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The analysis of behavioralmodels is of high importance for cyber-physical systems,
as the systems often encompass complex behavior based on e.g. concurrent com-
ponents with mutual exclusion or probabilistic failures on demand. The rule-based
formalism of probabilistic timed graph transformation systems is a suitable choice
when the models representing states of the system can be understood as graphs and
timed and probabilistic behavior is important. However, model checking PTGTSs is
limited to systems with rather small state spaces.
We present an approach for the analysis of large-scale systems modeled as prob-

abilistic timed graph transformation systems by systematically decomposing their
state spaces into manageable fragments. To obtain qualitative and quantitative anal-
ysis results for a large-scale system, we verify that results obtained for its fragments
serve as overapproximations for the corresponding results of the large-scale system.
Hence, our approach allows for the detection of violations of qualitative and quan-
titative safety properties for the large-scale system under analysis. We consider a
running example in which we model shuttles driving on tracks of a large-scale topol-
ogy and for which we verify that shuttles never collide and are unlikely to execute
emergency brakes. In our evaluation, we apply an implementation of our approach
to the running example.1

1Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) —
241885098, 148420506.
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1 Introduction

Real-time cyber-physical systems often emit a complex behavior based on e.g. con-
current components with mutual exclusion or probabilistic failures on demand. Con-
sequently, modeling formalisms for capturing such systems must suitably support
the modeling of their complex behaviors. In such a model driven approach, the anal-
ysis of behavioral models w.r.t. a provided specification is vital to ensure overall
soundness of the resulting system.
The rule-based transformation of graphs is a suitable choice when the models

representing states of the system can be understood as graphs. In particular, the
formalism of probabilistic timed graph transformation systems (PTGTSs) extends
the standard rule-based transformation of graphs such that timed and probabilis-
tic behavior is covered by supporting (a) non-deterministic choice among steps,
(b) probabilistic choice among step results, and (c) steps representing the passage
of time.

A model checking approach for PTGTSs w.r.t. probabilistic metric temporal prop-
erties was introduced in [19]. However, also this model checking approach is limited
to systems with rather small state spaces due to the state space explosion problem.
As a workaround, a selected set of small examples may be considered hopefully
capturing all system-specific challenges to establish trust that the model exhibits
the required safe behavior and that unwanted behavior is sufficiently unlikely. How-
ever, it cannot be excluded that the considered small examples do not reveal all the
threatening behavior.
We present a decomposition-based approach for the analysis of large-scale sys-

tems modeled as PTGTSs to rule out violations of qualitative and quantitative safety
properties.
As a first step, we capture the underlying static large-scale topology (LST) of

a large-scale system as a subgraph that is not changed by graph transformation,
describe how a fragment topology (FT) can be embedded into such an LST (see the
left part of Figure 1.1), and specify howmultiple such embeddings of FTs can overlap
in their borders (see the right part of Figure 1.1).

As a second step, based on the decomposition described by such embeddings, we
construct for each FT an adapted PTGTS. Such an adapted PTGTS is then ensured to
(a) exhibit the same behavior on the non-overlapped part of the FT (named core) and
to (b) simulate all possible behaviors that can happen for any occurrence of the FT in
an LST. To obtain the mentioned simulation, we include modifications of the rules of
the original PTGTS operating on the border of an FT into the adapted PTGTS. With
this direct relationship between behaviors on the FTs and the LST, we obtain that the
likelihood of an unwanted or forbidden graph pattern in one of the adapated PTGTS
is an upper bound for its likelihood in its embedding in the large-scale PTGTS.
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1 Introduction

border
core

occurrence
of border
occurrence
of core

fragment

occurrence
of fragment

overlapping in border

1 1 2 2 3

1 2 3

Figure 1.1: Occurrence of single FT with border and core in LST (left) and five
occurrences of three FTs in LST overlapping in their borders (right)

As a last step, exploiting our decomposition to counter the state space explosion
problem, we apply the model checking approach from [19] to the PTGTSs con-
structed for the FTs employing its reduction to probabilistic timed automata (PTA)
instead of applying the model checking approach directly to the PTGTS modeling
the large-scale system.
To illustrate our approach, we consider a running example in which we model

shuttles driving on tracks of an LST and for which we verify that shuttles never
collide and are unlikely to execute emergency brakes. In our evaluation, we apply
an implementation of our approach to the running example.

The idea to decompose a system into subsystems or to compose it from subsystems
for the analysis has been studied intensively [24] but our suggested compositional
approach has distinguishing characteristics. Firstly, the vast majority of approaches
(like process algebras or similar models) assume that the modeling formalism sup-
ports the composition/decomposition as a first class concept such that compositional
analysis techniques are directly applicable as the subsystem models cover all possi-
ble behaviors in all contexts. In contrast, we do not rely on a built-in decomposition
operator but rather allow for a flexible derivation of an LST decomposition in terms
of FTs, overlappings, and a suitable overapproximation on the border, which are not
predefined by the modeling formalism.
Secondly, several approaches rely on a protocol-like specification of how the de-

composed subsystems interact, while in our approach the overapproximation is de-
rived systematically from the PTGTS model that does not necessarily provide such
a protocol-like specification already. The compositional analysis approach for graph
transformation systems (GTSs) from [11, 23] defines explicit interfaces, which are
used to consider whether the behavior of two independent graphs glued via these
interfaces (requiring that local transitions are compatible) cover jointly all global
transitions. Moreover, in further approaches, protocols for the roles of collabora-
tions and ports of components have been assumed. For example, in [14], the idea
to overapproximate the environment and border is explored for timed automata
with explicit models of the roles in form of protocol automata. This idea has been
combined with dynamic collaborations in [12, 13] captured by timed GTSs (TGTSs)
and their analysis via inductive invariant checking [3, 4]. Later on, this approach has
been extended to role, component, and collaboration behavior, which is captured
by TGTSs and hybrid GTSs in [5] and [2], respectively. However, as opposed to the
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1 Introduction

presented approach, in all these cases an explicit concept of interface is assumed to
separate parts that are analyzed in isolation.
This paper is structured as follows. In chapter 2, we introduce our running ex-

ample from the domain of cyber-physical systems. In chapter 3, we recapitulate the
necessary preliminaries related to PTA and PTGTSs also presenting the modeling
of our running example. In chapter 4, we discuss the decomposition of static sub-
structures of large-scale systems. In chapter 5, we present our decomposition-based
approach allowing to split the model checking problem into more manageable parts.
In chapter 6, we present an evaluation of the conceptual results for our running
example. Finally, in chapter 7, we close the paper with a conclusion and an outlook
on planned future work.
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2 Running Example

We now informally introduce a scenario (based on the RailCab project [22]) of
autonomous shuttles driving on an LST, which serves as a running example in the
remainder of this paper. Based on this introduction, we will discuss how we model
this shuttle scenario as a PTGTS in the next chapter.

In the considered shuttle scenario, a track topology containing a large number of
tracks of approximately equal length is given. Tracks are connected to the adjacent
tracks via directed connections building in this manner track sequences. Two track
sequences can be joined together (i.e., can end up in a common track with two
predecessors) leading to a join fragment topology (see FT8 in Figure 4.1a) or can split
up from a common track (i.e., a common track has then two successor tracks) leading
to a fork fragment topology (see FT7 in Figure 4.1a). Moreover, depots may have a
directed connection to a track allowing shuttles to enter or exit the track topology.
Shuttles, which are always located on a single track, may be in mode DRIVE, STOP,
or BRAKE. Being in mode DRIVE, shuttles drive to the next track (respecting the
direction of the connection between the tracks) with a certain velocity, which may
be slow ([3, 4] time units per track) or fast ([2, 3] time units per track). Regularly,
shuttles change into mode STOP, which allows them to avoid coming too close to
other shuttles. Moreover, shuttles should slow down before entering a track with
a construction site on it. However, shuttles noticing the construction site too late
have to execute an emergency brake thereby changing into the mode BRAKE. To
reduce the likelihood of such emergency brakes, yellow traffic lights are installed a
few tracks ahead of such construction sites to indicate to shuttles that they should
slow down. After construction sites, green traffic lights may be installed permitting
shuttles to increase their velocity. However, we also consider failures on demand
where a traffic light that is passed by a shuttle is not recognized or, for some other
reason, not appropriately taken into account by the shuttle. We assume a failure
probability of 10−6 for this case assuming that the failure does not only depend on
the visual observation by the train driver but also depends on a failure of the backup
system.
In our running example, static elements are the tracks, depots, installed traffic

lights, and construction sites as well as connections between these elements. The PT-
GTS modeling the behavior of the described scenario never changes this underlying
LST. Complementary, dynamic elements are shuttles, their attributes, their connec-
tions to tracks of the LST as well as the attributes of traffic lights. Note that we use
later a grammar to generate admissible LSTs.

For the considered shuttle scenario, we are interested in various properties. Firstly,
we need to verify that the behavior of the system never gets temporally stuck in
a state where no steps (discrete steps of e.g. driving shuttles or timed steps) are
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2 Running Example

:Shuttle

mode:string
minDur:real

:Track

id:int
clockDrive:real

:TLYellow

active:bool

:TLGreen

active:bool

:ConstructionSite

TG

:Depot

:next

:at

:at:at :in

:out

:at⊥

(a) Type graph

INVdriving

S1:Shuttle

mode=m1

minDur=minD1

T1:Track

clockDrive=d1
e1:at

m1 = DRIVE
∧ d1 > minD1 + 1¬∃ ,>

(b) Invariant

L K R

G G′ G′′

` r

g1 g2

m m′ m′′

(c) DPO diagram

`0 `3
c0 ≥ 1 1; {c0}

`1

c0 ≥ 0

1; {c0}

`2

c0 ≥ 2

0.5; {c0}

0.5; {c0}

c0 ≤ 5; ∅

c0 ≤ 3; ∅ >; {done}

>; ∅

(d) Example of a PTA

APunexpectedVelocity

S1:Shuttle

minDur=minD1

minD1 6= 2
∧minD1 6= 3∃ ,>

APcollision

T1:Track
S1:Shuttle

S2:Shuttle

e1:at

e2:at
∃ ,>

APbraked

S1:Shuttle

mode=BRAKE∃ ,>

(e) Atomic propositions

L

r1 r2

a′1 = ⊥∧ unchanged(minD1, tid1)

[failure] reset: ∅, probability: 10−6

a1 = > guard: >, priority: 1, stepLabel: (minD1, tid1)

S1:Shuttle

minDur=minD1

T1:Track

id=tid1

Y1:TLYellow

active=a1
e1:at e2:at

R1 = L
minD′

1 = 3 ∧ a′1 = ⊥∧ unchanged(tid1)

[success] reset: ∅, probability: 1 − 10−6
R2 = L

(f) The rule SetSlow: a shuttle may successfully decrease its velocity by setting its time
per track to [3, 4] (where only the lower end of the interval is stored in the graph) with
probability 1 − 10−6 or may fail to decrease its velocity with probability 10−6. Setting the
active attribute to ⊥ ensures that the rule cannot be applied twice.

m1 = DRIVE ∧ minD1 = 2 ∧ m′
1 = BRAKE ∧ unchanged(minD1, tid1, tid2)

guard: d1 ≥ minD1, reset: {d′2}, priority: 0, stepLabel: (tid1, tid2)

.

S2:Shuttle

T2:Track

e5:at¬∃ ,> S1:Shuttle

mode=m1

minDur=minD1

T1:Track

id=tid1

clockDrive=d1

T2:Track

id=tid2

clockDrive=d2

CS:ConstructionSite
e1:at
	

e3:ate2:next

e4:at⊕

(g) The rule ConstructionSiteBrake: a shuttle with high velocity ([2, 3] time units per track
where only the lower end of the interval is stored in the graph) needs to execute an emer-
gency brake to ensure that the track with a construction site on it is not entered with a too
high velocity.

Figure 2.1: Details for our running example, DPO diagram, and PTA example
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2 Running Example

m′
1 = DRIVE ∧ unchanged(minD1, tid1, tid2)

guard: d1 ≥ minD1, reset: {d′2}, priority: 0, stepLabel: (m1, minD1, tid1, tid2)

/

CS:ConstructionSite T2:Track
e5:at¬∃ ,>

S2:Shuttle

mode=m2

T4:Track T2:Track
e5:at e6:next

m2 = DRIVE
∧¬∃ ,>

S2:Shuttle T3:Track
e5:at∧¬∃ ,>

S2:Shuttle

mode=m2

T4:Track T3:Track
e5:at e6:next

m2 = DRIVE
∧¬∃ ,>

S2:Shuttle T2:Track
e5:at∧¬∃ ,>

S1:Shuttle

mode=m1

minDur=minD1

T1:Track

id=tid1

clockDrive=d1

T2:Track

id=tid2

clockDrive=d2

T3:Track
e1:at
	

e2:next e3:next

e4:at⊕

(a) The rule Drive: a shuttle may drive to the next track where the application condition is
used to rule out situations that on the next track is a construction site or that the considered
shuttle comes too close to another shuttle.

m′
1 = DRIVE ∧ minD′

1 = 2 ∧ unchanged(tid1)

guard: >, reset: {d′1}, priority: 0, stepLabel: (tid1)

.

T3:Track T1:Track
e3:next¬∃ ,>

S2:Shuttle T1:Track
e3:at∧¬∃ ,>

S2:Shuttle T2:Track
e3:at∧¬∃ ,>

S1:Shuttle

mode=m′
1

minDur=minD′
1

⊕ T1:Track

id=tid1

clockDrive=d1

T2:Track
e1:nexte2:at

⊕

(b) The rule DriveEnterFast: adaptation of the rule Drive for the case that a new shuttle
enters the current fragment topology with a high velocity (the similar rule for a shuttle
with a low velocity has been omitted here for brevity) from a context track belonging to
another fragment topology.

guard: d1 ≥ minD1, reset: {d′2}, priority: 0, stepLabel: (tid1, tid2)m′
1 = DRIVE ∧ unchanged(minD1, tid1, tid2)

.

T2:Track T3:Track
e4:next¬∃ ,>

S2:Shuttle T2:Track
e4:at∧¬∃ ,>

S1:Shuttle

mode=m1

minDur=minD1

T1:Track

id=tid1

clockDrive=d1

T2:Track

id=tid2

clockDrive=d2

e1:at
	

e2:next

e3:at⊕

(c) The rule DriveExit1: adaptation of the rule Drive for the case that a shuttle drives onto
the last track of the current fragment topology.

guard: d1 ≥ minD1, reset: ∅, priority: 0, stepLabel: (tid1)unchanged(tid1)

.T1:Track T2:Track
e2:next¬∃ ,>

S1:Shuttle

mode=m1

minDur=minD1

	 T1:Track

id=tid1

clockDrive=d1

e1:at
	

(d) The rule DriveExit2: adaptation of the rule Drive for the case that a shuttle exits the
current fragment topology towards a track belonging to another fragment topology.

Figure 2.2: The rule Drive and the three adapted rules DriveEnterFast, DriveExit1,
and DriveExit2 for fragment topologies where parts of the application condition of
the rule Drive are omitted due to the overlay specification of the running example
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2 Running Example

enabled. Secondly, we need to verify whether the rules have been constructed in a
way ensuring the absence of collisions between shuttles (i.e., two shuttles should
not be on a common track). Thirdly, emergency brakes should be improbable at a
local level for a single shuttle but also at the global level for the entire LST and its
possible numerous number of shuttles.
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3 Preliminaries

We now briefly introduce the subsequently required details for graph transformation
systems (GTSs) [10], probabilistic timed automata (PTA) [17], and probabilistic
timed graph transformation systems (PTGTSs) [18, 19] in our notation. Along this
presentation, we also discuss the modeling details for our running example from
the previous chapter.
We employ type graphs (cf. [10]) such as the type graph TG from Figure 2.1a

for our running example. A type graph describes the set of all admissible (typed
attributed) graphs by mentioning the allowed types of nodes, edges, and attributes.
We assume typed attributed graphs in which attributes are specified using a many
sorted first-order attribute logic as proposed in [20] (the attribute constraint⊥ (false)
in TG means that the type graph does not restrict attribute values). This approach
to attribution has been used to capture constraints on attributes in graph conditions
in [26] and to describe attribute modifications in [21, 27].

Graph transformation is then performed by applying a graph transformation rule
(short, rule) ρ = (` : K L, r : K R) consisting of two monomorphisms (i.e.,
all components of the morphisms are injective). The rule specifies that the graph
elements in L − `(K) are to be deleted, the graph elements in K are to be preserved,
and the graph elements in R − r(K) are to be added during graph transformation.
Such a rule is applied to a graph G for a given match m : L G resulting in a graph
G′′ by constructing the double pushout (DPO) diagram (see Figure 2.1c) where
the first and the second pushout squares describe the removal and the addition of
graph elements specified in the rule, respectively. Moreover, a rule may additionally
contain an application condition φ (denoted by ρ = (`, r, φ)) to rule out certain
matches specifying e.g. graph elements that may not be connected to graph elements
matched by m. For further details on the graph transformation approach, we refer
to [10].
PTA [17] combine the use of clocks to capture real-time phenomena and proba-

bilism to approximate/describe the likelihood of outcomes of certain steps. A PTA
such as the one in Figure 2.1d consists of (a) a set of locations with a distinguished
initial location such as `0, (b) a set of clocks such as c0 (which are initially set to
0), (c) an assignment of a set of atomic propositions (APs) such as {done} to each
location (for subsequent analysis of e.g. reachability properties), (d) an assignment
of constraints on its clocks to each location as invariants such as c0 ≤ 3, and (e) a set
of probabilistic timed edges each consisting of (e1) a single source location, (e2) at
least one target location, (e3) a clock constraint such as c0 ≥ 2 specifying as a guard
when the edge is enabled based on the current values of the clocks, (e4) for each
target location a probability such as 0.5 that this target is reached (the sum of all the
probabilities for the target locations of the edge must add up to 1 as a probability
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3 Preliminaries

distribution is required), and (e5) for each target location a set of clocks such as {c0}
to be reset to 0 when that target location is reached.

States of a PTA are given by pairs (`, v) where ` is a location and v is the variable
valuation mapping each clock of the PTA to a real number. Nondeterminism arises
in PTA since a step for advancing time as well as multiple steps applying rules may
be enabled in a single state. The logic PTCTL [17] then allows to specify properties
such as “what is the worst-case probability that the PTA reaches a location labeled
with the AP done within 5 time units”, which can be analyzed by the PRISM model
checker [16]. For the example PTA from Figure 2.1d, the given condition is satisfied
with probability 0.75 since the nondeterminism of the PTA would be resolved (by a
so-called adversary) such that the PTA first takes a step to `1 without letting time
pass and then performs the probabilistic step (up to two times after waiting for not
longer than 2 time units) until it reaches the location `2 labeled with the AP done
(the probabilistic step cannot be taken a third time due to the requirement of at most
5 time units in the quoted property above).

PTGTSs have been introduced in [18, 19] as a probabilistic real-time extension of
GTSs. It has been shown that PTGTSs can be translated to PTA and, hence, PTGTSs
can be understood as a high-level language for PTA as discussed below in more
detail and can be analyzed using PRISM as well.
Similarly to PTA, a PTGTS state is given by a pair (G, v) of a graph and a clock

valuation. The initial state is given by a distinguished initial graph and a valuation
setting all clocks to 0. In our running example, each attribute of type clockDrive of a
Track node (cf. Figure 2.1a) represents one clock. Invariants and APs are specified for
PTGTSs by means of graph conditions as in Figure 2.1b and Figure 2.1e, respectively,
for our running example.We use the single invariant INVdriving requiring that shuttles
in mode DRIVE cannot be on a track longer than the value of their minDur (minimal
duration) attribute plus 1. Moreover, we consider three APs to specify properties
that we want to analyze later on. The AP APunexpectedVelocity is used to detect graphs
in which a shuttle does not have an expected velocity of [2, 3] or [3, 4] time units per
track where only the lower end of the interval is stored in the graph in the minDur
attribute. The AP APcollision is used to detect graphs in which two shuttles are on a
common track to capture their collision. Finally, the AP APbraked is used to detect
graphs in which a shuttle has just executed an emergency brake.
PTGT rules of a PTGTS then correspond to edges of a PTA and contain (a) a

left-hand side graph L, (b) an attribute constraint on the clock attributes contained
in L to capture a guard, (c) a natural number describing a priority where higher
numbers denote higher priorities, and (d) a nonempty set of tuples of the form
(` : K L, r : K R, φ, C, p) where (`, r, φ) is an underlying GT rule with appli-
cation condition φ1, C is a set of clock attributes contained in L to be reset, and
p is a real-valued probability from [0, 1] where the probabilities of all such tuples
must add up to 1. See Figure 2.1f, Figure 2.1g, and Figure 2.2a for three PTGT rules
SetSlow, ConstructionSiteBrake, and Drive from our running example where the last

1The underlying GT rule may not delete or add clock attributes.
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3 Preliminaries

two PTGT rules have a unique underlying GT rule with probability 1 and where
the first PTGT rule has a higher priority as well as two underlying GT rules with
probabilities 10−6 and 1 − 10−6. For the PTGT rules ConstructionSiteBrake and Drive,
we depict the graphs L, K, and R in a single graph (subsequently called LKR-graph)
where graph elements to be removed and to be added are annotated with 	 and ⊕,
respectively. In the PTGT rule SetSlow, no graph elements are removed or added (i.e.,
the graphs L and R of the underlying GT rules coincide). Nevertheless, for this PTGT
rule, we depict the two right-hand side morphisms r1 and r2 as they describe PTGT
steps with different attribute modifications and probabilities. Also, the PTGT rules
ConstructionSiteBrake and Drive have application conditions, which are depicted left
to the . symbol or above the / symbol. The attribute preconditions and attribute
modifications are given for each PTGT rule in the red box below the LKR-graph (or
are split into multiple red boxes as for the PTGT rule SetSlow). In these attribute
preconditions and attribute modifications, unprimed (primed) variables denote the
values of attributes before (after) GT rule application. Note that if variables are not
changed by the GT rule application, we denote this using the operator unchanged
(see e.g. Figure 2.1g where unchanged(minD1, tid1, tid2) denotes that the variables
minD1, tid1, and tid2 remain unchanged). Moreover, further information about the
PTGT rule (i.e., the guard and the priority) but also further information about the
probabilistic choices (i.e., the sets of clocks to be reset and probabilities) are depicted
in gray boxes. Lastly, we also allow to annotate a PTGT step in the induced state space
with (a) a name chosen for the probabilistic choice such as success and failure in Fig-
ure 2.1f and (b) the values of the variables contained in the list stepLabel (which
may contain variables from L and R).

When comparing PTA and PTGTSs, we observe that PTA edges are either enabled
for the current valuation or not whereas PTGT rules may be applicable for many
matches at the same time (e.g. allowing to apply the Drive for one of multiple shut-
tles). Priorities used in PTGTSs can be encoded in GTSs (including PTGTSs) by
adding the left-hand side graphs of rules with higher priorities as negative applica-
tion conditions to all rules with a lower priority. Similarly, priorities, if integrated
into PTA, could be encoded by refining the guards. However, for our running exam-
ple, we can exchange the underlying track topology without effort, while this would
require a fundamental adaptation of the corresponding PTA. Also, as in [19], we
observe in chapter 6 that small PTGTSs result in PTA of considerable size and we
therefore conclude that PTGTSs are typically much more concise compared to PTA.

17



4 Decomposition of Large-Scale
Topologies

Wenowpresent our decomposition-based approach to analyze a PTGTS S0 modeling
a large-scale cyber-physical system along the lines of the informal presentation from
the introduction. For our running example, such a PTGTS is given by an initial graph
typed over the type graph from Figure 2.1a that is restricted later on in a suitable way,
13 PTGT rules of which we present three in Figure 2.1f, Figure 2.1g, and Figure 2.2a
(further rules are given in Appendix B), the invariant from Figure 2.1b, and the three
APs from Figure 2.1e.

As a first step, we identify a substructure of the initial graph of S0 that is static in
the sense that this substructure is preserved and also never extended throughout
all PTGT steps of S0. For large-scale cyber-physical systems such as our running
example, the existence of such a static substructure may be justified by a logical or
spatial distribution. The embedding of a static substructure G in a given graph G
is then captured by a monomorphism κ : G G describing how G is embedded
into G. As a special case, such an embedding κ can be derived for arbitrary graphs
G by a monomorphism κTG : TG TG describing how the given type graph TG is
restricted to a smaller type graph TG. That is, G then contains only those elements
from G that are typed over the smaller type graph TG. For our running example,
we restrict the type graph TG from Figure 2.1a to such a smaller type graph TG by
removing the Shuttle node with its attributes, the at edge connected to the Shuttle
node, and the active attributes from the TLYellow and TLGreen nodes. The graphs G
obtained fromgraphs G of S0 using this restriction are then called large-scale topologies
(LSTs) and contain for our running example a track topology with depots, traffic
lights, and construction sites. Note that the fact that such an underlying LST is indeed
preserved and never extended by arbitrary rule applications can be verified (at least
for our running example) by inspecting each rule individually using the technique
of 1-induction [9, 25].
As a second step, we now introduce the notion of a decomposition of the LST

into a small set of (constrained) fragment topologies (FTs). Such (constrained) FTs
are given by (a) a graph that is typed over the type graph used for the LST and
(b) a graph condition describing constraints on how the graph of the FT may be
embedded into graphs of S0. Moreover, an overlapping specification o is required to
describe how the embeddings αi of the graphs of two FTs may overlap in the LST. Such
an overlapping specification is given by a set of spans (o1 : O T1, o2 : O T2)

where O is the permitted overlapping graph that is embedded into the two FTs. A
decomposition of an LST (in the following definition, we simply consider the LST
contained in the initial graph G0 of S0) is then given by embeddings of selected FTs
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(a) FTs for our running examplewhere the red arrows indicate points for topology (de)com-
position.

t1 : T t2 : T t3 : T

t4 : T t5 : T t6 : T

	 	

	

⊕

	 	

	

.

t3 : T T¬∃ ,> T t4 : T∧¬∃ ,>

t3 : T D∧¬∃ ,> D t4 : T∧¬∃ ,>

∧¬φFT1 ∧ . . . ∧ ¬φFT8

(b) Rule Merge for binary overlapping of two instances of FTs.

D T T T T T T T

Y

T T

CS

T T T T T T T T D

TD T T T

Y

T T

CS

T T T T T D

m1
m2 m3

(c) Decomposition M = {m1, m2, m3} of an LST w.r.t. FT1–FT8.

L K R

G G′ G′′ˆ̀ r̂

` r

m m′ m′′

Fi

Li

F′
i F′′

i

Ki Ri

ˆ̀ i r̂i

`i ri

mi m′
i m′′

i

Fi
κ′i κ′′i

G
κ′ κ′′

κ

κi

αi ei e′i e′′i

Underlying GT rule ρ of the PTGTS S0

Step of S0 from G to G′′

Step of Si from Fi to F′′
i

Underlying GT rule ρi of the PTGTS Si
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structure given by G and Fi.

Figure 4.1: FTs for our running example, rule Merge, example for topology compo-
sition, and correspondence between steps in the large-scale system and a fragment
system
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Figure 4.2: Satisfaction of overlapping specification

into the LST (cf. Figure 1.1) such that the overlapping specification is satisfied (the
constraints of the FTs are checked for S0 later on). In applications, to reduce the state
space explosion problem for the model checking phase later on, it is advantageous
to employ a low number of small FTs that are strictly constrained and are allowed to
overlap in a manageable number of ways.

Definition 1 (Decomposition of LST).
If

• S0 is a PTGTS with initial state s0 = (G0, v0),

• κ : G0 G0 is a monomorphism identifying the LST of S0 contained in G0,

• F is a set of (constrained) FTs of the form (Fi, φi),

• o((F1, φ1), (F2, φ2)) ⊆ {(o1, o2) | o1 : O F1, o2 : O F2} is an overlapping
specification, which describes how two FTs from F may overlap,

• M is a list of tuples of the form (F, φ, α) where (F, φ) ∈ F and α : F G0,

• the monomorphisms in M respect the overlapping specification o, i.e., (see
Figure 4.2) for all (F1, φ1, α1 : F1 G0), (F2, φ2, α2 : F2 G0) ∈ M there is
some pair (o1 : O F1, o2 : O F2) ∈ o((F1, φ1), (F2, φ2)) such that for the
pushout (g1 : F1 P, g2 : F2 P) of (o1, o2) (i.e., the overlapping of F1 and
F2 w.r.t. (o1, o2)) there is some h : P G′

0 such that α1 = h ◦ g1 and α2 = h ◦ g2.

then M is a decomposition of the LST of S0 w.r.t. κ, F , and o. �

To provide a better intuition for this definition, we now present the decomposition
of the LST considered for our running example.

Example 1 (Decomposition for Running Example).
Let F contain the constrained FTs (FTi, φi) for 1 ≤ i ≤ 8 where each FTi is given
in Figure 4.1a (here we use an abbreviated notation where D, T, Y, G, and CS are
the obvious abbreviations for the node types of the type graph) and where φi states
in each case that shuttles must have a velocity of [2, 3] or [3, 4] time units per track.1

Let o((F1, φ1), (F2, φ2)) be the overlapping specification stating that overlappings
(o1 : O F1, o2 : O F2) of two FTs are always (for any of the 8 × 8 combinations)

1For each FT from Figure 4.1a, this constraint can be formalized as a graph condition.
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4 Decomposition of Large-Scale Topologies

of the form O = T1 → T2 → T3 where T1 and T3 are mapped to a Track node in F1

and F2 with an entering and an exiting red arrow by o1 and o2, respectively.
An example of a decomposition of an LST employing the previouslymentioned FTs

and overlapping specification is given in Figure 4.1c where three FTs are embedded
into an LST. To be appropriate later on, the decomposition must ensure that all tracks
of the LST are covered by embedding morphisms to which Shuttle nodes may be
connected (e.g. due to Shuttle nodes in the initial graph of S0 or due to connected
Depot nodes from which Shuttle nodes may enter the LST). In fact, the eight chosen
FTs limit the reasoning for our running example to LSTs that can be decomposed
using these FTs. ♦

In general,we consider the twouse cases: (a) a given PTGTSwith underlying LST is
to be analyzed and (b) LSTs are to be constructed based on the selected and analyzed
FTs. Both use cases are supported but require a different handling. For the use case
(a) a parsing of the LST w.r.t. the given FTs and overlapping specification must be
performed to obtain a decomposition of the LST. Efficient parsing algorithms have
been devised for the special case of hyperedge replacement (HR) grammars (which
require that nodes are not deleted) in [6, 7, 8]. A suitable graph transformation based
grammar for our running example with 25 rules is given in Appendix D. For the
use case (b) in which we need to construct some LST, we may employ node deleting
rules. For our running example, consider the rule Merge from Figure 4.1b that can
be used to iteratively overlap two FTs starting with a disjoint union of copies of FTs.
The rule Merge overlaps two instances of three successive Track nodes following the
overlapping specification where the application condition ensures that the rule is
applied at entry and exit points also excluding the possibility that the six matched
Track nodes belong to an instance of FTi using ¬φFTi.
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5 Overapproximation of Behavior

The decompositions of LSTs introduced in the previous chapter are now used as a
foundation to establish a behavioral relationship between a given PTGTS S0 and n
PTGTs Si that operate on the instances of FTs that are embedded into the LST of S0

according to the given LST decomposition.
For this purpose, we extend the structural embeddings given by the α monomor-

phisms from FTs to the LST in Definition 1 to embeddings of the entire graph (in-
cluding the static but also the dynamic parts) of a state of some Si called fragment
topology state (FTS) into the entire graph of a state of S0 called large-scale state (LSS).
Consider the left middle square in Figure 4.1d where the embedding αi together
with the FT and LST embeddings κi and κ is complemented with an embedding ei
of the FTS Fi into the LSS G. Note that ei must be an extension of αi in the sense that
the square commutes (i.e., κ ◦ αi = ei ◦ κi is required). Also, ei ◦ κi must satisfy the
constraint φi of the FT used for Si.
To simplify our presentation, we assume that the PTGTS S0 (as in our running

example) only employs APs of the form ∃( f : ∅ P,>), invariants of the form
¬∃( f : ∅ P,>), and application conditions in PTGT rules that are conjunctions
of graph conditions of the form ¬∃( f : ∅ P,>) for some graph P. This restriction
simplifies the identification of parts of FTSs and LSSs that are considered for an
evaluation of such graph conditions.

As a next step, we present a decomposition relation, which establishes a relation-
ship between S0 and the PTGTSs Si in terms of embedding monomorphisms κ, αi, ei,
and κi for all reachable states of S0. Moreover, the decomposition relation requires
that (a) the timed and discrete steps of S0 can be mimicked by each affected Si and
(b) that discrete steps performed by some PTGTS Si in isolation on a part of the LST
where the FT Fi does not overlap with the FT Fj of another PTGTS Sj with i 6= j can
be mimicked by S0. That is, the decomposition relation is a simulation for the steps
performed by S0 and a bisimulation on those steps that are performed in isolation
by a single PTGTS Si. Also, to allow to derive results for S0 from a model checking
based analysis of the PTGTSs Si, we require a set of APs A that is part of the APs
of S0 and of each Si. Based on this set A, the decomposition relation also requires
that only those FTSs and LSSs are related that satisfy the same sets of APs in A.
For our running example, this set will contain all three APs of S0 (see Figure 2.1e).
Finally, we require that the initial states of S0 and the n PTGTSs Si are covered by
the decomposition relation.
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5 Overapproximation of Behavior

Definition 2 (Decomposition Relation).
Given

• (PTGTS for large-scale system) S0 is a PTGTS with initial LSS s0 = (G0, v0)

where the LST is identified via κ0 : G0 G0 (and preserved by all steps of the
PTGTS),

• (PTGTSs for FTs) for each 1 ≤ i ≤ n: Si is a PTGTS with initial FTS s0,i =

(F0,i, v0,i) where the underlying FT is identified via κi : F0,i F0,i (and pre-
served by all steps of the PTGTS),

• (preserved atomic propositions) A is a set of APs contained in each Si, and

• (Decomposition of the LST) M is a decomposition of size n of the LST of S0

w.r.t. κ0, F = {F0,i | 1 ≤ i ≤ n}, and some overlapping specificiation o (cf.
Definition 1).

S is a decomposition relation between S0 and (S1, . . . ,Sn) containing tuples of the form
((G, v), κ : G G, w)where (G, v) is a state of S0, κ identifies the LST of G, and w is
a tuple of length n of tuples of the form (si, Fi, φi, αi, κi, ei) when the following items
are satisfied.

1. (elements of decomposition relation) The relation S explains how the FTS
of the PTGTS Si is embedded into the LSS of S0, i.e., (see Figure 4.1d) if
((G, v), κ : G G, w) ∈ S and ((Fi, vi), Fi, φi, αi, κi, ei) is the ith element of w,
then si = (Fi, vi) is a state of Si, (Fi, φi, αi) is the ith element of M, κi : Fi G′

(embedding of FT into LST), ei : Fi G (embedding of FTS into LSS), ei ◦ κi
satisfies φi, and κ ◦ αi = ei ◦ κi (embedding ei is an extension of embedding κi),

2. (consistent valuations) The clock valuations of each FTS agree with the LSS,
i.e., if ((G, v), κ : G G, w) ∈ S, ((Fi, vi), Fi, φi, αi, κi, ei) ∈ w, and κi(ci) = c,
then vi(ci) = v(c).

3. (initial states related) The initial LSS of S0 is related, i.e., (s0, κ0, w) ∈ S for
some w where the ith element (si, Fi, φi, αi, κi, ei) of w satisfies si = s0,i.

4. (atomic propositions) The labeling with APs is in agreement w.r.t. A, i.e., if
((G, v), κ : G G, w) ∈ S, ap = ∃( f : ∅ P,>) ∈ A, the monomorphism
k : P G shows that ap is satisfied by G, then there is some 1 ≤ i ≤ n such that
((Fi, vi), Fi, φi, αi, κi, ei) is the ith element of w, and there is some ki : P Fi
showing that ap is satisfied by Fi and k = ei ◦ ki.

5. (bisimulation of timed steps) If ((G, v), κ : G G, w) ∈ S and S0 has a timed
step (not involving a PTGTS rule) from (G, v) to (G, v + δ) then there is some
((G, v + δ), w′) ∈ S where w′ is obtained pointwise from w by applying the
corresponding timed step to each ((Fi, vi), Fi, φi, αi, κi, ei) ∈ w resulting in
((Fi, vi + δ), Fi, φi, αi, κi, ei) and vice versa for a common timed step of each
Si of duration δ.
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5 Overapproximation of Behavior

6. (simulation of structural steps of S0 by Si) if
• ((G, v), κ : G G, w) ∈ S and
• S0 performs the structural step from (G, v) to (G′′, v′′) using an underly-

ing GT rule ρ = (` : K L, r : K R, φac) given in Figure 4.1d where,
since the step of S0 preserves the LST, there are unique κ′ : G G′ and
κ′′ : G G′′ such that `̂ ◦ κ′ = κ and κ′′ = r̂ ◦ κ′, then

• ((G′′, v′′), κ′′ : G G, w′′) ∈ S for some w′′ that is obtained pointwise
from w by adapting each tuple ((Fi, vi), Fi, φi, αi, κi, ei) ∈ w into a resulting
tuple ((F′′

i , v′′i ), Fi, φi, αi, κ′′i , e′′i ) as follows. If m(L) ∩ ei(Fi) = ∅, then all
components of the tuple remain unchanged. Otherwise, the PTGTS Si
must simulate the step and the tuple needs the updating described in the
following steps.
– There must be a step of Si as given in Figure 4.1d from Fi to F′′

i for
some underlying rule ρi = (`i : Ki Li, ri : Ki Ri, φac,i) with the
same probability and priority as ρ.

– Since the step of Si preserves the FT, there are unique κ′i : Fi F′
i

and the required κ′′i : Fi F′′
i such that `̂i ◦ κ′i = κi and κ′′i = r̂i ◦ κ′i .

– The step of Si must allow for e′i : F′
i G′ and e′′i : F′′

i G′′ such that
`̂ ◦ e′i = ei ◦ `̂i and r̂ ◦ e′i = e′′i ◦ r̂i.

7. (simulation of structural steps of Si on its core by S0) if
• ((G, v), κ : G G, w) ∈ S,
• ((Fi, vi), Fi, φi, αi, κi, ei) ∈ w,
• Si performs the structural step from (Fi, vi) to (F′′

i , v′′i ) using anunderlying
GT rule ρi = (`i : Ki Li, ri : Ki Ri, φac,i) given in Figure 4.1d where,
since the step of Si preserves the FT, there are unique κ′i : Fi F′

i and
κ′′i : Fi F′′

i such that `̂i ◦ κ′i = κi and κ′′i = r̂i ◦ κ′i ,
• ei(mi(Li)) does not overlap with any ej(Fj) for i 6= j, then
• there is some ((G′′, v′′), κ′′ : G G, w′′) ∈ S for some G′′, v′′, κ′′, and w′′

as follows.
– There must be a step of S0 as given in Figure 4.1d from G to G′′ for
some underlying rule ρ = (` : K L, r : K R, φac) with the same
probability and priority as ρi.

– Since the step of S0 preserves the LST, there are unique κ′ : G G′

and the required κ′′ : G G′′ such that `̂ ◦ κ′ = κ and κ′′ = r̂i ◦ κ′.
– The step of S0 must allow for e′i : F′

i G′ and e′′i : F′′
i G′′ such that

`̂ ◦ e′i = ei ◦ `̂i and r̂ ◦ e′i = e′′i ◦ r̂i.
– Finally, w′′ is obtained from w by only adapting the above chosen

tuple ((Fi, vi), Fi, φi, αi, κi, ei) into the tuple ((F′′
i , v′′i ), Fi, φi, αi, κ′′i , e′′i ).

�
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5 Overapproximation of Behavior

We now state that decomposition relations allow for the simulation of each path
of the PTGTS S0 by the PTGTSs Si.

Lemma 1 (Existence of Simulating Paths).
If S is a decomposition relation between S0 and (S1, . . . ,Sn), and π is a path of length
m in S0 from the initial state to a state sm, then, for each 1 ≤ i ≤ n, there is a path
πi of Si (of length ki ≤ m) ending in a state si,ki such that (sm, κ, w) ∈ S for some κ

and w where the ith element of w is of the form (si,ki , Fi, φi, αi, κi, ei). Moreover, the
probability of each such path πi is at least as high as the probability of the path π.

Proof. By induction on m. Firstly, due to item 5 in Definition 2, each timed step of
S0 results in an additional corresponding timed step of each Si to be appended
to the path constructed for the PTGTS Si. Secondly, due to item 6 in Definition 2,
each graph transformation based step with priority p of S0 results in an additional
corresponding graph transformation of each affected Si. Moreover, due to item 7
in Definition 2, if there would be a graph transformation based step with a priority
pi > p enabled in Si, there would also be a step with the same priority in S0, which
would be a contradiction to the existence of the stepwith priority p from before. Also,
in both cases, the resulting states are in the decomposition relation. Lastly, since Si
applies rules with the same probability as S0 (but not all steps of S0 are simulated
by Si), πi has at least the probability of π.

We now state that a PTGTS satisfies a safety property given by an AP, when safety
w.r.t. this AP can be established for each Si.

Theorem 1 (Safety Verification).
If S is a decomposition relation between S0 and (S1, . . . ,Sn) w.r.t A and ap ∈ A,
then S0 is safe w.r.t. the occurrence of an ap-labeled graph when (for each 1 ≤ i ≤ n)
Si is safe w.r.t. the occurrence of an ap-labeled graph. Moreover, the probability
of an occurrence of an ap-labeled graph from some state s in S0 is smaller than the
probability of an occurrence of an ap-labeled graph from some S-related state si in Si.

Proof. By contraposition. Assume that S0 is not safe by having a reachable state
labeled with ap ∈ A. Let π be a path of length m in S0 from the initial state to such a
state sm. By applying Lemma 1, we are able to construct for each 1 ≤ i ≤ n a path πi
of Si (of length ki ≤ m) ending in a state si,m such that at least one of these states is
also labeled by ap due to item 4 in Definition 2. However, the existence of such a path
πi then contradicts the safety of Si. The upper bound on the probabilistic occurrence
of an ap-labeled graph is then a direct consequence of Lemma 1.

We now apply the proposedmethodology of establishing a behavioral relationship
between the PTGTS S0 and the PTGTSs Si to our running example. For this purpose,
we now describe how the FTS of each Si is embedded into the LSS of S0 and, based
on this embedding, how the Si is derived from S0.

Example 2 (Construction of Embeddings and Simulating PTGTSs).
Firstly, the embeddings ei of FTSs into the LSS are obtained as extensions of the
structural embeddings κi by alsomatching (a) all Shuttle nodes (with their attributes)
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5 Overapproximation of Behavior

that are connected to Track nodes contained in the FT via next edges and (b) all active
attributes of TLYellow and TLGreen nodes contained in the FT. This extension also
naturally applies to the initial state of S0. Clearly, two embeddings ei and ej (for i 6= j)
only overlap in elements of their FTs but not in the additionally matched dynamic
elements.
Secondly, we adapt the given PTGTS S0 to obtain for each of the eight FTs one

PTGTS Si by (a) changing the initial graph to the source of ei capturing the FT as
well as the additional dynamic elements of the initial state of S0 connected to it,
(b) adding eight rules for overapproximating the behavior of S0 on the tracks that
may overlap with tracks of other FTs. For the latter point, we observe that all but
three of the rules of S0 (including SetSlow and ConstructionSiteBrake from Figure 2.1)
are never applicable on the parts of FTs that may overlap with other FTs (i.e., borders
of FTs). The remaining three rules are Drive from Figure 2.2a as well as two similar
rules for stopping the shuttle that we do not consider in detail here. Three of the four
derived rules for rule Drive are given in Figure 2.2.
The additional rule DriveEnterFast is used to simulate Drive steps where a shut-

tle in S0 drives from a track not covered by Si to a track covered by Si. The rule
DriveEnterFast is essentially constructed by omitting the source track T1 from the
rule Drive, by adding the shuttle with one of the two expected velocities (the other
velocity results in the omitted rule DriveEnterSlow)1, and by omitting application
conditions that may not be satisfied due to the overlapping specification and the
structure of FTs.

Similarly, the additional rules DriveExit1 and DriveExit2 are constructed from rule
Drive to allow for the simulation of the two steps in which a shuttle in S0 drives using
rule Drive on two tracks covered by Si to a track not covered by Si. These two rules
are then constructed similarly, by omitting the tracks T3 (for DriveExit1) and T3 and
T4 (for DriveExit2) from rule Drive as these are not covered by the Si, by removing
the shuttle with its attributes in rule DriveExit2, by omitting application conditions
that may not be satisfied due to the overlapping specification and the structure of
FTs, and by omitting application conditions that refer to the removed tracks.

Note that these additional rules overapproximate the behavior that is possible in
S0 as they may be used when analyzing Si also when no corresponding shuttle in
S0 is able to enter the FT or when rule Drive would be disabled due to the omitted
application conditions for the case of rules DriveExit1 and DriveExit2. ♦

For our running example, we now describe the construction of a suitable decom-
position relation relying on the LST decomposition introduced before.

Lemma 2 (Existence of Decomposition Relation for Running Example).
For the PTGTS S0 of our running example with an arbitrary initial LST such that M
is a decomposition of that LST w.r.t. some monomorphism κ, the set of eight FTs,
and the overlapping specification o from Example 1 there is a decomposition relation
S between S0 and the n PTGTSs Si from Example 2.

1Here, we rely on the constraints on the eight FTs (cf. Example 1) requiring that the AP
APunexpectedVelocity is never labeled in the large-scale system S0.
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5 Overapproximation of Behavior

Proof. We construct S to contain all tuples (a) that use embeddings as described in
Example 2 and (b) that contain consistent clock valuations among the PTGTSs. The
relation S satisfies the requirement on APs as all APs of S0 only match a single track
and, hence, such a match can be obtained analogously in some Si in each case. The
relation S satisfies the requirement of timed steps by assumption (b) on consistent
clock valuations above. The relation S satisfies the simulation of discrete steps of
S0 by the affected Si since all rules on the non-overlapped parts of the FT can be
performed in Si using the same rules and matches and because each further step
of S0 matching tracks that are jointly covered by Si and Sj can be mimicked by Si
and Sj using the additional rules as discussed in Example 2. Also, the additional
rules have all the priority 0 not preventing the required rule applications on the core.
Lastly, the relation S satisfies the simulation of discrete steps of Si on its core because
Si contains the rules of S0.

Based on this decomposition relation and Theorem 1, we can obtain the desired
overapproximation result for S0 for the qualitative safety w.r.t. collisions and the
quantitative unlikeliness of emergency brakes.

Corollary 1 (Qualitative and Quantitative Safety for Running Example).
S0 exhibits no collisions when this is the case for each Si. Moreover, emergency
brakes are performed in S0 with a probability not higher than the probability of such
an occurrence in any Si.

Note that we only need to analyze one PTGTS for each of the eight permitted FTs
w.r.t. the occurrence of collisions and the probability of emergency brakes.
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6 Evaluation

To analyze the eight PTGTSs constructed for our running example in chapter 5 (see
Table 6.1 for the results), we have employed the methodology from [19] generat-
ing the state spaces for these PTGTSs without timed steps and then generated the
corresponding PTA from these state spaces. We then restricted these PTA to timed
automata (TA) essentially removing the information on probabilities, applied UP-
PAAL [15] to determine the edges of the TA that can never be applied due to unsatis-
fiable guards, and removed the corresponding edges from the previously generated
PTA. The entire analysis using our prototypical implementation required less than
three days on a machine using up to 250GB memory where the state space genera-
tion required most of the time. However, there is a vast potential for optimizations
regarding memory consumption (by only storing subsequently relevant information
on states and steps) and runtime (by facilitating concurrency during state space
generation).
Firstly, using UPPAAL, we have verified that each of the eight TA (hence, also

the eight PTA) have no reachable deadlock (where also timed steps are disabled).
Hence, we obtain that the PTGTS S0 also does not contain this particular modeling
error since, using the decomposition relation, we also obtain that every deadlock
reachable in S0 can be reached analogously in each Si.

Secondly, we have observed that the obtained PTA do not label any location with
APunexpectedVelocity or APcollision. For APunexpectedVelocity this means that the additional
rules such as DriveEnterFast and DriveEnterSlow for overapproximating the steps
of entering shuttles entirely cover all possible velocities of shuttles. For APcollision this
means that Corollary 1 implies that the PTGTS S0 with an LST constructed in the
described way from the eight FTs is safe w.r.t. the occurrence of collisions.

Thirdly, to verify that yellow traffic lights suitably slow down the shuttles before
construction sites, we have identified locations `i in the resulting PTA that are labeled
with APbraked (occurring only in FT4 and FT5). In each case, we were able to track
using a custom analysis algorithm (since the PRISMmodel checker was too slow for
the large PTA at hand) the shuttle backwards over all possible paths leading to such
a location `i up to the step where the shuttle entered the FT. We then determined
the maximal probability of any such path obtaining a worst-case emergency brake
probability of 10−6 and 10−12 for any entering shuttle in FT4 and FT5, respectively. On
the one hand, FT5 is thereby verified to be quantitatively more desirable compared to
FT4. On the other hand, Corollary 1 implies that installations of yellow traffic lights
as in FT4 and FT5 suitably decrease the likelihood of emergency brakes also for S0.
However, the probabilities that some shuttle executes an emergency brake in a given
time span in FT4/FT5 (obtained by combining the maximal throughput of shuttles
for FT4/FT5 with the worst-case probability obtained for FT4/FT5) can be expected
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6 Evaluation

Table 6.1: Results of our evaluation for the running example

fragment topology states steps collisions max. probability for violating the
velocity limit at a construction site

FT1 9 18 0 0
FT2 335 693 0 0
FT3 216 503 0 0
FT4 109 379 312 915 0 1× 10−6

FT5 106 122 284 102 0 1× 10−12

FT6 12 473 31 812 0 0
FT7 4048 16 314 0 0
FT8 121 953 452 340 0 0

to be too coarse upper bounds when the maximal throughput is not to be expected
for the real system.
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7 Conclusion and Future Work

We presented an analysis approach for large-scale systems modeled as PTGTSs for
whichmodel checking is not feasible. In this approach, we rely on a decomposition of
an underlying static large-scale topology into fragment topologies ofmanageable size.
Model checking is then applied for each fragment topology and an adaptation of the
PTGTS to such a fragment topology. We thereby determine (a) overapproximations
of reachability properties important for qualitative safety properties and (b) upper
bounds for probabilistic reachability properties important for quantitative safety
properties.

As future work, we intend to extend our analysis to fairness properties and condi-
tions of the metric temporal graph logic (MTGL) [28]. Also, to cover further aspects
of the RailCab project [22], we will develop more general decomposition schemes
where dynamic components (such as connected shuttles driving in convoys) may
be covered by multiple fragment topologies. Lastly, to further evaluate applicability
of our approach, we intend to apply it to other case studies as e.g. the one discussed
in [1].

30



Bibliography

[1] P. Baldan, A. Corradini, and B. König. “Static Analysis of Distributed Systems with
Mobility Specified by Graph Grammars—A Case Study”. In: Proc. of Int. Conf. on
Integrated Design & Process Technology. Edited by Ehrig, Krämer, et al. SDPS, 2002.

[2] B. Becker. “Architectural modelling and verification of open service-oriented systems
of systems”. PhD thesis. Hasso-Plattner-Institut für Softwaresystemtechnik, Univer-
sität Potsdam, 2014.

[3] B. Becker, D. Beyer, H. Giese, F. Klein, and D. Schilling. “Symbolic invariant verifi-
cation for systems with dynamic structural adaptation”. In: 28th International Con-
ference on Software Engineering (ICSE 2006), Shanghai, China, May 20-28, 2006. Edited
by L. J. Osterweil, H. D. Rombach, and M. L. Soffa. ACM, 2006, pages 72–81. doi:
10.1145/1134285.1134297.

[4] B. Becker and H. Giese. “On Safe Service-Oriented Real-Time Coordination for Au-
tonomous Vehicles”. In: 11th IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC 2008), 5-7 May 2008, Orlando, Florida, USA. IEEE
Computer Society, 2008, pages 203–210. doi: 10.1109/ISORC.2008.13.

[5] B. Becker, H. Giese, and S. Neumann. Correct dynamic service-oriented architectures :
modeling and compositional verification with dynamic collaborations. Technical report 29.
Hasso Plattner Institute at the University of Potsdam, 2009.

[6] F. Drewes, B. Hoffmann, and M. Minas. “Formalization and correctness of predictive
shift-reduce parsers for graph grammars based on hyperedge replacement”. In: J.
Log. Algebraic Methods Program. 104 (2019), pages 303–341. doi: 10.1016/j.jlamp.
2018.12.006.

[7] F. Drewes, B. Hoffmann, and M. Minas. “Graph Parsing as Graph Transformation—
Correctness of Predictive Top-Down Parsers”. In: Graph Transformation - 13th Inter-
national Conference, ICGT 2020, Held as Part of STAF 2020, Bergen, Norway, June 25-26,
2020, Proceedings. Edited by F. Gadducci and T. Kehrer. Volume 12150. Lecture Notes
in Computer Science. Springer, 2020, pages 221–238. doi: 10.1007/978-3-030-
51372-6_13.

[8] F. Drewes, B. Hoffmann, andM.Minas. “Predictive Top-Down Parsing for Hyperedge
Replacement Grammars”. In: Graph Transformation - 8th International Conference, ICGT
2015, Held as Part of STAF 2015, L’Aquila, Italy, July 21-23, 2015. Proceedings. Edited by F.
Parisi-Presicce and B. Westfechtel. Volume 9151. Lecture Notes in Computer Science.
Springer, 2015, pages 19–34. doi: 10.1007/978-3-319-21145-9_2.

[9] J. Dyck. “Verification of Graph Transformation Systems with k-Inductive Invariants”.
PhD thesis. University of Potsdam, Hasso Plattner Institute, Potsdam, Germany, 2020.
doi: 10.25932/publishup-44274.

[10] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph Trans-
formation. Springer-Verlag, 2006.

31

https://doi.org/10.1145/1134285.1134297
https://doi.org/10.1109/ISORC.2008.13
https://doi.org/10.1016/j.jlamp.2018.12.006
https://doi.org/10.1016/j.jlamp.2018.12.006
https://doi.org/10.1007/978-3-030-51372-6_13
https://doi.org/10.1007/978-3-030-51372-6_13
https://doi.org/10.1007/978-3-319-21145-9_2
https://doi.org/10.25932/publishup-44274


Bibliography

[11] A. H. Ghamarian and A. Rensink. “Generalised Compositionality in Graph Transfor-
mation”. In: Graph Transformations - 6th International Conference, ICGT 2012, Bremen,
Germany, September 24-29, 2012. Proceedings. Edited by H. Ehrig, G. Engels, H.-J. Kre-
owski, and G. Rozenberg. Volume 7562. Lecture Notes in Computer Science. Springer,
2012, pages 234–248. doi: 10.1007/978-3-642-33654-6_16.

[12] H. Giese. “Modeling and Verification of Cooperative Self-adaptive Mechatronic Sys-
tems”. In: Reliable Systems on Unreliable Networked Platforms - 12th Monterey Workshop
2005, Laguna Beach, CA, USA, September 22-24, 2005. Revised Selected Papers. Edited
by F. Kordon and J. Sztipanovits. Volume 4322. Lecture Notes in Computer Science.
Springer, 2005, pages 258–280. doi: 10.1007/978-3-540-71156-8_14.

[13] H. Giese andW. Schäfer. “Model-Driven Development of Safe Self-optimizingMecha-
tronic Systems with MechatronicUML”. In: Assurances for Self-Adaptive Systems - Prin-
ciples, Models, and Techniques. Edited by J. Cámara, R. de Lemos, C. Ghezzi, and A.
Lopes. Volume 7740. Lecture Notes in Computer Science. Springer, 2013, pages 152–
186. doi: 10.1007/978-3-642-36249-1_6.

[14] H. Giese, M. Tichy, S. Burmester, and S. Flake. “Towards the compositional verifica-
tion of real-time UML designs”. In: Proceedings of the 11th ACM SIGSOFT Symposium
on Foundations of Software Engineering 2003 held jointly with 9th European Software En-
gineering Conference, ESEC/FSE 2003, Helsinki, Finland, September 1-5, 2003. Edited by
J. Paakki and P. Inverardi. ACM, 2003, pages 38–47. doi: 10.1145/940071.940078.

[15] E.-Y. Kang, D. Mu, and L. Huang. “Probabilistic Verification of Timing Constraints
in Automotive Systems Using UPPAAL-SMC”. In: Integrated Formal Methods - 14th
International Conference, IFM 2018, Maynooth, Ireland, September 5-7, 2018, Proceedings.
Edited by C. A. Furia and K. Winter. Volume 11023. Lecture Notes in Computer
Science. Springer, 2018, pages 236–254. doi: 10.1007/978-3-319-98938-9_14.

[16] M. Z. Kwiatkowska, G. Norman, andD. Parker. “PRISM 4.0: Verification of Probabilis-
tic Real-Time Systems”. In: Computer Aided Verification - 23rd International Conference,
CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings. Edited by G. Gopalakrish-
nan and S. Qadeer. Volume 6806. Lecture Notes in Computer Science. Springer, 2011,
pages 585–591. isbn: 978-3-642-22109-5. doi: 10.1007/978-3-642-22110-1_47.

[17] M. Z. Kwiatkowska, G.Norman, J. Sproston, and F.Wang. “SymbolicModel Checking
for Probabilistic Timed Automata”. In: Formal Techniques, Modelling and Analysis of
Timed and Fault-Tolerant Systems, Joint International Conferences on Formal Modelling and
Analysis of Timed Systems, FORMATS 2004 and Formal Techniques in Real-Time and Fault-
Tolerant Systems, FTRTFT 2004, Grenoble, France, September 22-24, 2004, Proceedings.
Edited by Y. Lakhnech and S. Yovine. Volume 3253. Lecture Notes in Computer
Science. Springer, 2004, pages 293–308. isbn: 3-540-23167-6. doi: 10.1007/978-3-
540-30206-3_21.

[18] M. Maximova, H. Giese, and C. Krause. “Probabilistic timed graph transformation
systems”. In: Graph Transformation - 10th International Conference, ICGT 2017, Held as
Part of STAF 2017, Marburg, Germany, July 18-19, 2017, Proceedings. Edited by J. de Lara
and D. Plump. Volume 10373. Lecture Notes in Computer Science. Springer, 2017,
pages 159–175. isbn: 978-3-319-61469-4. doi: 10.1007/978-3-319-61470-0_10.

[19] M. Maximova, H. Giese, and C. Krause. “Probabilistic timed graph transformation
systems”. In: J. Log. Algebr. Meth. Program. 101 (2018), pages 110–131. doi: 10.1016/
j.jlamp.2018.09.003.

[20] F. Orejas. “Symbolic graphs for attributed graph constraints”. In: J. Symb. Comput.
46.3 (2011), pages 294–315. doi: 10.1016/j.jsc.2010.09.009.

32

https://doi.org/10.1007/978-3-642-33654-6_16
https://doi.org/10.1007/978-3-540-71156-8_14
https://doi.org/10.1007/978-3-642-36249-1_6
https://doi.org/10.1145/940071.940078
https://doi.org/10.1007/978-3-319-98938-9_14
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-540-30206-3_21
https://doi.org/10.1007/978-3-540-30206-3_21
https://doi.org/10.1007/978-3-319-61470-0_10
https://doi.org/10.1016/j.jlamp.2018.09.003
https://doi.org/10.1016/j.jlamp.2018.09.003
https://doi.org/10.1016/j.jsc.2010.09.009


Bibliography

[21] F. Orejas and L. Lambers. “Lazy Graph Transformation”. In: Fundam. Inform. 118.1-2
(2012), pages 65–96. doi: 10.3233/FI-2012-706.

[22] RailCab Project. url: https://www.hni.uni-paderborn.de/cim/projekte/
railcab.

[23] A. Rensink. “Compositionality in Graph Transformation”. In: Automata, Languages
and Programming, 37th International Colloquium, ICALP 2010, July 6-10, Bordeaux, France,
2010, Proceedings, Part II. Edited by S. Abramsky, C. Gavoille, C. Kirchner, F. M. auf der
Heide, and P. G. Spirakis. Volume 6199. Lecture Notes in Computer Science. Springer,
2010, pages 309–320. doi: 10.1007/978-3-642-14162-1_26.

[24] W. P. de Roever, H. Langmaack, andA. Pnueli, editors.Compositionality: The Significant
Difference, International Symposium, COMPOS’97, BadMalente, Germany, September 8-12,
1997. Revised Lectures. Volume 1536. Lecture Notes in Computer Science. Springer,
1998. isbn: 3-540-65493-3. doi: 10.1007/3-540-49213-5.

[25] S. Schneider, J. Dyck, and H. Giese. “Formal Verification of Invariants for Attributed
Graph Transformation Systems Based on Nested Attributed Graph Conditions”. In:
Graph Transformation - 13th International Conference, ICGT 2020, Held as Part of STAF
2020, Bergen, Norway, June 25-26, 2020, Proceedings. Edited by F. Gadducci and T. Kehrer.
Volume 12150. Lecture Notes in Computer Science. Springer, 2020, pages 257–275.
doi: 10.1007/978-3-030-51372-6_15.

[26] S. Schneider, L. Lambers, and F. Orejas. “Automated reasoning for attributed graph
properties”. In: STTT 20.6 (2018), pages 705–737. doi: 10.1007/s10009-018-
0496-3.

[27] S. Schneider, M. Maximova, L. Sakizloglou, and H. Giese. “Formal Testing of Timed
Graph Transformation Systems usingMetric Temporal Graph Logic”. In: STTT (2019).
Accepted.

[28] S. Schneider, L. Sakizloglou, M. Maximova, and H. Giese. “Optimistic and Pessimistic
On-the-fly Analysis for Metric Temporal Graph Logic”. In: Graph Transformation - 13th
International Conference, ICGT 2020, Held as Part of STAF 2020, Bergen, Norway, June
25-26, 2020, Proceedings. Edited by F. Gadducci and T. Kehrer. Volume 12150. Lecture
Notes in Computer Science. Springer, 2020, pages 276–294. doi: 10.1007/978-3-
030-51372-6_16.

33

https://doi.org/10.3233/FI-2012-706
https://www.hni.uni-paderborn.de/cim/projekte/railcab
https://www.hni.uni-paderborn.de/cim/projekte/railcab
https://doi.org/10.1007/978-3-642-14162-1_26
https://doi.org/10.1007/3-540-49213-5
https://doi.org/10.1007/978-3-030-51372-6_15
https://doi.org/10.1007/s10009-018-0496-3
https://doi.org/10.1007/s10009-018-0496-3
https://doi.org/10.1007/978-3-030-51372-6_16
https://doi.org/10.1007/978-3-030-51372-6_16


Bibliography

In Appendix A and Appendix B, we present all elements of the PTGTS S0 of our
running example in our full notation. In Appendix C, we provide the eight FTs in our
full notation. In Appendix D, we present graph transformation rules for parsing of an
LST w.r.t. the FTs from Figure 4.1a and the overlapping specification from Example 1.
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A Extended Type Graph of Running
Example

For debugging purposes, we employ the extended type graph from Figure A.1.

• We may limit the number of shuttles that may enter an initially empty FT: for
this purpose, we add a single System node to the FT, add a single count attribute
to the System node, and assign the maximal number of shuttles that should be
allowed on the FT to that attribute. We have used the maximal number of 100
shuttles for our experiments, which is no limitation since the FTs have much
fewer Track nodes and therefore a possible collision is not prevented.

• We may assign unique identifiers (given by id attributes) to shuttles when
they enter the FT: for this purpose, we add a single System node to the FT,
add a single freeIds attribute to the System node, and assign e.g. the string
“11111”, which is a binary encoding of the already taken shuttle identifiers. The
first shuttle will take the identifier 1 and set the freeIds attribute to the string
“01111”. The second shuttle will take the identifier 2 and set the freeIds attribute
to the string “00111”. If the first shuttle then exits the FT, it will release the
identifier 1 by setting the freeIds attribute to the string “10111”. We have used
the empty string for our experiments, which results in all shuttles having the
same identifier −1.

:Shuttle

id:int
mode:string
minDur:real

:Track

id:int
clockDrive:real

:TLYellow

active:bool

:TLGreen

active:bool

:ConstructionSite

:Depot:System

freeIds:string
count:int

:next

:at

:at:at :in

:out

:at

⊥

Figure A.1: Extended type graph of running example
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B Rules of Running Example

All PTGT rules of our running example are given in Figure B.1, Figure B.2, Figure B.3,
Figure B.4, Figure B.5, Figure B.6, Figure B.7, Figure B.8, Figure B.9, Figure B.10,
Figure B.11, Figure B.12, Figure B.13, Figure B.14, Figure B.15, Figure B.16, Figure B.17,
Figure B.18, Figure B.19, Figure B.20, and Figure B.21.

n > 0
∧ ids′ = replace(ids, 1, 0) ∧ n′ = n − 1 ∧ sid′1 = indexof(ids, 1, 0) ∧ m′

1 = DRIVE ∧ minD′
1 = 2 ∧ unchanged(tid1)

guard: >, reset: {d′1}, priority: 0, stepLabel: (tid1; sid′1)

/

S2:Shuttle T1:Track
e4:at¬∃ ,> S2:Shuttle T2:Track

e4:at∧¬∃ ,>

Sys:System

freeIds=ids
count=n

S1:Shuttle

id=sid′1
mode=m′

1
minDur=minD′

1

⊕ D1:Depot T1:Track

id=tid1

clockDrive=d1

T2:Track
e2:next

e3:at⊕

e1:out

Figure B.1: The rule DriveFromDepot: a shuttle enters the track topology from a depot

m′
1 = DRIVE ∧ minD′

1 = 3 ∧ unchanged(sid1, tid1, tid2)

guard: d1 ≥ minD1, reset: {d′2}, priority: 0, stepLabel: (sid1, tid1, tid2; )

/

S2:Shuttle T2:Track
e5:at¬∃ ,>

S1:Shuttle

id=sid1

mode=m1

minDur=minD1

T1:Track

id=tid1

clockDrive=d1

T2:Track

id=tid2

clockDrive=d2

D1:Depot
e1:at
	

e2:next e3:in

e4:at⊕

Figure B.2: The rule DriveToDepot1: a shuttle approaches a depot and slows down if
necessary
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B Rules of Running Example

ids′ = ite(sid1 ≥ 0, set(ids, sid1, 1), ids) ∧ n′ = n + 1 ∧ unchanged(tid1)

guard: d1 ≥ minD1, reset: ∅, priority: 0, stepLabel: (sid1, tid1; )

S1:Shuttle

id=sid1

mode=m1

minDur=minD1

	Sys:System

freeIds=ids
count=n

T1:Track

id=tid1

clockDrive=d1

D1:Depot
e2:ine1:at

	

Figure B.3: The rule DriveToDepot2: a shuttle exits the track topology to a depot

m′
1 = DRIVE ∧ unchanged(sid1, minD1, tid1, tid2)

guard: d1 ≥ minD1, reset: {d′2}, priority: 0, stepLabel: (sid1, m1, minD1, tid1, tid2; )

/

CS:ConstructionSite T2:Track
e5:at¬∃ ,>

S2:Shuttle

mode=m2

T4:Track T2:Track
e5:at e6:next

m2 = DRIVE
∧¬∃ ,>

S2:Shuttle T3:Track
e5:at∧¬∃ ,>

S2:Shuttle

mode=m2

T4:Track T3:Track
e5:at e6:next

m2 = DRIVE
∧¬∃ ,>

S2:Shuttle T2:Track
e5:at∧¬∃ ,>

S1:Shuttle

id=sid1

mode=m1

minDur=minD1

T1:Track

id=tid1

clockDrive=d1

T2:Track

id=tid2

clockDrive=d2

T3:Track
e1:at
	

e2:next e3:next

e4:at⊕

Figure B.4: The rule Drive: the most commonly used rule allowing a shuttle to drive

m1 = DRIVE
∧ m′

1 = STOP ∧ unchanged(sid1, minD1, tid1, tid2)

guard: d1 ≥ minD1, reset: {d′2}, priority: 0, stepLabel: (sid1, minD1, tid1, tid2; )

/

CS:ConstructionSite T2:Track
e6:at¬∃ ,> S3:Shuttle T2:Track

e6:at∧¬∃ ,>

S1:Shuttle

id=sid1

mode=m1

minDur=minD1

T1:Track

id=tid1

clockDrive=d1

T2:Track

id=tid2

clockDrive=d2

T3:Track

S2:Shuttle

e1:at
	

e5:at

e2:next e3:next

e4:at⊕

Figure B.5: The rule Stop1: a shuttle stops due to a shuttle too close ahead
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B Rules of Running Example

m1 = DRIVE ∧ m2 = DRIVE
∧ m′

1 = STOP ∧ unchanged(sid1, minD1, sid2, m2, tid1, tid2)

guard: d1 ≥ minD1, reset: {d′2}, priority: 0, stepLabel: (sid1, minD1, tid1, sid2, tid2; )

/

CS:ConstructionSite T2:Track
e7:at¬∃ ,> S3:Shuttle T2:Track

e7:at∧¬∃ ,>

S1:Shuttle

id=sid1

mode=m1

minDur=minD1

T1:Track

id=tid1

clockDrive=d1

T2:Track

id=tid2

clockDrive=d2

T3:Track

T4:Track

S2:Shuttle

id=sid2

mode=m2

e1:at
	

e2:at

e3:next

e4:next

e5:next

e6:at⊕

Figure B.6: The rule Stop2: a shuttle stops due to another shuttle that would be just
ahead after driving forward

L

r1 r2

a1 = >

guard: >, priority: 1, stepLabel: (sid1, minD1, tid1; )

S1:Shuttle

id=sid1

minDur=minD1

T1:Track

id=tid1

Y1:TLYellow

active=a1
e1:at e2:at

R1 = L
minD′

1 = 3 ∧ a′1 = ⊥∧ unchanged(sid1, tid1)

[success] reset: ∅, probability: 1 − 10−6
R2 = L

a′1 = ⊥∧ unchanged(sid1, minD1, tid1)

[failure] reset: ∅, probability: 10−6

Figure B.7: The rule SetSlow: a shuttle may slow down due to a yellow traffic light

a1 = ⊥
∧ a′1 = >∧ unchanged(tid1)

guard: >, reset: ∅, priority: 1, stepLabel: (tid1; )

/

S1:Shuttle T1:Track
e2:at¬∃ ,>

T1:Track

id=tid1

Y1:TLYellow

active=a1
e1:at

Figure B.8: The rule ResetYellow: the active attribute of the yellow traffic light is reset
once a shuttle has exited the track with the traffic light on it
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B Rules of Running Example

L

r1 r2

a1 = >

guard: >, priority: 1, stepLabel: (sid1, minD1, tid1; )

S1:Shuttle

id=sid1

minDur=minD1

T1:Track

id=tid1

Y1:TLYellow

active=a1
e1:at e2:at

R1 = L
minD′

1 = 2 ∧ a′1 = ⊥∧ unchanged(sid1, tid1)

[success] reset: ∅, probability: 1 − 10−6
R2 = L

a′1 = ⊥∧ unchanged(sid1, minD1, tid1)

[failure] reset: ∅, probability: 10−6

Figure B.9: The rule SetFast: a shuttle may increase its velocity due to a green traffic
light

a1 = ⊥
∧ a′1 = >∧ unchanged(tid1)

guard: >, reset: ∅, priority: 1, stepLabel: (tid1; )

/

S1:Shuttle T1:Track
e2:at¬∃ ,>

T1:Track

id=tid1

G1:TLGreen

active=a1
e1:at

Figure B.10: The rule ResetGreen: the active attribute of the green traffic light is reset
once a shuttle has exited the track with the traffic light on it

m1 = DRIVE ∧ minD1 = 2
∧ m′

1 = BRAKE ∧ unchanged(sid1, minD1, tid1, tid2)

guard: d1 ≥ minD1, reset: {d′2}, priority: 0, stepLabel: (sid1, tid1, tid2; )

/

S2:Shuttle T2:Track
e5:at¬∃ ,>

S1:Shuttle

id=sid1

mode=m1

minDur=minD1

T1:Track

id=tid1

clockDrive=d1

T2:Track

id=tid2

clockDrive=d2

CS:ConstructionSite
e1:at
	

e3:ate2:next

e4:at⊕

Figure B.11: The rule ConstructionSiteBrake: a fast shuttle executes an emergency
brake approaching a construction site
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B Rules of Running Example

((m1 = DRIVE ∧ minD1 = 3) ∨ m1 = STOP)
∧ m′

1 = DRIVE ∧ minD′
1 = 3 ∧ unchanged(sid1, tid1, tid2)

guard: d1 ≥ minD1, reset: {d′2}, priority: 0, stepLabel: (sid1, tid1, tid2; )

/

S2:Shuttle T2:Track
e6:at¬∃ ,> S2:Shuttle T3:Track

e6:at∧¬∃ ,>

S1:Shuttle

id=sid1

mode=m1

minDur=minD1

T1:Track

id=tid1

clockDrive=d1

T2:Track

id=tid2

clockDrive=d2

T3:Track

CS:ConstructionSite

e1:at
	

e3:at

e2:next e4:next

e5:at⊕

Figure B.12: The rule ConstructionSiteDrive: a slow shuttle drives over a construction
site

m1 = DRIVE ∧ minD1 = 3
∧ m′

1 = STOP ∧ unchanged(sid1, minD1, tid1, tid2)

guard: d1 ≥ minD1, reset: {d′2}, priority: 0, stepLabel: (sid1, tid1, tid2; )

/

S2:Shuttle T2:Track
e7:at¬∃ ,>

S1:Shuttle

id=sid1

mode=m1

minDur=minD1

T1:Track

id=tid1

clockDrive=d1

T2:Track

id=tid2

clockDrive=d2

T3:Track

CS:ConstructionSite

S2:Shuttle

e5:at

e1:at
	

e3:at

e2:next e4:next

e6:at⊕

Figure B.13: The rule ConstructionSiteStop: a shuttle may need to stop due to shuttles
ahead also on a construction site
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B Rules of Running Example

n > 0
∧ ids′ = replace(ids, 1, 0) ∧ n′ = n − 1 ∧ sid′1 = indexof(ids, 1, 0) ∧ m′

1 = DRIVE ∧ minD′
1 = 2 ∧ unchanged(tid1)

guard: >, reset: {d′1}, priority: 0, stepLabel: (tid1; sid′1)

/

T3:Track T1:Track
e3:next¬∃ ,>

S2:Shuttle T1:Track
e3:at∧¬∃ ,> S2:Shuttle T2:Track

e3:at∧¬∃ ,>

S1:Shuttle

id=sid′1
mode=m′

1
minDur=minD′

1

⊕Sys:System

freeIds=ids
count=n

T1:Track

id=tid1

clockDrive=d1

T2:Track
e1:nexte2:at

⊕

Figure B.14: The rule DriveEnterFast: additional rule for FT4 and FT5 for a fresh fast
shuttle entering the FT

n > 0
∧ ids′ = replace(ids, 1, 0) ∧ n′ = n − 1 ∧ sid′1 = indexof(ids, 1, 0) ∧ m′

1 = DRIVE ∧ minD′
1 = 3 ∧ unchanged(tid1)

guard: >, reset: {d′1}, priority: 0, stepLabel: (tid1; sid′1)

/
T3:Track T1:Track

e3:next¬∃ ,>

S2:Shuttle T1:Track
e3:at∧¬∃ ,> S2:Shuttle T2:Track

e3:at∧¬∃ ,>

S1:Shuttle

id=sid′1
mode=m′

1
minDur=minD′

1

⊕Sys:System

freeIds=ids
count=n

T1:Track

id=tid1

clockDrive=d1

T2:Track
e1:nexte2:at

⊕

Figure B.15: The rule DriveEnterSlow: additional rule for FT4 and FT5 for a fresh
slow shuttle entering the FT

m′
1 = DRIVE ∧ unchanged(sid1, minD1, tid1, tid2)

guard: d1 ≥ minD1, reset: {d′2}, priority: 0, stepLabel: (sid1, tid1, tid2; )

/

T2:Track T3:Track
e4:next¬∃ ,> S2:Shuttle T2:Track

e4:at∧¬∃ ,>

S1:Shuttle

id=sid1

mode=m1

minDur=minD1

T1:Track

id=tid1

clockDrive=d1

T2:Track

id=tid2

clockDrive=d2

e1:at
	

e2:next

e3:at⊕

Figure B.16: The rule DriveExit1: additional rule for FT4 and FT5 for a shuttle ap-
proaching the end of the FT
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B Rules of Running Example

ids′ = ite(sid1 ≥ 0, set(ids, sid1, 1), ids) ∧ n′ = n + 1 ∧ unchanged(tid1)

guard: d1 ≥ minD1, reset: ∅, priority: 0, stepLabel: (sid1, tid1; )

/

T1:Track T2:Track
e2:next¬∃ ,>

S1:Shuttle

id=sid1

mode=m1

minDur=minD1

	Sys:System

freeIds=ids
count=n

T1:Track

id=tid1

clockDrive=d1

e1:at
	

Figure B.17: The rule DriveExit2: additional rule for FT4 and FT5 for a shuttle exiting
the FT

n > 0
∧ ids′ = replace(ids, 1, 0) ∧ n′ = n − 1 ∧ sid′1 = indexof(ids, 1, 0) ∧ m′

1 = STOP ∧ minD′
1 = 2 ∧ unchanged(tid1)

guard: >, reset: {d′1}, priority: 0, stepLabel: (tid1; sid′1)

/

T3:Track T1:Track
e4:next¬∃ ,> S3:Shuttle T1:Track

e4:at∧¬∃ ,>

S1:Shuttle

id=sid′1
mode=m′

1
minDur=minD′

1

⊕Sys:System

freeIds=ids
count=n

T1:Track

id=tid1

clockDrive=d1

T2:Track S2:Shuttle
e2:ate1:nexte3:at

⊕

Figure B.18: The rule StopEnterFast: additional rule for FT4 and FT5 for a fresh fast
shuttle entering the FT and immediately stopping due to a shuttle ahead

n > 0
∧ ids′ = replace(ids, 1, 0) ∧ n′ = n − 1 ∧ sid′1 = indexof(ids, 1, 0) ∧ m′

1 = STOP ∧ minD′
1 = 3 ∧ unchanged(tid1)

guard: >, reset: {d′1}, priority: 0, stepLabel: (tid1; sid′1)

/

T3:Track T1:Track
e4:next¬∃ ,> S3:Shuttle T1:Track

e4:at∧¬∃ ,>

S1:Shuttle

id=sid′1
mode=m′

1
minDur=minD′

1

⊕Sys:System

freeIds=ids
count=n

T1:Track

id=tid1

clockDrive=d1

T2:Track S2:Shuttle
e2:ate1:nexte3:at

⊕

Figure B.19: The rule StopEnterSlow: additional rule for FT4 and FT5 for a fresh slow
shuttle entering the FT and immediately stopping due to a shuttle ahead
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m1 = DRIVE
∧ m′

1 = STOP ∧ unchanged(sid1, minD1, tid1, tid2)

guard: d1 ≥ minD1, reset: {d′2}, priority: 0, stepLabel: (sid1, tid1, tid2; )

/

T2:Track T3:Track
e4:next¬∃ ,> S2:Shuttle T2:Track

e4:at∧¬∃ ,>

S1:Shuttle

id=sid1

mode=m1

minDur=minD1

T1:Track

id=tid1

clockDrive=d1

T2:Track

id=tid2

clockDrive=d2

e1:at
	

e2:next

e3:at⊕

Figure B.20: The rule StopExit1: additional rule for FT4 and FT5 for a shuttle ap-
proaching the end of the FT and stopping due to a shuttle that may be on the next
track in S0

m1 = DRIVE
∧ ids′ = ite(sid1 ≥ 0, set(ids, sid1, 1), ids) ∧ n′ = n + 1 ∧ unchanged(tid1)

guard: d1 ≥ minD1, reset: ∅, priority: 0, stepLabel: (sid1, tid1; )

/

T1:Track T2:Track
e2:next¬∃ ,>

S1:Shuttle

id=sid1

mode=m1

minDur=minD1

	Sys:System

freeIds=ids
count=n

T1:Track

id=tid1

clockDrive=d1

e1:at
	

Figure B.21: The rule StopExit2: additional rule for FT4 and FT5 for a shuttle exiting
the FT
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C Fragment Topologies of Running
Example

In this appendix,we present the FTs for our running example aswell as the ruleMerge
for merging two FTs. Recall that these FTs and the rule Merge have been presented in
abbreviated notation in Figure 4.1. An LST can be generated by (a) constructing the
disjoint union of copies of the FTs and (b) by applying the rule Merge until it cannot
be applied again.

Also note that we rely on the id attributes of Track nodes only during the analysis
of FTs to track the movement of shuttles. However, for the (de)composition of LSTs,
it is obviously more appropriate to strip the id attributes from the FTs and the rule
Merge.

The rule Merge is given in Figure C.1 and the FTs are given in Figure C.2, Figure C.3,
Figure C.4, Figure C.5, Figure C.6, Figure C.7, Figure C.8, and Figure C.9.

T1:Track

id=id1

clockDrive=d1

T2:Track

id=id2

clockDrive=d2

T3:Track

id=id3

clockDrive=d3

T4:Track

id=id4

clockDrive=d4

T5:Track

id=id5

clockDrive=d5

T6:Track

id=id6

clockDrive=d6

e1:next
	

e2:next
	

e3:next
	

e4:next

e5:next⊕

	 	

	

/

T3:Track T7:Track
e6:next¬∃ ,> T7:Track T5:Track

e6:next∧¬∃ ,>

T3:Track D1:Depot
e6:out∧¬∃ ,> D1:Depot T5:Track

e6:in∧¬∃ ,>

∧¬φFT1 ∧ . . . ∧ ¬φFT8

Figure C.1: The rule Merge for merging of two FTs

D1:Depot T1:Track

id=1
clockDrive=d1

T2:Track

id=2
clockDrive=d2

T3:Track

id=3
clockDrive=d3

e1:out e2:next e3:next

Figure C.2: The fragment topology FT1
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T1:Track

id=1
clockDrive=d1

T2:Track

id=2
clockDrive=d2

T3:Track

id=3
clockDrive=d3

T4:Track

id=4
clockDrive=d4

T5:Track

id=5
clockDrive=d5

D1:Depot

e1:next e2:next e3:next

e4:next

e5:in

Figure C.3: The fragment topology FT2

T1:Track

id=1
clockDrive=d1

T2:Track

id=2
clockDrive=d2

T3:Track

id=3
clockDrive=d3

T4:Track

id=4
clockDrive=d4

e1:next e2:next e3:next

Figure C.4: The fragment topology FT3
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T1:Track

id=1
clockDrive=d1

T2:Track

id=2
clockDrive=d2

T3:Track

id=3
clockDrive=d3

T4:Track

id=4
clockDrive=d4

T5:Track

id=5
clockDrive=d5

T6:Track

id=6
clockDrive=d6

T7:Track

id=7
clockDrive=d7

T8:Track

id=8
clockDrive=d8

T9:Track

id=9
clockDrive=d9

Y1:TLYellow

active=>

CS1:ConstructionSite

e1:next e2:next e3:next

e4:next

e5:nexte6:nexte7:next

e8:next

e9:at

e10:at

Figure C.5: The fragment topology FT4

T1:Track

id=1
clockDrive=d1

T2:Track

id=2
clockDrive=d2

T3:Track

id=3
clockDrive=d3

T4:Track

id=4
clockDrive=d4

T5:Track

id=5
clockDrive=d5

T6:Track

id=6
clockDrive=d6

T7:Track

id=7
clockDrive=d7

T8:Track

id=8
clockDrive=d8

T9:Track

id=9
clockDrive=d9

CS1:ConstructionSite

Y1:TLYellow

active=>

Y2:TLYellow

active=>

e1:next e2:next e3:next

e4:next

e5:nexte6:nexte7:next

e8:next

e9:at

e11:ate10:at

Figure C.6: The fragment topology FT5
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T1:Track

id=1
clockDrive=d1

T2:Track

id=2
clockDrive=d2

T3:Track

id=3
clockDrive=d3

T4:Track

id=4
clockDrive=d4

T5:Track

id=5
clockDrive=d5

T6:Track

id=6
clockDrive=d6

T7:Track

id=7
clockDrive=d7

G1:TLGreen

active=>

e1:next e2:next e3:next

e4:next

e5:nexte6:next

e7:at

Figure C.7: The fragment topology FT6

T1:Track

id=1
clockDrive=d1

T2:Track

id=2
clockDrive=d2

T3:Track

id=3
clockDrive=d3

T4:Track

id=4
clockDrive=d4

T5:Track

id=5
clockDrive=d5

T6:Track

id=6
clockDrive=d6

e1:next

e3:next

e5:next

e2:next

e4:next

Figure C.8: The fragment topology FT7

T1:Track

id=1
clockDrive=d1

T2:Track

id=2
clockDrive=d2

T3:Track

id=3
clockDrive=d3

T4:Track

id=4
clockDrive=d4

T5:Track

id=5
clockDrive=d5

T6:Track

id=6
clockDrive=d6

T9:Track

id=9
clockDrive=d9

T8:Track

id=8
clockDrive=d8

T7:Track

id=7
clockDrive=d7

e1:next e2:next
e4:next

e5:next

e6:next e7:next

e3:next

e8:next

Figure C.9: The fragment topology FT8
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D Construction/Parsing of Topologies

In this appendix, we present GT rules for the construction of LSTs. These rules also
allow, since they are non-deleting, for the parsing using approaches such as [6, 7,
8]. In these rules, we make use of abbreviations in application conditions such as
noExitingEdgeFrom(T3) meaning that the node T3, which is a Track node, has no
exiting next edge to some Track node and no exiting out edge to some Depot node as
well as noEnteringEdgeTo(T5)meaning that the node T5, which is a Track node, has no
entering next edge from some Track node and no entering in edge from some Depot
node. In comparison to the FTs from Appendix C, we are not generating id attributes
for the Track nodes initially. Such additional attributes as well as a suitable System
node could be generated once the basic structure of the LST has been constructed
using the following rules. The idea of these rules, in comparison to the Merge rule
is that each FT can be added to the current graph and that it can be overlapped
(following the overlapping specification of three Track nodes connected via next
edges) with a part of a previously generated FT.
The rules are given in Figure D.1, Figure D.2, Figure D.3, Figure D.4, Figure D.5,

Figure D.6, Figure D.7, and Figure D.8.

∅

T1:Track

clockDrive=d1

T2:Track

clockDrive=d2

T3:Track

clockDrive=d3
e2:next e3:next

/

noEnteringEdgeTo(T1)

D1:Depot T1:Track

clockDrive=d1

T2:Track

clockDrive=d2

T3:Track

clockDrive=d3
e1:out e2:next e3:next

Figure D.1: Construction/parsing rules for FT1
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∅

T1:Track

clockDrive=d1

T2:Track

clockDrive=d2

T3:Track

clockDrive=d3
e1:next e2:next

/

noExitingEdgeFrom(T3)

T1:Track

clockDrive=d1

T2:Track

clockDrive=d2

T3:Track

clockDrive=d3

T4:Track

clockDrive=d4

T5:Track

clockDrive=d5

D1:Depot

e1:next e2:next e3:next

e4:next

e5:in

Figure D.2: Construction/parsing rules for FT2

∅

T1:Track

clockDrive=d1

T2:Track

clockDrive=d2

T3:Track

clockDrive=d3
e1:next e2:next

/

noExitingEdgeFrom(T3)

T2:Track

clockDrive=d2

T3:Track

clockDrive=d3

T4:Track

clockDrive=d4
e2:next e3:next

/

noEnteringEdgeTo(T2)

T1:Track

clockDrive=d1

T2:Track

clockDrive=d2

T3:Track

clockDrive=d3

T4:Track

clockDrive=d4
e1:next e2:next e3:next

Figure D.3: Construction/parsing rules for FT3
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∅

T1:Track

clockDrive=d1

T2:Track

clockDrive=d2

T3:Track

clockDrive=d3
e1:next e2:next

/

noExitingEdgeFrom(T3)

T7:Track

clockDrive=d7

T8:Track

clockDrive=d8

T9:Track

clockDrive=d9
e7:next e8:next

/

noEnteringEdgeTo(T7)

T1:Track

clockDrive=d1

T2:Track

clockDrive=d2

T3:Track

clockDrive=d3

T7:Track

clockDrive=d7

T8:Track

clockDrive=d8

T9:Track

clockDrive=d9

e1:next e2:next

e7:next e8:next

/

noExitingEdgeFrom(T3) ∧ noEnteringEdgeTo(T7)

T1:Track

clockDrive=d1

T2:Track

clockDrive=d2

T3:Track

clockDrive=d3

T4:Track

clockDrive=d4

T5:Track

clockDrive=d5

T6:Track

clockDrive=d6

T7:Track

clockDrive=d7

T8:Track

clockDrive=d8

T9:Track

clockDrive=d9

Y1:TLYellow

active=>

CS1:ConstructionSite

e1:next e2:next e3:next

e4:next

e5:nexte6:nexte7:next

e8:next

e9:at

e10:at

Figure D.4: Construction/parsing rules for FT4
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∅

T1:Track

clockDrive=d1

T2:Track

clockDrive=d2

T3:Track

clockDrive=d3
e1:next e2:next

/

noExitingEdgeFrom(T3)

T7:Track

clockDrive=d7

T8:Track

clockDrive=d8

T9:Track

clockDrive=d9
e7:next e8:next

/

noEnteringEdgeTo(T7)

T1:Track

clockDrive=d1

T2:Track

clockDrive=d2

T3:Track

clockDrive=d3

T7:Track

clockDrive=d7

T8:Track

clockDrive=d8

T9:Track

clockDrive=d9

e1:next e2:next

e7:next e8:next

/

noExitingEdgeFrom(T3) ∧ noEnteringEdgeTo(T7)

T1:Track

clockDrive=d1

T2:Track

clockDrive=d2

T3:Track

clockDrive=d3

T4:Track

clockDrive=d4

T5:Track

clockDrive=d5

T6:Track

clockDrive=d6

T7:Track

clockDrive=d7

T8:Track

clockDrive=d8

T9:Track

clockDrive=d9

CS1:ConstructionSite

Y1:TLYellow

active=>

Y2:TLYellow

active=>

e1:next e2:next e3:next

e4:next

e5:nexte6:nexte7:next

e8:next

e9:at

e11:ate10:at

Figure D.5: Construction/parsing rules for FT5
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∅

T1:Track

clockDrive=d1

T2:Track

clockDrive=d2

T3:Track

clockDrive=d3
e1:next e2:next

/

noExitingEdgeFrom(T3)

T5:Track

clockDrive=d5

T6:Track

clockDrive=d6

T7:Track

clockDrive=d7
e5:next e6:next

/

noEnteringEdgeTo(T5)

T1:Track

clockDrive=d1

T2:Track

clockDrive=d2

T3:Track

clockDrive=d3

T5:Track

clockDrive=d5

T6:Track

clockDrive=d6

T7:Track

clockDrive=d7

e1:next e2:next

e5:next e6:next
/

noExitingEdgeFrom(T3) ∧ noEnteringEdgeTo(T5)

T1:Track

clockDrive=d1

T2:Track

clockDrive=d2

T3:Track

clockDrive=d3

T4:Track

clockDrive=d4

T5:Track

clockDrive=d5

T6:Track

clockDrive=d6

T7:Track

clockDrive=d7

G1:TLGreen

active=>

e1:next e2:next e3:next

e4:next

e5:nexte6:next

e7:at

Figure D.6: Construction/parsing rules for FT6

∅

T1:Track

clockDrive=d1

T2:Track

clockDrive=d2

T3:Track

clockDrive=d3
e1:next e2:next

/

noExitingEdgeFrom(T3)

T2:Track

clockDrive=d2

T3:Track

clockDrive=d3

T4:Track

clockDrive=d4
e2:next e3:next

/

noEnteringEdgeTo(T2)

T1:Track

clockDrive=d1

T2:Track

clockDrive=d2

T3:Track

clockDrive=d3

T4:Track

clockDrive=d4

T5:Track

clockDrive=d5

T6:Track

clockDrive=d6

e1:next

e3:next

e5:next

e2:next

e4:next

Figure D.7: Construction/parsing rules for FT7
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∅

T1:Track

clockDrive=d1

T2:Track

clockDrive=d2

T3:Track

clockDrive=d3
e1:next e2:next

/

noExitingEdgeFrom(T3)

T4:Track

clockDrive=d4

T5:Track

clockDrive=d5

T6:Track

clockDrive=d6
e4:next e5:next

/

noEnteringEdgeTo(T4)

T1:Track

clockDrive=d1

T2:Track

clockDrive=d2

T3:Track

clockDrive=d3

T4:Track

clockDrive=d4

T5:Track

clockDrive=d5

T6:Track

clockDrive=d6

e1:next e2:next

e4:next e5:next

/

noExitingEdgeFrom(T3) ∧ noEnteringEdgeTo(T4)

T1:Track

clockDrive=d1

T2:Track

clockDrive=d2

T3:Track

clockDrive=d3

T4:Track

clockDrive=d4

T5:Track

clockDrive=d5

T6:Track

clockDrive=d6

T7:Track

clockDrive=d7

T8:Track

clockDrive=d8

T9:Track

clockDrive=d9

e1:next e2:next

e4:next e5:next

e7:next e8:next

/

noExitingEdgeFrom(T3) ∧ noExitingEdgeFrom(T9) ∧ noEnteringEdgeTo(T4)

T1:Track

clockDrive=d1

T2:Track

clockDrive=d2

T3:Track

clockDrive=d3

T4:Track

clockDrive=d4

T5:Track

clockDrive=d5

T6:Track

clockDrive=d6

T9:Track

clockDrive=d9

T8:Track

clockDrive=d8

T7:Track

clockDrive=d7

e1:next e2:next

e4:next

e5:next

e7:next e8:next

e3:next

e6:next

Figure D.8: Construction/parsing rules for FT8
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