x3, x3 ≤ x2 + 120}

Θ4 = Θ3∪ {x4 = x3}
Θ4b = Θ4∪ {¬ alive(x4, {T, S, e1, H, e2, R, e3})}
Θ5 = Θ3∪ {x2 ≤ x5, x5 < x3}
Θ6 = Θ5∪ {x6 = x5}
Θ6b = Θ6∪ {¬ alive(x6, {T, S, e1, H, e2, H′, e4})}

Figure 5.2.: The GC ψ′ resulting from applying the operation Reduce to the time-
point t = 10, and the MTGC ψ from Fig. 4.2 (where the outermost forall-new
operator has been simplified to the forall operator)

19

5. Mapping of TGSs to Graphs with History

T:Task
cts = 10
dts = −1
id = 123

S:System
cts = 5
dts = −1

H:Handler
cts = 10
dts = −1
t_id = 123

R:Result
cts = 13
dts = −1
value = success

v0:Encoding
num = 0
var = x0

v1:Encoding
num = 1
var = x1

v2:Encoding
num = 2
var = x2

v3:Encoding
num = 3
var = x3

v4:Encoding
num = 4
var = x4

v5:Encoding
num = 5
var = x5

v6:Encoding
num = 6
var = x6

Θ

e4:to
cts = 13
dts = −1

e1:on
cts = 10
dts = −1

e2:for
cts = 10
dts = −1

e3:by
cts = 13
dts = 15

Θ = {x0 = 10, x1 = x0, x2 = x1, x2 + 0 ≤ x3, x3 ≤ x2 + 120, x3 = x4, x2 ≤ x5, x5 < x3, x6 = x5}

Figure 5.3.: The adapted graph G′H resulting from applying the operation Reduce
to the GH from Fig. 5.1, the timepoint t = 10, and the MTGC ψ from Fig. 4.2
(where the outermost forall-new operator has been simplified to the forall opera-
tor)

20

6. Reduction of MTGL to GCs

We now introduce a procedure for checking the satisfaction of an MTGC by a
GH using a reduction of an MTGC to a corresponding GC. Based on the Fold
operation from the previous section, we thereby obtain a checking procedure for
finite TGSs as well. Moreover, this reduction shows that MTGL is as expressive as
the logic of GCs on finite TGSs (since every GC is trivially also an MTGC).

We first present the operation Reduce for translating an MTGC into the cor-
responding GC and then show that this translation (also called reduction in the
following) is compatible with our semantics for GHs and the operation Fold from
before. The operation Reduce encodes in the resulting GC all parts of the satisfac-
tion relation |=GH that are not covered by the satisfaction relation |= for GCs. In
particular, the operation Reduce removes all occurrences of the until operator and
encodes the check that the elements that are matched by the exists operator have
all been created as well as that none of them has yet been deleted.

Technically, we translate a GH GH = Fold(π) for a finite TGS π, ψ ∈ ΦMTGC
∅ ,

and an observation timepoint t ∈ R0 (where GH and ψ are typed over a type
graph TG) into a graph G′H and ψ′ ∈ ΦGC

∅ (where both are typed over a changed
type graph TG′) using the procedure presented in Def. 10. We obtain ψ′ from ψ by
encoding the until operator suitably and by implementing the checks of cts and
dts attributes according to Def. 9 for the exists and until operators using attribute
constraints, for which we add variables to ψ. We also add the same variables to GH

to obtain G′H.

Definition 10 (Reduce MTGC to GC (Operation Reduce)) The recursive operation
Reduce takes 3 arguments: a GH GH that has been obtained by application of the operation
Fold to a TGS π, an observation timepoint t ∈ R0 , and an MTGC ψ ∈ ΦMTGC

∅ . GH and
all graphs contained in ψ are typed over the type graph TG.

The operation Reduce returns a pair (G′H, ψ′) consisting of a graph G′H (which is a
slight modification of GH) and a GC ψ′ ∈ ΦGC

∅ . The graph G′H and all graphs contained in
ψ′ are typed over an adapted type graph TG′ (called a reduction type graph) introduced
below.

1. (Construction of the reduction type graph TG′):
We adapt the original type graph TG to TG′ by adding an Encoding node with
attributes num : int and var : real.

2. (Construction of the MTGC ψatt with cts and dts attributes):
We obtain ψatt from ψ by adding the attributes cts = xc,α and dts = xd,α to all nodes
and edges α contained in graphs in ψ.

21

6. Reduction of MTGL to GCs

3. (Construction of the GC ψ′):
ψ′ = ∃(iG0 ,Reducerec(ψatt, x0, G0, ∅)) where G0 is the graph containing the
Encoding node v0 with the attributes num = 0, var = x0 as well as the at-
tribute constraint x0 = t and iG0 : ∅ ↪−→ G0 is the initial morphism to G0. Then,
Reducerec(ψatt, xo, Ga, G) = ψ′att if one of the following cases applies (where ψatt is
the condition to be reduced, xo is the timepoint at which the subcondition must be
satisfied, Ga is the graph containing additional nodes, edges, and attribute constraints
to be added to the graphs in conditions constructed, and G is the graph over which
the condition ψatt is defined).

a) ψatt = ∧S and ψ′att = ∧{Reducerec(φ, xo, Ga, G) | φ ∈ S}.
b) ψatt = ¬φ and ψ′att = ¬Reducerec(φ, xo, Ga, G).

c) ψatt = ∃(a : H1 ↪−→ H2, φ) and ψ′att = ∃(a′ : H′1 ↪−→ H′2,¬∃(m : H′2 ↪−→
H′3, true)∧Reducerec(φ, xn, G′a, H′2)) where G′a equals the graph Ga, to which
an Encoding node vn with the attributes num = n, var = xn (where no
Encoding node has been created in the reduction for n so far) and the attribute
constraint xn = xo have been added, H′1 = Ga ∪ H1, H′2 = G′a ∪ H2, H′3
equals the graph H′2, to which the attribute constraints ¬ alive(xn, H2) have
been added,1 a′ is obtained as the union of a and the identity morphism idGa ,
and m is an inclusion.

d) ψatt = φ1 UI φ2 and ψ′att = ∃(m0 : G0 ↪−→ G1,Reducerec(φ2, xn1 , G′a, G1)

∧ ∀(m1 : G1 ↪−→ G2,Reducerec(φ1, xn2 , G′′a , G2))) where G′a equals the graph
Ga, to which an Encoding node vn1 with the attributes num = n1, var = xn1

(where no Encoding node has been created in the reduction for n1 so far) and
the attribute constraints equivalent to xn1 ∈ I have been added, G0 = G ∪ Ga,
G1 = G ∪ G′a, m0 is an inclusion, G′′a equals the graph G′a, to which an
Encoding node vn2 with the attributes num = n2, var = xn2 (where no
Encoding node has been created in the reduction for n2 so far) and the attribute
constraints equivalent to xn2 ∈ [xo, xo + xn1) have been added, G2 = G1 ∪ G′′a ,
and m1 is an inclusion.

4. (Construction of the graph G′H):
We obtain G′H by adding elements to GH as follows:

a) We add the attribute dts = −1 to all nodes/edges without that attribute.

b) We insert all Encoding nodes contained in graphs in ψ′ together with their
num = n and var = xn attributes.

c) We add the attribute constraints added during the reduction except for the alive
constraints.

We now demonstrate how the operation Reduce can be applied to the MTGC from
our running example.

1 For a graph H, alive(x, H) equals alive(x, S) for the disjoint union S of the nodes and edges of H.
For a set S of nodes and edges, alive(x, S) equals ∪{alive(x, α) | α ∈ S}. For a node or an edge α,
alive(x, α) equals {xc,α ≤ x, xd,α = −1∨ x < xd,α}.

22

6. Reduction of MTGL to GCs

Example 3 (Reduce MTGC to GC) We now apply the Reduce operation to GH from
Fig. 5.1, the timepoint t = 10, and the MTGC ψ from Fig. 4.2 resulting in G′H and ψ′ given
in Fig. 5.3 and Fig. 5.2, respectively. However, to simplify the presentation, we replaced the
enclosing forall-new operator by the forall operator. A formal handling of the forall-new
operator is left for future work.

1. We add the attribute dts = xd,ff to all nodes/edges α of GH without dts attribute and
add the attribute constraint xd,α = −1 to the set of constraints. With these additional
attributes and the cts = xc,ff attributes introduced by the operation Fold, we are
able to state the existence of nodes/edges at a given timepoint xn using attribute
constraints in the resulting GC ψ′.

2. We add a unique Encoding node to each graph in ψ′ as a container for additional
variables xn that are used in attribute constraints to encode the current observation
timepoint (the num attributes are included to decrease the number of matches to
be considered). Initially, we add an enclosing exists operator with the attribute
constraint x0 = t (see Θ0) where t is the input observation timepoint that is 10 for
this application of Reduce. Further attribute constraints then relate the additional
variables xn for existential/universal quantifications (see Θ1, Θ2, Θ4, and Θ6). For
the encoding of the until operator, these observation timepoints (x3 in Θ3 and x5 in
Θ5) are restricted to some interval as described below.

3. We encode the exists operator ∃(a : H1 ↪−→ H2, φ) for the MTGC φ according
to Def. 9 using an additional negative graph condition stating that the matched
nodes/edges α are not violating the attribute constraints in alive(xn, α). The set
alive(xn, α) contains the constraint xn ≤ xc,α (to state that α was created before xn)
and the constraint xd,α = −1∨ xn < xd,α (to state that α was not deleted or that it
is deleted later than xn).

4. We encode the until operator φ1 UI φ2 for the MTGCs φ1 and φ2 according to
Def. 9 using the exists operator (the forall operator used in the GC below is only
an abbreviation for a usage of the exists operator according to Def. 1). Informally,
φ1 U[t1,t2] φ2 (the construction is similar for other kinds of intervals) is equivalent
to ∃(t′ ∈ [xn + t1, xn + t2], φ′2 ∧ ∀(t′′ ∈ [xn + t1, t′), φ′1)) where φ′1 and φ′2 are the
reductions of φ1 and φ2, respectively. The variable xn refers to the current observation
timepoint that depends on the timepoint where an enclosing condition has been
matched. In the example, the variables xn, t′, and t′′ are represented in ψ′ by the
variables x2, x3, and x5, respectively. The reduction is recursively applied to φ1 and φ2

resulting in φ′1 and φ′2, respectively. The replacement GC for the until subcondition
spans the last four lines of ψ′ in Fig. 5.2.

5. We add all Encoding nodes occurring in ψ′ to GH as depicted in Fig. 5.3. The
Encoding nodes are used in ψ′ as containers for the additional variables employed
in the attribute constraints and are required in G′H to allow for matchings from the
adapted graphs of ψ′ to G′H.

In the following theorem (see the appendix Appendix B for its proof), we state that
the operation Reduce is sound w.r.t. the satisfaction relations for MTGCs and GCs.

23

6. Reduction of MTGL to GCs

Theorem 2 (Soundness of Operation Reduce) If π ∈ Πfin, GH = Fold(π), ψ ∈
ΦMTGC

∅ , t ∈ R0 is a timepoint, iGH : ∅ ↪−→ GH is the initial morphism to GH, and
(G′H, ψ′) = Reduce(GH, t, ψ), then (iGH , t) |=GH ψ iff G′H |= ψ′.

By application of Thm. 2, we can deduce for our running example that the MTGC ψ

from Fig. 4.2 translated by the operationReduce is satisfied by the graph G′H (given
in Fig. 5.2 and Fig. 5.3). For this purpose observe that ψ from Fig. 4.2 (simplified as
stated in Fig. 5.3 and Fig. 5.2) is satisfied by the GH from Fig. 5.1 for the timepoint
t = 10 since the unique match of the Task node T, the on edge e1, and the System
node S satisfies the remaining condition starting at timepoint t = 10.

24

7. Tool Support

We provide tool support for checking finite TGSs against MTGCs as an extension
of AutoGraph [26]. Firstly, we extended the support of AutoGraph to handle
TGSs and MTGCs. Secondly, we implemented the operation Fold from Def. 8 to
consolidate a TGS π to a GH GH. Thirdly, we implemented the operation Reduce
from Def. 10 to reduce an MTGC ψ to a GC ψ′ and to adapt GH to a graph G′H . On
the foundation of these three steps and as applications of our theoretical results
(see Thm. 1 and Thm. 2), we then use the built-in support of AutoGraph for
checking whether the obtained graph G′H satisfies the reduced GC ψ′. Note that
AutoGraph depends in this scenario on the constraint solver Z3 [21] to check
satisfiability of expressions involving the values of cts and dts attributes of sort
real as well as the additional constraints introduced by Reduce that contain further
variables of sort real.

Considering our running example, we observed negligible runtime and memory
consumption when verifying that the finite TGS π from Fig. 4.1 satisfies the MTGC
ψ from Fig. 4.2 using our implementation due to the short length of π. Overall, the
application of the AutoGraph extension to our running example shows promis-
ing results albeit the potential of further improvements regarding efficiency for
handling more elaborate problem instances.

25

8. Conclusion and Future Work

We defined Metric Temporal Graph Logic (MTGL) by integrating the metric temporal
operator until with time bounds into the well-established logic of (nested) graph
conditions (GCs). This new logic allows to maintain an established binding of
graph elements throughout the analysis of a timed sequence of (typed attributed)
graphs (TGSs). Furthermore, to enable a satisfaction check for MTGL conditions
by finite TGSs, we introduced a mapping of a finite TGS π into a graph with
history GH = Fold(π) and defined a reduction of an MTGL condition ψ to a
GC ψ′ given by (GH, ψ′) = Reduce(GH, 0, ψ) where the graph with history GH

is extended to a graph G′H. For this mapping and this reduction, we have proven
that the satisfaction checks for the different representations are consistent (i.e.,
π |=TGS ψ ⇐⇒ GH |=GH ψ ⇐⇒ G′H |= ψ′). Finally, we presented an extension
of the tool AutoGraph allowing to check the satisfaction of MTGL conditions by
finite TGSs via the introduced mapping and reduction.

In the future, we want to formally handle the forall-new operator from our run-
ning example as well as the since operator from MTL. Based on the current paper,
we want to develop checking procedures for bounded MTGL conditions such that
only violations that hold for any possible continuation are reported. Moreover,
we intend to use our reduction of MTGL conditions to related GC counterparts
for invariant checking for graph transformation systems as considered in [7]. Fur-
thermore, we want to develop extensions of MTGL that include branching such
as in timed CTL, that are applicable to the setting of probabilistic timed graph
transformation systems as introduced in [20], or that support additional features
e.g. permitting variables in the interval bounds of MTGL conditions or in attribute
constraints. Finally, we intend to develop a model checking procedure for MTGL
and these extensions. Besides these technical advancements we intend to evaluate
and compare our approach based on benchmarks from applications domains such
as runtime monitoring [19].

26

References

[1] T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer. “Henshin:
Advanced Concepts and Tools for In-Place EMF Model Transformations”. In:
Model Driven Engineering Languages and Systems – 13th International Conference,
MODELS 2010, Oslo, Norway, October 3–8, 2010, Proceedings, Part I. Edited by
D. C. Petriu, N. Rouquette, and Ø. Haugen. Volume 6394. Lecture Notes in
Computer Science. Springer, 2010, pages 121–135. isbn: 978-3-642-16144-5.
doi: 10.1007/978-3-642-16145-2_9.

[2] P. Baldan, A. Corradini, and B. König. “A Framework for the Verification of
Infinite-state Graph Transformation Systems”. In: Inf. Comput. 206.7 (2008),
pages 869–907.

[3] D. Basin, F. Klaedtke, S. Müller, and E. Zălinescu. “Monitoring metric first-
order temporal properties”. In: Journal of the ACM (JACM) 62.2 (2015), page 15.

[4] P. Bouyer, N. Markey, J. Ouaknine, and J. Worrell. “The Cost of Punctuality”.
In: 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), 10–12 July
2007, Wroclaw, Poland, Proceedings. IEEE Computer Society, 2007, pages 109–
120. isbn: 0-7695-2908-9. doi: 10.1109/LICS.2007.49.

[5] B. Courcelle. “The Expression of Graph Properties and Graph Transforma-
tions in Monadic Second-Order Logic”. In: Handbook of Graph Grammars.
Edited by G. Rozenberg. World Scientific, 1997, pages 313–400. isbn: 981022-
88-48.

[6] I. Dávid, I. Ráth, and D. Varró. “Foundations for Streaming Model Transfor-
mations by Complex Event Processing”. In: Software and System Modeling 17.1
(2018), pages 135–162. doi: 10.1007/s10270-016-0533-1.

[7] J. Dyck and H. Giese. “K-Inductive Invariant Checking for Graph Transforma-
tion Systems”. In: ICGT. Edited by J. de Lara and D. Plump. Volume 10373.
Lecture Notes in Computer Science. Springer, 2017, pages 142–158. isbn:
978-3-319-61469-4. doi: 10.1007/978-3-319-61470-0_9.

[8] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of algebraic graph
transformation. Springer-Verlag, 2006.

[9] EMF Henshin. The Eclipse Foundation. 2013.

[10] A. H. Ghamarian, M. de Mol, A. Rensink, E. Zambon, and M. Zimakova.
“Modelling and analysis using GROOVE”. In: STTT 14.1 (2012), pages 15–40.
doi: 10.1007/s10009-011-0186-x.

[11] Graphs for Object-Oriented Verification (GROOVE). University of Twente. 2011.

27

https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1109/LICS.2007.49
https://doi.org/10.1007/s10270-016-0533-1
https://doi.org/10.1007/978-3-319-61470-0_9
https://doi.org/10.1007/s10009-011-0186-x

References

[12] A. Habel and K.-H. Pennemann. “Correctness of high-level transformation
systems relative to nested conditions”. In: Mathematical Structures in Computer
Science 19 (2009), pages 1–52.

[13] E. Jakumeit, S. Buchwald, D. Wagelaar, L. Dan, Á. Hegedüs, M. Herrmanns-
dörfer, T. Horn, E. Kalnina, C. Krause, K. Lano, M. Lepper, A. Rensink, L. M.
Rose, S. Wätzoldt, and S. Mazanek. “A survey and comparison of transforma-
tion tools based on the transformation tool contest”. In: Sci. Comput. Program.
85 (2014), pages 41–99. doi: 10.1016/j.scico.2013.10.009.

[14] F. Klein and H. Giese. “Joint Structural and Temporal Property Specification
Using Timed Story Scenario Diagrams”. In: Fundamental Approaches to Software
Engineering, 10th International Conference, FASE 2007, Held as Part of the Joint
European Conferences, on Theory and Practice of Software, ETAPS 2007, Braga,
Portugal, March 24 – April 1, 2007, Proceedings. Edited by M. B. Dwyer and
A. Lopes. Volume 4422. Lecture Notes in Computer Science. Springer, 2007,
pages 185–199. isbn: 978-3-540-71288-6. doi: 10.1007/978-3-540-71289-3_16.

[15] B. König and V. Kozioura. “Augur 2 – A New Version of a Tool for the
Analysis of Graph Transformation Systems”. In: ENTCS 211 (2008), pages 201–
210. doi: 10.1016/j.entcs.2008.04.042.

[16] R. Koymans. “Specifying real-time properties with metric temporal logic”. In:
Real-time systems 2.4 (1990), pages 255–299.

[17] M. Kwiatkowska, G. Norman, and D. Parker. “Prism 4.0: Verification of
Probabilistic Real-time Systems”. In: Proc. CAV’11. LNCS 6806. doi: 10.1007/
978-3-642-22110-1_47. Springer, 2011, pages 585–591.

[18] J. de Lara and D. Plump, editors. Graph Transformation – 10th International
Conference, ICGT 2017, Held as Part of STAF 2017, Marburg, Germany, July
18–19, 2017, Proceedings. Volume 10373. Lecture Notes in Computer Science.
Springer, 2017. isbn: 978-3-319-61469-4. doi: 10.1007/978-3-319-61470-0.

[19] M. Leucker and C. Schallhart. “A brief account of runtime verification”. In: J.
Log. Algebr. Program. 78.5 (2009), pages 293–303. doi: 10.1016/j.jlap.2008.08.
004.

[20] M. Maximova, H. Giese, and C. Krause. “Probabilistic Timed Graph Trans-
formation Systems”. In: Graph Transformation – 10th International Conference,
ICGT 2017, Held as Part of STAF 2017, Marburg, Germany, July 18–19, 2017,
Proceedings. Edited by J. de Lara and D. Plump. Volume 10373. Lecture Notes
in Computer Science. Springer, 2017, pages 159–175. isbn: 978-3-319-61469-4.
doi: 10.1007/978-3-319-61470-0_10.

[21] Microsoft Corporation. Z3. https://github.com/Z3Prover/z3. Accessed:
2017-09-19.

[22] F. Orejas. “Symbolic graphs for attributed graph constraints”. In: J. Symb.
Comput. 46.3 (2011), pages 294–315. doi: 10.1016/j.jsc.2010.09.009.

28

https://doi.org/10.1016/j.scico.2013.10.009
https://doi.org/10.1007/978-3-540-71289-3_16
https://doi.org/10.1016/j.entcs.2008.04.042
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-319-61470-0
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1007/978-3-319-61470-0_10
https://github.com/Z3Prover/z3
https://doi.org/10.1016/j.jsc.2010.09.009

References

[23] J. Ouaknine and J. Worrell. “Some Recent Results in Metric Temporal Logic”.
In: Formal Modeling and Analysis of Timed Systems, 6th International Conference,
FORMATS 2008, Saint Malo, France, September 15-17, 2008. Proceedings. Edited
by F. Cassez and C. Jard. Volume 5215. Lecture Notes in Computer Science.
Springer, 2008, pages 1–13. isbn: 978-3-540-85777-8. doi: 10.1007/978-3-540-
85778-5_1.

[24] K.-H. Pennemann. Development of Correct Graph Transformation Systems, PhD
Thesis. Dept. Informatik, Univ. Oldenburg, 2009.

[25] A. Rensink. “Representing First-Order Logic Using Graphs”. In: Proc. ICGT
2004. Edited by H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozenberg.
Volume 3256. LNCS. Springer, 2004, pages 319–335. isbn: 3-540-23207-9.

[26] S. Schneider, L. Lambers, and F. Orejas. “Automated reasoning for attributed
graph properties”. In: STTT 20.6 (2018), pages 705–737. doi: 10.1007/s10009-
018-0496-3.

29

https://doi.org/10.1007/978-3-540-85778-5_1
https://doi.org/10.1007/978-3-540-85778-5_1
https://doi.org/10.1007/s10009-018-0496-3
https://doi.org/10.1007/s10009-018-0496-3

A. Encoding of Attribute Modifications

Example 4 (Encoding of Attribute Modifications) The modification of the attributes
(see Fig. A.1) of the node vA is encoded in additional nodes vA1

A and vA2
A . Thereby the

attribute attValueA has the value 24 in the time interval [10, 16) and the value 30 in the
time interval [16, 64). The attribute of the edge eA is encoded in the additional node eA

A that
is identified using num = 1 and the connections to the nodes vA and vB. Note that we
omit in this example the additional four edge types used for the encoding.

vA:NodeTypeA
cts = 10
dts = −1

vB:NodeTypeB
cts = 5
dts = −1

vA1
A :NodeTypeAattValueA

cts = 10
dts = 16
attValueA = 24

vA2
A :NodeTypeAattValueA

cts = 16
dts = 64
attValueA = 30

eA
A:EdgeTypeAattValueA

cts = 13
dts = 17
num = 1
attValueA = 12

eA:EdgeTypeA
cts = 10
dts = 17
num = 1

Figure A.1.: Encoding of attribute modifications (see Ex. 4)

30

B. Proofs

We provide proofs for the theorems contained in the main body of this report.

Lemma 1 (Soundness of Operation Fold) If π ∈ Πfin of length n, ψ ∈ ΦMTGC
H ,

t ∈ {∑i≤m delta(π, i) | m ≤ n} where delta(π, i) is the delay of the ith step in π, and
ft : πt ↪−→ Fold(π[0,t]) is the obvious inclusion induced by Fold, then (π, t, m : H ↪−→
πt) |=TGS ψ iff (ft ◦m, t) |=GH ψ

Proof 1 (for Lemma 1) By induction on ψ.
The proof is straight-forward for conjunction and negation.
For existential quantification, we obtain the morphism q required for satisfaction of ψ by

π (see Def. 6) from Def. 9 and, vice versa, the morphism q required for satisfaction of ψ

by Fold(π) (see Def. 9) is induced by Def. 6. This is possible since the definition of Fold
ensures that elements exist in πt iff their cts attributes are lower than the timepoint t and
their dts attributes (if existent) are strictly higher than t.

For the until operator, we apply induction on the finite set of graphs corresponding to
the possible values of t. Then, the satisfaction of the less deeply nested subconditions φ1 and
φ2 of φ1 UI φ2 is preserved and reflected between the two semantics due to the induction
hypothesis. The central step is then that the preserved match relation (over k steps of π)
is compatible with applying k times the single-step adaption used in the Fold operation of
the current GH for the same steps. This compatibility ensures that the matches used for the
satisfaction of the subconditions coincide in both cases.

Proof 2 (for Thm. 1) from Lemma 1

Proof 3 (for Thm. 2) Throughout the proof we refer to items given in Def. 10.
(⇒): In the first step we establish a connection between the two satisfaction statements that
is then verified by structural induction on the condition ψ in the second step.

The outermost existential quantification can be matched to G′H because the required
Encoding node is present in G′H due to Item 4b and the used match is unique due to the
num attribute. The variable xouter is also restricted to the value of t according to Item 4c.

Hence, a satisfaction proof state (m, t, φ) of MTGC is connected to a satisfaction proof
state (m′, φ′) of GC as follows: the match m′ is an extension of m where additionally some
Encoding nodes with their attributes and variables are matched (initially this is iG′H

, which
is matching the Encoding node added in Item 4c) and the timepoint t is represented by the
variable used in the most recently matched Encoding node (initially this is xouter).
We now proceed by induction on the conditions φ omitting the trivial cases on conjunction
and negation.

• (exists operator): We assume that (m, t) |=GH ∃(a : G1 ↪−→ G2, φ) and show that
m′ |= ∃(a′ : G′1 ↪−→ G′2, φ′).

31

B. Proofs

Due to the assumption and by Def. 9 there is some q : G2 ↪−→ GH such that
q ◦ a = m and (q, t) |=GH φ , which already implies max({0} ∪ cts(q(G2))) ≤
t < min({∞} ∪ dts(q(G2))). This monomorphism q can be used to extend m′ to
a monomorphism q′ : G′2 ↪−→ G′H. Here q′ matches a further Encoding node v that
could not have been matched before and that is unique due to the num attribute.
The node v has a variable xn for the var attribute. By the attribute constraint on
xn we have that xn is equal to the outer variable that encodes the current timepoint
t. Hence, xn encodes the timepoint that is also used for the MTGL satisfaction
statement (q, t) |=GH φ from above. Moreover, the attribute constraints added for all
nodes and edges encodes the statement max({0} ∪ cts(q(G2))) ≤ t < min({∞} ∪
dts(q(G2))) from above. The graph condition is able to make a statement on all dts
attributes because the dts attribute was added to all nodes and edges and, additionally,
the graph condition can still be matched using q′ to G′H because GH has been adapted
to also contain all dts attributes. The subconstraint checking for −1 is then required
to only consider the actually deleted nodes and edges. We make use of the negated
subcondition containing the negated alive constraints to state that it is not the case
that the nodes matched are not alive; this is required due to the implication check for
the attribute constraints required for q to be a well-formed morphism on symbolic
graphs. Finally, the translated condition φ′ is then also satisfied by the induction
hypothesis.

• (until operator): We assume that (m, t) |=GH φ1 UI φ2 and show that m′ |=
∃(m1 : G ↪−→ G′,∧φ′2, ∀(m2 : G′ ↪−→ G′′, φ′1)) for the result obtained by application
of the operation Reduce.

Due to the assumption and by Def. 9 there is some t′ ∈ I such that (m, t + t′) |=GH

φ2 and for every t′′ ∈ [0, t′) it holds that (m, t + t′′) |=GH φ1. We can assume that
the outer variable xo encodes the current timepoint t as in the previous item. The
existentially quantified t′ ∈ I is now covered by the graph G1, in which we use the
variable xn1 to encode the value of t′ and the attribute constraints to restrict xn1 to
the interval I. Then, (m, t + t′) |=GH φ2 implies that the match m′ can be extended
to a match m′′, as required by the existential quantification, because the variable xn1

along with its Encoding node can be matched to G′H. The translated condition φ′2 is
then also satisfied by the induction hypothesis. Moreover, the universally quantified
t′′ is then represented by the variable xn2 in G2, which is also universally quantified.
We assume that t′′ is fixed in that interval satisfying (m, t + t′′) |=GH φ1. Hence,
the match m′′ can be extended to a match m′′′ as required by matching xn2 to the
corresponding variable in G′H. Also, the attribute constraints on xn2 are satisfied
because t′′ is taken from the interval [0, t′). The translated condition φ′1 is then also
satisfied by the induction hypothesis.

(⇐): The reverse reasoning applies for the if direction in all these steps. It is important
however to realize that the patterns obtained due to the encoding of the operators exists
and until must be matched entirely for the reverse direction to preserve the correspondence
with the MTGC satisfaction proof state.

32

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band

ISBN

Titel

Autoren / Redaktion

126

978-3-86956-462-3

A logic-based incremental
approach to graph repair

Sven Schneider, Leen
Lambers, Fernando Orejas

125 978-3-86956-453-1

Die HPI Schul-Cloud : Roll-Out
einer Cloud-Architektur für
Schulen in Deutschland

Christoph Meinel, Jan Renz,
Matthias Luderich, Vivien
Malyska, Konstantin Kaiser,
Arne Oberländer

124 978-3-86956-441-8

Blockchain : hype or innovation

Christoph Meinel, Tatiana
Gayvoronskaya, Maxim
Schnjakin

123

978-3-86956-433-3

Metric Temporal Graph Logic
over Typed Attributed Graphs

Holger Giese, Maria
Maximova, Lucas Sakizloglou,
Sven Schneider

122

978-3-86956-432-6

Proceedings of the Fifth HPI
Cloud Symposium "Operating
the Cloud“ 2017

Estee van der Walt, Isaac
Odun-Ayo, Matthias Bastian,
Mohamed Esam Eldin Elsaid

121

978-3-86956-430-2

Towards version control in
object-based systems

Jakob Reschke, Marcel
Taeumel, Tobias Pape, Fabio
Niephaus, Robert Hirschfeld

120

978-3-86956-422-7

Squimera : a live, Smalltalk-
based IDE for dynamic
programming languages

Fabio Niephaus, Tim
Felgentreff, Robert Hirschfeld

119

978-3-86956-406-7

k-Inductive invariant Checking
for Graph Transformation
Systems

Johannes Dyck, Holger Giese

118

978-3-86956-405-0

Probabilistic timed graph
transformation systems

Maria Maximova, Holger
Giese, Christian Krause

117

978-3-86956-401-2 Proceedings of the Fourth HPI
Cloud Symposium "Operating
the Cloud” 2016

Stefan Klauck, Fabian
Maschler, Karsten Tausche

116

978-3-86956-397-8

Die Cloud für Schulen in
Deutschland : Konzept und
Pilotierung der Schul-Cloud

Jan Renz, Catrina Grella, Nils
Karn, Christiane Hagedorn,
Christoph Meinel

115

978-3-86956-396-1

Symbolic model generation for
graph properties

Sven Schneider, Leen
Lambers, Fernando Orejas

114

978-3-86956-395-4 Management Digitaler
Identitäten : aktueller Status
und zukünftige Trends

Christian Tietz, Chris Pelchen,
Christoph Meinel, Maxim
Schnjakin

113

978-3-86956-394-7

Blockchain : Technologie,
Funktionen, Einsatzbereiche

Tatiana Gayvoronskaya,
Christoph Meinel, Maxim
Schnjakin

ISBN 978-3-86956-463-0
ISSN 1613-5652

	Title
	Imprint

	Abstract
	1 Introduction
	2 Related Work
	3 Typed Attributed Graphs and Graph Conditions
	4 Metric Temporal Graph Logic
	5 Mapping of TGSs to Graphs with History
	6 Reduction of MTGL to GCs
	7 Tool Support
	8 Conclusion and Future Work
	References
	A Encoding of Attribute Modifications
	B Proofs
	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

