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For complex distributed embedded probabilistic real-time systems, ensuring cor-
rectness of their software components is of great importance. The rule-based for-
malism of Probabilistic Timed Graph Transformation Systems (PTGTSs) allows for
modeling and analysis of such systems where states can be represented by graphs
and where timed and probabilistic behavior is important. In PTGTSs, probabilistic
behavior is specified by assigning precise probabilities to rules. However, for embed-
ded systems, only lower and upper probability bounds may be estimated because
unknown physical effects may influence the probabilities possibly changing them
over time.

In this paper, we (a) introduce the formalism of Interval Probabilistic TimedGraph
Transformation Systems (IPTGTSs) in which rules are equipped with probability
intervals rather than precise probabilities and (b) extend the preexisting model
checking approach for PTGTSs to IPTGTSs w.r.t. worst-case/best-case probabilistic
timed reachability properties using an encoding of probability intervals. Moreover,
we ensure that this adapted model checking approach is applicable to IPTGTSs for
which the finiteness of the state space may only be a consequence of the timing
constraints. Finally, in our evaluation, we apply an implementation of our model
checking approach in AutoGraph to a running example. 1 , 2

1Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)— 241885098,
148420506.

2A shorter version of this report has been published earlier as a paper in [14].
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1 Introduction

Software correctness plays an important role in the ever growing area of complex
distributed embedded probabilistic real-time systems. In this context, modeling for-
malisms allowing for formal analysis while capturing relevant system aspects are
required for designing, understanding, and improving the behavior of such systems.

Many probabilistic real-time systems with complex coordination behavior or spa-
tial movements of components can be modeled using the formalism of PTGTSs [13]
when the states of the system can be represented by graphs. The formalism of PT-
GTSs allows for structure dynamics bymeans of rule-based graph transformation (cf.
[3]), timed behavior (employing clocks as in Timed Automata (TA) [1]), and proba-
bilistic choices (as in Probabilistic Automata (PA) [19]) among alternative outcomes
of graph transformation steps. As usual, nondeterministic models such as PTGTSs,
where the passage of time competes with possibly multiple rule applications, im-
plicitly cover real-time systems by the resolution of their nondeterminism. However,
assigning precise probabilities to the alternative outcomes of graph transformation
steps in PTGTSs is insufficient when unknown physical effects may affect the actual
probabilities (possibly even over time). Hence, PTGTSs may only be employed as a
suitable modeling formalism when (at least) pseudo-random variables are used to
decide probabilistic choices.

The subformalisms of Timed Graph Transformation Systems (TGTSs) [2, 15] and
Probabilistic Graph Transformation Systems (PGTSs) [5, 7] including tool support
for their formal analysis have been introduced before. Essentially, tool-based analysis
support is obtained by translating a PTGTS, TGTS, or PGTS into the corresponding
Probabilistic Timed Automaton (PTA) [10], TA, or PA, respectively, and by then
reusing the existingmodel checking support for the resulting automata. In particular,
the tools Prism [7] and Uppaal [20] support the model checking of PTA and TA,
respectively, with varying feature sets.

As for PTGTSs, the precise probabilities required in PTA may not be appropriate
for the system at hand. To relax this precision, Interval Probabilistic Timed Automata
(IPTA) [4, 21] have been defined as an extension of PTA where probability intervals
are used instead of precise probabilities. These probability intervals are then resolved
to precise probabilities nondeterministically at use-time to derive steps.

In this paper, we introduce the formalism of IPTGTSs as an extension of PTGTSs by
integrating the handling of probability intervals from IPTA to allow for themodeling
of systems where only lower and upper probability bounds can be estimated for
some probabilistic steps. Following our work on PTGTSs and IPTA [4], we present a
formal translation of IPTGTSs into PTA via IPTA (for the case of finite state spaces)
to support the modeling of structure dynamics, timed behavior, and interval probabilistic
behavior using IPTGTSs and their analysis w.r.t. best-case/worst-case probabilistic
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1 Introduction

reachability properties using Prism.Hereby,we improve upon our earlierwork in [13]
by constructing the state space of the TGTS underlying the given IPTGTSwhile using
Uppaal to ensure that all obtained states are reachable for the given IPTGTS. Hence,
we enable the analysis of an IPTGTSwith a finite state space evenwhen the state space
of its underlying Graph Transformation System (GTS) is infinite. See Figure 1.1 for an
overview of the translations and tool support for the involved modeling formalisms
where Probabilistic Timed Systems (PTSs) and Interval Probabilistic Timed Systems
(IPTSs) are underlying semantic models.

As a running example, we consider a gossiping protocol where all agents in a
directed wireless network have a local Boolean value. The Boolean value true repre-
sents the information that must be propagated to all agents. At run-time, agents with
Boolean value true attempt to send this value along the directed physical channels
given by edges. Each sending operation is subject to probabilistic choice where the
message is transported successfully through the channel with a probability between
0.7 and 0.8 possibly being affected by e.g. the available energy of the sender or the
spatial distance between agents. Moreover, due to limited energy and imperfect local
clocks, each agent may send a message at most every 2 to 5 time units. Lastly, we
evaluate the described system in terms of e.g. the best-case/worst-case probability
that each agent adopts the Boolean value true within a given time bound but also
in terms of the number of sending errors processed by an observer that counts and
deletes them.
This paper is structured as follows. In chapter 2, we introduce preliminaries for

our approach including graph transformation and IPTA. In chapter 3, we introduce
the novel formalism of IPTGTSs as an extension of PTGTSs widening probabilistic
choices from precise probabilities to probability intervals. In chapter 4, we present
the steps of our translation-basedmodel checking approach for IPTGTSs. In chapter 5,
we evaluate our approach by applying its implementation in the tool AutoGraph
to our running example. In chapter 6, the paper is closed with a conclusion and an
outlook on future work. Finally, the appendix covers additional technicals details
and examples omitted in the main body for readability. In Appendix A, we present
the two step translation of IPTA into PTSs via IPTSs (which complements the two
step translation of IPTA to PTSs via PTA). In Appendix B, we present established
means, in particular centered around Prism and PTCTL for the specification of PTSs
and therefore also of IPTGTSs, PTGTSs, IPTA, and PTA. In Appendix C, we present
an analysis algorithm for IPTA and best-case/worst-case probabilistic reachability
properties as a foundation for the also presented translation of IPTA into PTA pre-
serving such properties. In Appendix D, we present an example for the translation of
an IPTGTS into an IPTA that is equivalent w.r.t. the considered best-case/worst-case
probabilistic reachability properties.
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1 Introduction

IPTAPTA IPTGTS

PTS IPTS

PTGTS
[12, 13] Definition 10Definition 22

Definition 3

Definition 12

Definition 13

Prism Prism adaptation AutoGraphHenshin

[12, 13] this paper[6][7]

Figure 1.1: Overview of tools and formalisms: Henshin supports the modeling of
PTGTS and their translation to PTA; AutoGraph supports the modeling of IPTGTS
and their translation to IPTA and PTA; Prism supports the analysis of PTA and a
custom adaptation of Prism supports the analysis of IPTA; PTA and IPTA induce
PTS and IPTS as underlying semantic models.
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2 Preliminaries

In this section, we introduce graphs, graph transformation, IPTA, and probabilistic
timed reachability problems to be solved for IPTA as preliminaries for the subsequent
presentation of IPTGTSs and our model checking approach.
Employing the variation of symbolic graphs [17] from [18], we consider typed

attributed graphs (such as the graph G0 in Figure 2.2d), which are typed over a type
graph TG (such as the one in Figure 2.2a). The values of the variables connected to
attributes are specified using Attribute Conditions (ACs) over a many sorted first-
order attribute logic. The AC ⊥ (false) in TG means thereby that the type graph
does not restrict attribute values. Graph Transformation (GT) is then executed by
applying a GT rule ρ = (` : K L, r : K R, γ) for a match m : L G on the graph
to be transformed (see [18] for technical details). A GT rule specifies (a) that the
graph elements in L − `(K) are to be deleted and the graph elements in R − r(K) are
to be added using the monomorphisms ` and r, respectively, according to a Double
Pushout (DPO) diagram and (b) that the values of variables in the resulting graph
are derived from those of G using the AC γ (e.g. x′ = x + 2) in which the variables
from L and R are used in unprimed and primed form, respectively. Nested applica-
tion conditions are straightforwardly supported by our approach but, to improve
readability, they are not used in the running example and omitted subsequently.
For example, see Figure 2.1a for a graph transformation rule and Figure 2.1b for an
example of a graph transformation step applying this rule.
We now recall IPTA [4, 21], which subsume TA [1] where clocks are used to

capture real-time phenomena and PTA [10] where probabilistic choices are used
additionally to approximate/describe the likelihood of outcomes of certain steps.
First, we provide required notions on clocks and (intervals of) probabilities.

For a set of clock variables X, clock constraints ψ ∈ CC(X) are finite conjunctions
of clock comparisons of the form c1 ∼ n and c1 − c2 ∼ n where c1, c2 ∈ X,∼ ∈ {<,>
,≤,≥}, and n ∈ N ∪ {∞}. A clock valuation v ∈ CV(X) of type v : X R0 satisfies
a clock constraint ψ, written v |= ψ, as expected. The initial clock valuation ICV(X)

maps all clocks to 0. For a clock valuation v and a set of clocks X′, v[X′ := 0] is the
clock valuation mapping the clocks from X′ to 0 and all other clocks according to v.
For a clock valuation v and a duration δ ∈ R0 , v + δ is the clock valuation mapping
each clock x to v(x) + δ.

For a countable set A, a Discrete Interval ProbabilityDistribution (DIPD) character-
izes a non-empty set of (discrete) Probability Mass Functions (PMFs) µ : A [0, 1]
by assigning to each a ∈ A an interval [xa, ya] such that it is possible to choose one
element from each interval to obtain a sum of 1. Formally, a pair (µ1 : A [0, 1], µ2 :
A [0, 1]) is a DIPD, written (µ1, µ2) ∈ DIPD(A), if the following two proper-
ties hold: (i) µ1(a) ≤ µ2(a) for each a ∈ A and (ii) ∑ {|µ1(a) | a ∈ A|} ≤ 1 ≤
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2 Preliminaries

` r

v′1 = v1 ∧ v′3 = (v1 ∧ v2)

/

C1:ContainerC′
3:Container

e′2:next
e′3:next¬∃ ,>

C1:Container

val=v1

C2:Container

val=v2
e1:next

C1:Container

val=v1

C1:Container

val=v′1

C3:Container

val=v′3
e2:next

e3:next

(a) Graph transformation rule ρgts:ex with two monomorphisms ` and r and a negative
application condition describing the removal of node C2 (with its single attribute val) and
edge e1, the addition of node C3 (with its single attribute val) and the edges e2 and e3,
unless (application condition above) there is already such a node C′

3 attached in the same
way to the node C1, the preservation of the val attribute of C1, and the restriction of the
attribute val of C3 to the conjunction of the val attributes of C1 and C2.

ρgts:ex

C1:Container

val=v1

clock=c1

C2:Container

val=v2
e1:next

e4:next

v1 = >
∧ v2 = ⊥

C1:Container

val=v1

clock=c1

e4:next

C3:Container

val=v3
e2:next

e3:next
v1 = >

∧ v3 = ⊥

(b) Graph transformation step applying the rule from Figure 2.1a. We refer to [18] for
details as to how the step is obtained.

Figure 2.1: Example of a GT rule and GT step

∑ {|µ2(a) | a ∈ A|} using summation over multisets. These two properties ensure
non-emptiness of intervals and non-emptiness of characterized PMFs, respectively.
µ : A [0, 1] is then such a characterized PMF in the semantics of (µ1, µ2), written
µ ∈ 〈(µ1, µ2)〉, if µ1(a) ≤ µ(a) ≤ µ2(a) for each a ∈ A. Note that (µ, µ) is also a DIPD
over A. The support of (µ1, µ2), written supp((µ1, µ2)), contains all a ∈ A for which
the right interval border µ2(a) is non-zero. For example, the semantics of the DIPD
(µ1 = {`0 7→ 0.2, `1 7→ 0.7}, µ2 = {`0 7→ 0.3, `1 7→ 0.8}) contains, among others,
the two PMFs µ = {(`0, 0.3), (`1, 0.7)} and µ′ = {(`0, 0.2), (`1, 0.8)}. The point DIPD
for a distinguished elment a ∈ A, written DIPD1(A, a), is the unique DIPD (µ, µ)

with µ(a) = 1 and mapping all other elements of A to 0. Lastly, a PMF µ : A [0, 1]
can be used to scale a probability vector p : A [0, 1], written (µ × p) : A [0, 1],
where (µ × p)(a) = µ(a)× p(a).

An IPTA (such as A1 from Figure 2.3) consists of (a) a set of locations with a
distinguished initial location (such as `0), (b) a set of clocks (such as c) which
are initially set to 0, (c) an assignment of a set of APs (such as {done}) to each
location (for subsequent analysis of e.g. reachability properties), (d) an assignment
of constraints over clocks to each location as invariants (such as c ≤ 5), and (e) a set
of interval probabilistic timed edges. Each interval probabilistic timed edge consists
thereby of (i) a single source location, (ii) at least one target location, (iii) an action
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2 Preliminaries

(such as a), (iv) a clock constraint (such as c ≥ 2) specifying as a guard when the
edge is enabled based on the current values of the clocks, and (v) a DIPD assigning
an interval probability (such as [0.2, 0.3]) to each pair consisting of a set of clocks to
be reset (such as {c}) and a target location to be reached.

Definition 1 (Interval Probabilistic Timed Automaton (IPTA)). An interval proba-
bilistic timed automaton (IPTA) A is a tuple with the following components.
• locs(A) is a finite set of locations,
• iloc(A) is the unique initial location from locs(A),
• acts(A) is a finite set of actions disjoint from R0 ,
• clocks(A) is a finite set of clocks,
• invs(A) : locs(A) CC(clocks(A)) maps each location to an invariant for that

location such that the initial clock valuation satisfies the invariant of the initial
location (i.e., ICV(clocks(A)) |= invs(A)(iloc(A))),

• edges(A) ⊆ locs(A) × acts(A) × CC(clocks(A)) × DIPD(2clocks(A) × locs(A)) is
a finite set of IPTA edges of the form (`1, a, ψ, (µ1, µ2)) where `1 is the source
location, a is an action, ψ is a guard, and (µ1, µ2) is a DIPDmapping pairs (Res, `2)

of clocks to be reset and target locations to probability intervals,
• aps(A) is a finite set of APs, and
• lab(A) : locs(A) 2aps(A) maps each location to a set of APs.
Moreover, we define PTA, TA, Interval Probabilistic Automaton (IPA), and PA as
IPTA restrictions as follows.
• A is a PTA if for all (`, a, ψ, (µ1, µ2)) ∈ edges(A): 〈(µ1, µ2)〉 is a singleton.
• A is a TA if for all (`, a, ψ, (µ1, µ2)) ∈ edges(A): supp((µ1, µ2)) is a singleton.
• A is an IPA if clocks(A) is empty.
• A is a PA if it is an IPA and a PTA.

Consider the following IPTA example of a server communicating with clients.

Example 1 (Server as IPTA). See Figure 2.4 for two IPTA characterizing the behavior
of a server. The required significant adaptation of the IPTA from Figure 2.4a to the
IPTA Figure 2.4b demonstrates that IPTA (as for finite automata) are not able to
count occurrences e.g. using additional variables. Note that some unfolding-like
adaptations may be specified using parallel composition of IPTA as in [6, Def. 3.11,
p. 22, Chapter 4, pp. 25–].

The semantics of an IPTA is given in terms of the induced PTS, which defines
timed probabilistic paths as expected. The states of the induced PTS are pairs of
locations and clock valuations. The steps between such states then either (a) nonde-
terministically advance time or (b) nondeterministically select an enabled IPTA edge,
nondeterministically determine a PMF from the given DIPD, and probabilistically
determine a reset set and target location based on that PMF.

Definition 2 (Probabilistic Timed System (PTS)). A probabilistic timed system (PTS)
P is a tuple with the following components.
• states(P) is a (possibly infinite) set of states,
• istate(P) is the unique initial state from states(P),

13



2 Preliminaries

• acts(P) is a finite set of actions disjoint from R0 ,
• steps(P) ⊆ states(P)× (acts(P)∪R0)×DIPD(states(P)) is a (possibly infinite) set

of PTS steps of the form (s1, a, (µ, µ)) where s1 is the source state, a is an action or
a duration, and where (µ, µ) is a DIPD on the set states(P) containing all potential
target states s2,

• aps(P) is a finite set of APs, and
• lab(P) : states(P) 2aps(P) maps each state to a set of APs.

We nowdefine the PTS induced by a given IPTA along the lines of our explanations
from above. Note that we present an indirect approach in Appendix A using IPTSs
as an intermediate semantic model.

Definition 3 (PTS Induced by IPTA). Every IPTA A induces a unique probabilistic
timed system (PTS) IPTAtoPTS(A) = P consisting of the following components.
• states(P) = {(`, v) ∈ locs(A)× CV(clocks(A)) | v |= invs(A)(`)} contains as PTS

states pairs of locations and clock valuations satisfying the location’s invariant,
• istate(P) = (iloc(A), ICV(clocks(A))) is the unique initial state from states(P),
• acts(P) = acts(A) is the same set of actions,
• steps(P) ⊆ states(P) × (acts(P) ∪ R0) × DIPD(states(P)) is the set of PTS steps

where ((`, v), a, (µ, µ)) ∈ steps(P), if one of the two following cases applies.
◦ Timed step:

. a ∈ R0 is a duration,

. (`, v + t′) ∈ states(P) for all t′ ∈ [0, a], i.e., the invariant of ` is also satisfied
for all intermediate time points t′, and

. µ(`, v + a) = 1 identifies the unique PTS target state (`, v + a).
◦ Discrete step:

. a ∈ acts(A) is an action of the IPTA,

. (`, a, ψ, (µ′
1, µ′

2)) ∈ edges(A) is an edge of the IPTA,
. v |= ψ, i.e., the guard ψ of the edge is satisfied by the valuation v,
. µi(`

′, v′) = ∑ {|µ′
i(X, `′) | X ⊆ clocks(A), v′ = v[X := 0]|} for i ∈ {1, 2}

is the DIPD on the PTS target states (`′, v′), and
. µ ∈ 〈(µ1, µ2)〉 is a PMF from the semantics of the DIPD (µ1, µ2).

• aps(P) = aps(A) is the same set of APs, and
• lab(P)(`, v) = lab(A)(`) labels states in P according to the location labeling of the

IPTA.

For the special case of PTA, we will use in chapter 5 the Prism model checker [7] to
solve the following analysis problems defined for the induced PTSs. Intuitively, these
analysis problems ask for the probability with which states labeled with a given AP
can be reached (possibly within a given time bound). However, the probability to be
computed depends on how the nondeterminism in the PTS is resolved. Technically,
this nondeterminism is resolved using an adversary, which selects for the finite path
constructed so far the next timed/discrete step where the target state of a discrete
step is subject to an additional probabilistic choice. The probability values obtained
for all such adversaries result in a unique lower and a unique upper bound. These
unique lower and upper bounds intuitively correspond to the worst-case or the best-
case probabilities depending on whether reaching a state labeled with the given AP
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2 Preliminaries

is desirable. The worst-case and the best-case probabilities can then be computed
using Prism.

Definition 4 (Min/Max Probabilistic Timed Reachability Problems). Evaluate the
expression Pop=?(F∼c ap) for a PTS P with op ∈ {min,max}, ∼ ∈ {≤,<}, c ∈ N ∪
{∞}, and ap ∈ aps(P) to obtain the infimal/supremal probability (depending on op)
over all adversaries to reach some state in P labeled with ap within t ∼ c time units.

For example, for the PTS P = IPTAtoPTS(A1) induced by the IPTA A1 from Fig-
ure 2.3, (a) Pmax=?(F≤5 done) is evaluated to probability 0.96 = 0.8 + 0.2 × 0.8 since
the probability maximizing adversary would enable two discrete steps e.g. at time
points 2 and 4 with the maximal probability of 0.8 to reach `1 in each case and (b)
Pmin=?(F≤5 done) is evaluated to probability 0.7 since the probability minimizing ad-
versary would enable only one discrete step (e.g. at time point 5) where the minimal
probability to reach `1 would be 0.7.

Formally, the semantics of a PTS is now given in terms of its paths (cf. [10]).

Definition 5 (Semantics of PTS). A PTS P induces the set Paths(P, s) of non-empty
finite and infinite paths1 π starting in s ∈ states(P) where each step (s1, a, µ, s2) in
that path satisfies (s1, a, (µ, µ)) ∈ steps(P) and µ(s2) > 0.
Moreover, we define the following notions.
• PathsFinI(P) denotes the finite paths starting in the initial state istate(P).
• last(π) denotes the last state of a finite path.
• first(π) denotes the first state of a path.
• state(π, t) denotes the state at time t in the path π.
• dur(π, i) = ∑ {|a ∈ R0 | 0 ≤ j < i, πj = (s1, a, µ, s2)|} is the duration of π up to

reaching the state at index i.
• (s1, i, δ) ∈ states(P) × N × R0 is a position of π, written (s1, i, δ) ∈ pos(π), if2

πi = (s1, a, µ, s2) and (δ = 0 and a ∈ acts(P)) or (δ < a and a ∈ R0) or (δ = a = 0
and a ∈ R0).

• (si, i, δi) < (sj, j, δj) for two positions of π, if i < j or (i = j and δi < δj).
• A function A : PathsFinI(P) steps(P) is a simple adversary of P resolving all

nondeterminism but not probabilism3, written A ∈ AdvS(P), if π ∈ PathsFinI(P)
and A(π) = (s, a, (µ1, µ2)) implies s = last(π) and µ1 = µ2.

• For a simple adversary A, a path π ∈ Paths(P, s) is compatible with A, written
π ∈ Paths(P, A, s) if for all i ∈ N it holds that if π′ is the prefix of π of length i,
last(π′) = s1, and πi = (s1, a, µ, s2), then A(π′) = (s1, a, (µ, µ)).

1Intuitively, a path is a resolution of all nondeterminism and all probabilism of the PTS.
2Note that we require δ < a when a 6= 0 since the PTA is not really in state s1 then anymore.
3If there is a path π ∈ PathsFinI(P) ending in state s = last(π) such that there is no step (s, a, µ) ∈
steps(P), then there is no adversary for P. In a static analysis, the possible valuations v of reachable
states s = (`, v) are unknown and therefore static analysis is in general unable to decide whether a
location `may be part of a deadlocked state s = (`, v). Examples of threatening locations are locations
` with an invariant such as x0 ≤ 20 that eventually prohibit timed steps but without exiting edges or
with only exiting edges with guards such as x0 > 30 that cannot be satisfied due to the invariant of `.
Similarly to the divergence assumption for infinite paths, we hereby rule out PTSs with finite paths
that cannot be extended to infinite time-diverging paths.
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2 Preliminaries

• If A ∈ AdvS(P) and s ∈ states(P), then p(P, A, s) : Paths(P, A, s) [0, 1] is a PMF
with p(P, A, s)(π) = ∏i∈N,πi=(s1,a,µ,s2) µ(s2).

• Also, p(P, A, s) induces the probabilitymeasureProb(P, A, s) : 2Paths(P,A,s) [0, 1]
where Prob(P, A, s)(PS) = ∑ {|p(P, A, s)(π) | π ∈ PS|}.

• (Divergent) adversaries A ∈ AdvD(P) are simple adversaries from AdvS(P) for
whichProb(P, A, istate(P))({π ∈ Paths(P, A, istate(P)) | diverges(π)}) = 1where
diverges(π) is satisfied for an infinite path if ∀t ∈ R0 . ∃i. dur(π, i) > t.

• If ap is an AP of the PTS P, c ∈ N ∪ {∞} is a time bound, ∼ ∈ {<,≤} is a
comparison operation for the time bound, and R = {Prob(P, A, istate(P))({π ∈
Paths(P, A, istate(P)) | ∃t ∼ c. ap ∈ lab(P)(state(π, t))}) | A ∈ AdvD(P)}, then
the PTS P results in
◦ sup(R) for Pmax=?(F∼c ap), written 〈〈Pmax=?(F∼c ap), P〉〉 = sup(R), and
◦ inf(R) for Pmin=?(F∼c ap), written 〈〈Pmin=?(F∼c ap), P〉〉 = inf(R).
This item is extended in Definition 17 to more general properties.

The notion of nondeterminism for IPTA can be defined in two ways. According
to the presentation above, an adversary resolves the nondeterminism by selecting a
unique step to be applied. Hence, an IPTA would be nondeterministic if there would
be two viable steps. However, since there are in general an uncountable number of
timed steps enabled, this definition would be meaningless. Instead, we define an
IPTA to be deterministic if whenever two steps are enabled, at least one of themmust
be a timed step. That is, in the induced PTS P, every reachable state s and every two
steps (s, a, (µ1, µ2)), (s, a′, (µ′

1, µ′
2)) ∈ steps(P) with (s, a, (µ1, µ2)) 6= (s, a′, (µ′

1, µ′
2))

satisfy that a ∈ R0 or a′ ∈ R0 . This can be justified because if there are two timed
steps of duration δ1 and δ2 with δ1 < δ2 to states s1 and s2, then there is also a timed
step of duration δ2 − δ1 from s1 to s2.
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:Container

id:int
val:boolean
inv:int
clock:real

:next

:Observer

val:int
clock:real

:Error
:at

⊥

(a) Type graph TG

A1:Agent

val=v1

clock=c1

A2:Agent

val=v2
e1:next

v1 = >
∧ v2 = ⊥
∧ c1 > 5

¬∃ ,>

E1:ErrorO:Observer

clock=c
e2:at

c > 0
∧¬∃ ,>

(b) IPTGT invariant φinv

E:Error∀ , O:Observer E:Error
e1:at∃ ,>

(c) IPTGT Atomic Proposition (AP) φcon

A1:Agent

id=i1
val=v1

clock=c1

A2:Agent

id=i2
val=v2

clock=c2

A3:Agent

id=i3
val=v3

clock=c3

A4:Agent

id=i4
val=v4

clock=c4

O:Observer

val=n
clock=c

e1:next

e2:next e3:next

e4:next

v1 = >∧ i1 = 1
∧ v2 = ⊥∧ i2 = 2
∧ v3 = ⊥∧ i3 = 3
∧ v4 = ⊥∧ i4 = 4
∧ n = 0

(d) Initial graph G0

∃(G(>,>,>,>, 1, 0),>)

(e) IPTGT AP φfin

E1:Error E2:Error¬∃ ,>

(f) IPTGT AP φ2err.

[s
uc

ce
ss
]

[f
ai
lu
re
]

reset: {c1, c2}

attribute effect: v′1 = v1 ∧ v′2 = >

probability interval: I1

reset: {c1, c}

attribute effect: v′1 = v1 ∧ v′2 = v2

probability interval: I2

send attribute guard: v1 = >∧ v2 = ⊥ clock guard: c1 ≥ 2 priority: 0

A1:Agent

val=v1

clock=c1

A2:Agent

val=v2

clock=c2

O:Observer

clock=c
e1:next

A1:Agent

val=v1

clock=c1

A2:Agent

val=v2

clock=c2

O:Observer

clock=c
e1:next

E1:Error ⊕⊕⊕
e2:at ⊕⊕⊕

(g) IPTGT rule σsend:I1,I2 with probability intervals I1 and I2 as formal parameters

[d
on

e]

reset: ∅

attribute effect: if n = 0 then n′ = 1 else n′ = 2

probability interval: [1, 1]

process attribute guard: > clock guard: > priority: 1

E1:Error 			O:Observer

val=n
clock=c

e1:at 			

(h) IPTGT rule σprocess

Figure 2.2: Elements of the IPTGTS for the running example
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`0 `1

a; c ≥ 2
∅; [0.7, 0.8]

{c}; [0.2, 0.3]c ≤ 5; {start} >; {done}

(a) IPTA A1

`0 `1

a; c ≥ 2

∅; 0.7
{c}; 0.3

a; c ≥ 2
∅; 0.8

{c}; 0.2

c ≤ 5; {start} >; {done}

(b) PTA A2

Figure 2.3: IPTA A1 and PTA A2 induced by it
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`0

`1

`2

request; x0 ≥ 1 [0.95, 1.0]; {x0}

[0.0, 0.05]; {x0}

response;>
[1.0, 1.0]; {x0}

response; x0 > 20
[1.0, 1.0]; {x0}

>; ∅

x0 ≤ 20; {success}

x0 ≤ 40; {error}

(a) A visualization of an IPTA representing a server provides a response to a request
within 20 time units with a probability of 0.95 to 1.0. With a probability of 0.0 to 0.05 the
server requires up to 40 time units. The clock x0 is used to measure durations: in `0 the
server blocks requests for up to 1 time unit, in `1 the server waits for 0 to 20 time units
before sending the response, and in `2 the server waits for 20 to 40 time units before sending
the response.

`0

`T `F

request; x0 ≥ 1

[0.95, 1.0]; {x0} [0.0, 0.05]; {x0}

`T0

response;>

[1.0, 1.0]; {x0}

`F0

response; x0 > 20

[1.0, 1.0]; {x0}

`TT `TF

request; x0 ≥ 1

[0.95, 1.0]; {x0} [0.0, 0.05]; {x0}

`FT `FF

request; x0 ≥ 1

[0.95, 1.0]; {x0} [0.0, 0.05]; {x0}

>; ∅

>; ∅ >; ∅

x0 ≤ 20; ∅ x0 ≤ 40; ∅

>; {errors0} >; {errors1} >; {errors1} >; {errors2}

(b) A visualization of an IPTA obtained from the IPTA from Figure 2.4a. In this adaptation,
precisely two requests are sent to the server using additional locations. We are able to count
the number of times where the server fails to send the response within 20 time units. The
sending of the second response has been omitted here because it is not relevant to the
counting.

Figure 2.4: Visualization for two IPTA
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3 Interval Probabilistic Timed GTSs

In this section, we introduce the new formalism of IPTGTSs, which allows for the
modeling and analysis of systems exhibiting structure dynamics, timed behavior, and
interval probabilistic behavior. IPTGTSs extend PTGTSs, which are a combination of
PGTSs and TGTSs, by allowing interval probabilities as in IPTA instead of precise
probabilities as in PTA.
As usual, we assume that all graphs in IPTGTSs are typed over some fixed type

graph TG. Moreover, we denote the set of all variables of sort real that represent
clocks of a given graph G by C(G) (for the graph G0 from Figure 2.2d, C(G0) =

{c1, c2, c3, c4, c}). Note that, in this paper, we employ variables of the symbolic graphs
to represent clocks rather than clock nodes as in [13] to simplify the technical pre-
sentation.
For our running example, introduced in chapter 1, the type graph TG is given in

Figure 2.2a and the initial graph G0 is given in Figure 2.2d. In the following, we use
the abbreviation of the form G(v1, v2, v3, v4, n, e) for all reachable graphs where v1,
v2, v3, v4, and n correspond to the values of variables and e is the number of Error
nodes connected to the Observer node. Using this abbreviation, we denote the initial
graph G0 by G(>,⊥,⊥,⊥, 0, 0).
An IPTGT rule σ contains a set of GT rules rules(σ) with a common left-hand

side graph lhs(σ), which is matched into the graph under transformation. A clock
constraint over the clocks from lhs(σ) is used as a guard and is evaluated w.r.t. a
considered match. A DIPD assigns a non-empty probability interval to each GT rule
ρ. Each GT rule ρ is equipped with a set of clocks to be reset ranging over the clocks
from the right-hand side graph rhs(ρ) of ρ.

Definition 6 (IPTGT Rule). An interval probabilistic timed graph transformation rule
(IPTGT rule) σ is a tuple with the following components.
• lhs(σ) is a common left-hand side graph,
• rules(σ) is a finite set of GT rules ρ with lhs(ρ) = lhs(σ) where lhs(ρ) is the left-

hand side graph of the GT rule ρ,
• guard(σ) ∈ CC(C(lhs(σ))) is a guard defined as a clock constraint over the clocks

from the left-hand side graph lhs(σ),
• dipd(σ) ∈ DIPD(rules(σ)) is a DIPD on rules(σ) with supp(dipd(σ)) = rules(σ),
• reset(σ)(ρ) ⊆ C(rhs(ρ)) identifies the clocks to be reset for each ρ ∈ rules(σ), and
• prio(σ) ∈ N is the priority assigned to σ.
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3 Interval Probabilistic Timed GTSs

For our running example, consider the two IPTGT rules σsend:I1,I2
1 and σprocess in

Figure 2.2g and Figure 2.2h, respectively. The two GT rules ρsend:success and ρsend:failure

of σsend:I1,I2 and the single GT rule ρprocess:done of σprocess are given in integrated nota-
tionwhere graph elements to be added/removed aremarkedwith⊕/	. To limit rule
application, each IPTGT rule has an attribute guard on the current attribute values, a
clock guard on the current clock values, and a priority. Also, each of the underlying GT
rules has an AC describing an attribute modification (called attribute effect), a reset
set of clocks to be reset after rule application, and a probability interval. Intuitively,
the IPTGT rule σsend:I1,I2 is used to attempt the sending of the Boolean value true
(>) from one agent to another agent with Boolean value ⊥ when the clock value of
the sending agent is at least 2. If sending succeeds, the receiving agent adopts the
Boolean value > and may then send that value as well. If sending fails, an error is
created and connected to the observer. The IPTGT rule σprocess (which has a higher
priority than σsend:I1,I2) is used to allow the observer to process (and delete) pending
errors counting processed errors up to a maximal number of 2.

An IPTGT invariant φ is a nested graph condition over the empty graph ∅. IPTGT
invariants are used to rule out invalid potential IPTGT configurations. Potential
IPTGT configurations (G, v) are given by a finite graph G and a clock valuation
v ∈ CV(C(G)) on its clocks. For our running example, the IPTGT invariant φinv

in Figure 2.2b states that (a) a sending agent must send its Boolean value > after
waiting not longer than 5 time units and (b) an observer with a pending error must
process that error urgently. Note that the clocks of the agents and the observer are
reset to 0 whenever they send their Boolean value or process an error using the two
IPTGT rules. An IPTGT invariant φ is satisfied by a potential IPTGT configuration
(G, v), written (G, v) |= φ, if v |= ∃V. ac(G) ∧ γ where V is the set of all non-
clock variables of G, ac(G) is the AC of G, and γ is an attribute constraint on the
variables of G obtained by evaluating φ for G. For our running example, the potential
IPTGT configuration (G(>,⊥,⊥,⊥, 0, 0), v) where v = ICV({c1, c2, c3, c4}) satisfies
the PTGT invariant φinv since v satisfies the derived AC equivalent to c1 ≤ 5 where
V contains all id and val variables, ac(G) is the AC given in Figure 2.2d, and γ states
for each of the four clocks c1–c4 that their value must be less equal 5 when the
corresponding val attribute equals >. This reasoning is covered more technically in
the following example.

Example 2 (Evaluation of IPTGT Invariant). We give an example on how IPTGT
invariants and IPTGT APs are evaluated for a given (potential) IPTGT configuration.
We obtain the clock constraint c1 ≤ 5 for the initial graph G0 = G(>,⊥,⊥,⊥, 0, 0)
from Figure 2.2d and the IPTGT invariant φinv from Figure 2.2b as follows.
• The non-clock variables V of G0 are given by {v1, v2, v3, v4, n, i1, i2, i3, i4}.
• The AC ac(G) of G0 is v1 = >∧ v2 = ⊥∧ v3 = ⊥∧ v4 = ⊥∧ n = 0∧ i1 = 1∧ i2 =

2 ∧ i3 = 3 ∧ i4 = 4.

1In our evaluation in chapter 5, we consider different instantiations of the two probability intervals I1
and I2.
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3 Interval Probabilistic Timed GTSs

• The evaluation of φinv for G0 results in ¬(v1 = >∧ v2 = ⊥∧ c1 > 5)∧¬(v1 = >∧
v3 = ⊥∧ c1 > 5) ∧ ¬(v2 = >∧ v4 = ⊥∧ c2 > 5) ∧ ¬(v3 = >∧ v4 = ⊥∧ c3 > 5)
capturing all four possible structural matches of the graph from the invariant into
G0 each time obtaining an AC describing when that structural match would satisfy
the requirements on the attributes.

Using the information gathered in these three steps, we construct and simplify the
following AC to c1 ≤ 5 stating that only clock c1 has an upper bound in G0.

∃{v1, v2, v3, v4, n, i1, i2, i3, i4}.

(v1 = >∧ v2 = ⊥∧ v3 = ⊥∧ v4 = ⊥∧ n = 0

∧ i1 = 1 ∧ i2 = 2 ∧ i3 = 3 ∧ i4 = 4)

∧ ¬(v1 = >∧ v2 = ⊥∧ c1 > 5) ∧ ¬(v1 = >∧ v3 = ⊥∧ c1 > 5)

∧ ¬(v2 = >∧ v4 = ⊥∧ c2 > 5) ∧ ¬(v3 = >∧ v4 = ⊥∧ c3 > 5)

≡ c1 ≤ 5

Similarly, an IPTGT AP (IPTGT AP) φ is a nested graph condition over the empty
graph ∅ labeling a (potential) IPTGT configuration (G, v) if G satisfies φ, written
G |= φ. Note that IPTGT APs may not depend on the clock valuation v as for the
labeling in IPTA. For our running example, we employ the IPTGT APs φfin, φcon,
and φ2err from Figure 2.2. φfin (given using the previously introduced abbreviation)
checks whether the value > has been successfully adopted by all agents, precisely
one error was processed by the observer, and no errors are pending. φcon checks
whether all errors are connected to some observers and φ2err checks whether no two
errors are present.
We now define IPTGTSs based on the notions introduced above for a fixed type

graph. For our running example, the components of the considered IPTGTS are given
in Figure 2.2.

Definition 7 (IPTGTS). An interval probabilistic timed graph transformation system
(IPTGTS) S is a tuple with the following components.
• iG(S) is a finite initial graph,
• rules(S) is a finite set of IPTGT rules,
• invs(S) is a finite set of IPTGT invariants, which are all satisfied for the initial graph

and the initial clock valuation (iG(S), ICV(C(iG(S)))), and
• aps(S) is a finite set of IPTGT APs.
Moreover, we define the following notions.
• A potential IPTGT configuration (G, v) given by a finite graph G and a clock

valuation v ∈ CV(C(G)) is an IPTGT configuration of S, written (G, v) ∈ Confs(S),
if (G, v) satisfies all IPTGT invariants of S, i.e., (G, v) |= φ for each φ ∈ invs(S).

• Twogiven IPTGT configurations (G1, v1) and (G2, v2) are equivalent, written (G1, v1)

≡ (G2, v2), if there is some isomorphism m : G1 G2 such that v2 ◦ m = v1. The
equivalence relation ≡ also induces equivalence classes denoted by [(G1, v1)]≡.

The semantics of IPTGTSs is defined below in terms of an induced PTS, for which
we first define a step relation. As for IPTA, IPTGTSs can execute, on the one hand,
timed steps advancing all clockswhile respecting the invariants and, on the other hand,
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3 Interval Probabilistic Timed GTSs

discrete steps by applying some IPTGT rule where the IPTGT rule, the match, and
the Probability Mass Function (PMF) of the DIPD are chosen nondeterministically
and the GT rule to be used is chosen probabilistically. Moreover, for the discrete
steps, we ensure that (a) the guard of the IPTGT rule is satisfied by the current clock
valuation and match, (b) no discrete step using an IPTGT rule with higher priority
can be applied, and (c) all GT rules of the IPTGT rule are applicable using the same
match. Then, considering a GT rule ρ of the IPTGT rule σ, we define a discrete step
based on the corresponding GT step and ensure that the clock valuation is adapted
as expected also enforcing the clock resets specified in the IPTGT rule.

Definition 8 (IPTGT Step). An IPTGTS S defines the following two kinds of steps.
• Timed step: (G, v) δ (G, v + δ), if

◦ δ ∈ R0 is a duration and
◦ (G, v + δ′) ∈ Confs(S) for each δ′ ∈ [0, δ], i.e., the IPTGT invariants are also

satisfied for all intermediate time points.
• Discrete step: (G1, v1)

σ,ρ,m
(G2, v2), if

◦ σ ∈ rules(S) is an IPTGT rule,
◦ m : lhs(σ) G1 is a match,
◦ v1 |= guard(σ), i.e., the guard of the IPTGT rule σ is satisfied by the given

valuation v1,
◦ ρ ∈ rules(σ) is a GT rule of σ,
◦ no IPTGT rule σ′ with higher priority is applicable, i.e., there are no G′

2, v′2, σ′,
ρ′, and m′ such that (G1, v1)

σ′,ρ′,m′
(G′

2, v′2) and prio(σ′) > prio(σ),
◦ the GT rule ρ is applicable and results in the IPTGT configuration (G2, v2), i.e.,
(G1, v1)

σ,ρ ,m
(G2, v2),

◦ every GT rule of σ is applicable for the match m, i.e., for all ρ′ ∈ rules(σ) there
are G′

2 and v′2 such that (G1, v) σ,ρ′,m
(G′

2, v′2),
where (G1, v1)

σ,ρ ,m
(G2, v2), if

◦ (G1, v1), (G2, v2) ∈ Confs(S),
◦ ρ = (` : K L, r : K R, γ) is a GT rule2,
◦ G1

ρ ,m G2 is the DPO GT step from Figure 3.1a,
◦ v2 is obtained from v1 by preserving values of preserved clocks unless they are

reset to 0 and by assigning the clock value 0 to all clocks created by the GT step,
i.e., for each c ∈ C(G2) we define (a) v2(c) = x when c /∈ k(reset(σ)(ρ)) and
there is some c′ ∈ C(D)with r′(c′) = c such that there is some c′′ ∈ C(G1)with
`′(c′) = c′′ such that v1(c′′) = x and (b) v2(c) = 0 otherwise.

In the following example, we provide a short sequence of IPGT steps for our
running example.

Example 3 (Steps for Running Example). A sequence of IPTGT steps (timed steps
and discrete steps) for the running example (cf. Figure 2.2). The sequence starts
from the initial graph from Figure 2.2d and the initial clock valuation. We omit a full
presentation of the employedmatches m1, m2, and m3. Thematches m1 and m3 match

2We omit here the handling of attribute modifications given by γ for brevity.
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L K R
(1) (2)

G1 D G2

` r

m
`′

k
r′

(a) DPO GT step G1
ρ ,m G2

C(L) C(K) C(R)
= =

C(G1) C(D) C(G2)

R0
v1 v2

` r

m
`′

k
r′

(b) Compatibility of the clock valuations v1 : C(G1) R0 and v2 : C(G2) R0

Figure 3.1: Visualizations for Definition 8

the Container nodes C1 and C2 with ids 1 and 2 in the graph under transformation.
The match m2 matches the Error node to be removed.

(G(>,⊥,⊥,⊥, 0, 0), {c1 7→ 0, c2 7→ 0, c3 7→ 0, c4 7→ 0, c 7→ 0})
2 (G(>,⊥,⊥,⊥, 0, 0), {c1 7→ 2, c2 7→ 2, c3 7→ 2, c4 7→ 2, c 7→ 2})

σsend:[0.3,0.8],[0.2,0.7],ρsend:failure,m1
(G(>,⊥,⊥,⊥, 0, 1), {c1 7→ 0, c2 7→ 2, c3 7→ 2, c4 7→ 2, c 7→ 0})

σprocess,ρprocess:done,m2 (G(>,⊥,⊥,⊥, 1, 0), {c1 7→ 0, c2 7→ 2, c3 7→ 2, c4 7→ 2, c 7→ 0})
2 (G(>,⊥,⊥,⊥, 1, 0), {c1 7→ 2, c2 7→ 4, c3 7→ 4, c4 7→ 4, c 7→ 2})

σsend:[0.3,0.8],[0.2,0.7],ρsend:success,m3
(G(>,>,⊥,⊥, 1, 0), {c1 7→ 0, c2 7→ 0, c3 7→ 4, c4 7→ 4, c 7→ 2})

We now define the semantics of IPGTSs in terms of an induced PTS as before for
IPTA. Note that, for the following definition, IPTGT steps as well as the notions of
IPTGT satisfaction for APs, guards, and invariants are preserved by equivalence of
IPTGT configurations. Hence, the choice of a representant from an equivalence class
is not important.

Definition 9 (PTS Induced by IPTGTS). Every IPTGTS S induces a unique PTS
IPTGTStoPTS(S) = P consisting of the following components.
• states(P) is given by the smallest set of equivalence classes [(G, v)]≡ where (G, v) ∈

Confs(S) such that steps(P) below is well-defined and istate(P) (see the next item)
is in states(P),

• istate(P) = [(iG(S), ICV(C(iG(S))))]≡ is the unique initial state from states(P)
given by the equivalence class containing the initial configuration of S,

• acts(P) is the smallest set of tuples (σ, m) where σ ∈ rules(S) and m is a match
such that steps(P) below is well-defined,

• ([(G, v)]≡, a, (µ, µ)) ∈ steps(P), if one of the two following cases applies.
◦ Timed step:

. a ∈ R0 is a duration,

. (G, v) a (G, v + a) is a timed step of S, and
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3 Interval Probabilistic Timed GTSs

. µ([G, v + a]≡) = 1 identifies the unique target state [(G, v + a)]≡.
◦ Discrete step:

. a = (σ, m) ∈ acts(P) is a partial step label,

. (G, v) σ,ρ ,m
(G′, v′) for some ρ ∈ rules(σ) is a discrete step of S,

. dipd(σ) = (µ′
1, µ′

2) is the DIPD of σ,
. µi([(Ḡ, v̄)]≡) = ∑ {|µ′

i(ρ
′) | ρ′ ∈ rules(σ), (G, v) σ,ρ′,m ≡ (Ḡ, v̄)|} for all

[(Ḡ, v̄)]≡ ∈ states(P) and i ∈ {1, 2} is the DIPD on the target states, and
. µ ∈ 〈(µ1, µ2)〉 is a PMF from the semantics of the DIPD (µ1, µ2).

• aps(P) = aps(S) is the same set of APs, and
• lab(P)([(G, v)]≡) = {φ ∈ aps(P) | G |= φ} labels states in P.

By defining the induced PTS of an IPTGTS, we can now consider the PTS analysis
problems from Definition 4 also for IPTGTSs.
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4 Model Checking Approach

The definition of the induced PTS of an IPTGTS from the previous section does not
lead to an implementable analysis algorithm because the set of states of that PTS is
(due to the valuations of real-valued clocks) not even countable. To obtain analysis
support for the min/max probabilistic timed reachability properties from Defini-
tion 4, we now follow the path taken for PTGTSs in [13] and translate a given IPTGTS
into its underlying automata-basedmodel preserving its semantics in terms of the in-
duced PTS (see Figure 4.1). As a first step, in section 4.1, we introduce the operation
IPTGTStoIPTA translating an IPTGTS into an IPTA. As a second step, in section 4.2,
we translate the obtained IPTA into a PTA using the operation IPTAtoPTA. This op-
eration is defined based on the translation procedure from [4], which is shown to
preserve the semantics in terms of the analysis problems from Definition 4. For the
resulting PTA, the analysis problems from Definition 4 can then be analyzed using
the Prism model checker. To accommodate for IPTGTSs with infinite underlying GT
state spaces but finite underlying timed GT state spaces, we present in section 4.3 an
online filtering technique using the Uppaal model checker. Lastly, we briefly discuss
the analysis of non-probabilistic properties for IPTGTSs in section 4.4 before revis-
iting the min/max probabilistic timed reachability properties from Definition 4 in
our evaluation in chapter 5.

4.1 Translation of IPTGTS into IPTA

We now present how IPTGTSs can be translated into IPTA using the operation
IPTGTStoIPTA. This translation is an adaptation of the translation of PTGTSs into
PTA presented in [13].

For a given IPTGTS S, the following four steps describe the basic idea of its trans-
lation into the corresponding IPTA. In step 1, the underlying GTS S′ of the IPTGTS
with the rule set ∪{rules(σ) | σ ∈ rules(S)} and the initial graph iG(S) is determined
where no priorities or timing constraints of the IPTGT rules are integrated into the
GT rules. In step 2, the GT state space (Q, E) of S′ is constructed where Q is the set
of all reachable graphs and E contains the corresponding GT steps between these
graphs. In step 3, a smallest set of so-called global clocks Y from the GT state space
(Q, E) is derivedwhere the underlying GT spans from E are used to track such global
clocks. Finally, in step 4, the resulting IPTA is obtained from the IPTGTS S and the
GT state space (Q, E) where the set Y of global clocks is employed to convert and
annotate GT steps from E.

Note the following for the steps 2–4 of the translation. In step 2, the GT state space
(Q, E) will often contain additional steps (and also states) that are not permitted in
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4.1 Translation of IPTGTS into IPTA

IPTGTS IPTA PTA Prism

PTS

IPTGTStoIPTA IPTAtoPTA analysis

AutoGraphUppaal
dependency

Z3
dependency

Figure 4.1: Overview of the model checking approach.

the IPTGTS due to (a) priorities and (b) timing constraints (i.e., guards or invariants).
Formally, for every discrete step (G, v) σ,ρ ,m

(G′, v′) of the IPTGTS there is some step
G ρ,m G′ in the GT state space (Q, E) but not vice versa. Cases where the GT state
space (Q, E) is not finite are discussed in section 4.3. Moreover, to ensure in step 3
that Y contains a finite number of clocks, the initial graph should contain all clocks to
be used at some point and IPTGT rules should not add further clocks. Also, to prevent
that clocks are swapped by isomorphisms during the GT state space construction,
we use id attributes such as those in Agent nodes in our running example. For step 4,
relying on the set of global clocks Y, (a) invariants are obtained for each graph in
the GT state space and checked for satisfiability, (b) GT steps with common source
location and match belonging to one IPTGT rule are grouped into one IPTA edge,
and (c) the guard of an IPTA edge is obtained by ensuring that the IPTA edge is not
disabled by invariants of its target locations and by also requiring the negation of the
guards of IPTA edges starting in the same location but resulting from IPTGT rules
with higher priorities.

Definition 10 (IPTA Induced by IPTGTS). Every IPTGTS S induces a unique IPTA
IPTGTStoIPTA(S) = A consisting of the following components where (Q, E) is the
GT state space of the underlying GTS of S and Y is its set of global clocks.
• locs(A) = Q contains all graphs of the GT state space,
• iloc(A) = iG(S) is the unique initial location,
• acts(A) is the smallest set of tuples (σ, m) where σ ∈ rules(S) and m is a match

such that edges(A) below is well-defined,
• clocks(A) = Y is the set of global clocks,
• invs(A)(G) = ψ such that (G, v) ∈ Confs(S) iff v |= ψ,
• (G, (σ, m), ψ, (µ1, µ2)) ∈ edges(A), if

◦ the guard ψ is a clause of the disjunctive normal form1

of the constraint m(guard(σ)) ∧ ψinv ∧ ¬ψhigher where (a) ψinv is the conjunction
of invariants invs(A)(G)[R := 0] of the target locations adapted to the source
location for all (R, G) ∈ supp((µ1, µ2)) and (b) ψhigher is the conjunction of the

1Note that negation and disjunction are not allowed in guards.
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guards ψ′′ of all IPTA edges (G, (σ′′, m′′), ψ′′, (µ′′
1 , µ′′

2 )) ∈ edges(A) satisfying
prio(σ′′) > prio(σ)2 and

◦ µi(Y′, G′) = ∑ {|µ′
i(ρ) | ρ ∈ rules(σ) ∧ Y′ = reset(σ)(ρ) ∧ (G, ρ, m, G′) ∈ E ∧

dipd(σ) = (µ′
1, µ′

2)|} for i ∈ {1, 2} is the DIPD on the target locations,
• aps(A) = aps(S) is the same set of APs, and
• lab(A)(G) = {φ ∈ aps(A) | G |= φ} labels locations in A.

The operation IPTGTStoIPTA preserves the semantics in terms of the induced
PTSs, i.e., the IPTGTS and the resulting IPTA induce the same PTS.
Note that we may adapt this translation to handle APs ap with nontrivial clock

constraints by labelling a fresh state sap and by adding additional steps from a state
s to sap whenever s is a state that would be labelled by ap structurally and by using
the clock constraint as a guard for that additional step. In particular, in the view of
the available tool support for PTA and IPTA analysis using Prism only allowing for
reachability analysis (apart from the digital clocks engine, which uses a different
PTA semantics), this adaptation would improve the usability of IPTGTS. However,
such an adaptation would also require to adapt the definition of the induced PTS of
an IPTGTS. Nevertheless, users of the IPTGTS formalism may just employ the same
idea by defining a high priority IPTGT rule with the suitable guard and by adjusting
the AP accordingly to match a state once this rule has been just performed.

4.2 Translation of IPTA into PTA

In [4], we have implemented the IPTAmodel checking algorithm from [21] in Prism.
This algorithm takes an IPTA A and an analysis problem of the form Pop=?(F≤∞ ap)
from Definition 4 and computes the resulting probability value.3 The algorithm
operates on a zone-based state space where states of the form (`, ψ) ∈ locs(A)×
CC(clocks(A)) represent all states (`, v) of the PTS induced by A satisfying v |= ψ.
The fixed-point computation performed by the algorithm modifies a probability
vector pi mapping states (`, ψ) to probabilities. Initially, p0 maps all target states
(`, ψ) containing locations ` that are labeled by the AP ap of the considered property
to 1 and all other states to 0. In the fixed-point, pi maps each state (`, ψ) to the
probability with which one of the target states is reached. To obtain pi+1(`, ψ) in
an iteration (a) each IPTA edge used in a step from (`, ψ) with DIPD (µ1, µ2) is
considered, (b) a PMF µ ∈ 〈(µ1, µ2)〉 is obtained such that the probability given
by ∑ {|µ(s)× pi(s) | s ∈ locs(A)× CC(clocks(A))|} for reaching a target state from
the state (`, ψ) using a path where the considered IPTA edge is taken in the first
step is maximal/minimal, and (c) pi+1(`, ψ) is set to the maximal/minimal value
across all IPTA edges considered for (`, ψ). For the IPTA A1 from Figure 2.3 and the

2The dependency between the guards ψ and each ψ′′ requires that IPTA edges of A are constructed in
descending order of the priorities of the involved IPTGT rules.

3As usual, time bounds ∼ c (as in Definition 4) are encoded using an additional clock to force a step
to a sink location as soon as the time bound is violated.
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property Pmax=?(F≤∞ done), we obtain p0 = {(`0, c ≤ 5) 7→ 0, (`1,>) 7→ 1} and
pi+1 = {(`0, c ≤ 5) 7→ 0.8 × pi(`1,>) + 0.2 × pi(`0, c ≤ 5), (`1,>) 7→ 1} for i ∈ N
resulting in pi(`0, c ≤ 5) = 1 in the limit i → ∞.

Unfortunately, the described algorithm has not been integrated in the official Prism
branch and is only available for the stochastic games engine of Prism. As an alter-
native approach to obtain model checking support for IPTA, we translate the given
IPTA into a PTA (as exemplified in Figure 2.3where the IPTA A1 is translated into the
PTA A2) and then apply Prism to the resulting PTA. Intuitively, the PTA is obtained
by replacing each IPTA edge e1 of the IPTA by a set of PTA edges. Thereby, a replace-
ment edge e2 is obtained from e1 by replacing its DIPD (µ1, µ2) by the DIPD (µ, µ)

where µ ∈ 〈(µ1, µ2)〉 is a PMF that may be obtained for some pi using the described
algorithm. In fact, instead of considering all such possible pi, it suffices to consider
all permutations of the target locations of e1. The intervals from the DIPD (µ1, µ2) are
then resolved in the order of the permutation by choosing the maximal4 probability
from the ith interval such that the sum of the first i chosen probabilities plus the
sum of the minimal probabilities of the remaining intervals does not exceed 1. For
the translation in Figure 2.3, (a) the permutation (`0, `1) results in the upper PTA
edge where the interval [0.2,0.3] for the first location is resolved by choosing the
maximal value 0.3 and by then choosing 0.7 analogously for the second location. (b)
the permutation (`1, `0) results in the lower PTA edge where the interval [0.7,0.8] for
the first location is resolved by choosing the maximal value 0.8 and by then choosing
0.2 analogously for the second location. The described translation, defined by the
operation IPTAtoPTA, is correct since the same probabilities are computed for the
input IPTA and the output PTA for the analysis problems from Definition 4.

Constructing a PMF for all permutations of intervals for an IPTA edge may result
in an exponentially larger PTA. This means that IPTA are exponentially more concise
compared to PTA w.r.t. the considered analysis problems (which correspondingly
holds for IPTGTSs and PTGTSs). However, when (a) IPTGT rules contain only few
GT rules implying a small set of permutations, (b) the permutations result in a
small set of PMFs (since different permutations may result in the same PMF), or
(c) the model checking efficiency of the PTA or IPTA at hand is dominated by the
number of clocks but not by the number of PTA edges, employing the translation via
the operation IPTAtoPTA can be as efficient as the IPTA model checking algorithm
from [4, 21].

4.3 Analysis of Timed Reachability

As a plug-in procedure, we now discuss our on-the-fly adaptation of the operation
IPTGTStoIPTA presented in section 4.1. The goal of this adaptation is to allow for
the generation of (finite) IPTAwhen the intermediate GT state space is infinite while
the timed GT state space is finite. To achieve this goal, we employ Uppaal to check

4As all permutations are considered, we can also choose the minimal probability here.
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whether steps constructed in the GT state space are enabled when considering the
timed behavior specified by guards, invariants, and resets in the timedGT state space.
For this purpose, we construct a sequence of fragments of the priority-free GT state
space where all GT steps are timed reachable (i.e., each GT step of the fragment
occurs in some timed path when considering all timing constraints of the IPTGTS).
We start the procedure with the GT state space fragment only containing the initial
graph of the IPTGTS and then, as a first step, we construct either at most n further GT
steps overall or at most n further GT steps from each unfinished state. As a second
step, if GT steps have been added, we construct using the operation IPTGTStoTA5

a TA for the current GT state space fragment. As a third step, we determine those
most recently added GT steps that are not timed reachable using Uppaal on the
constructed TA removing them from the current GT state space fragment before
repeating the described three steps.

Note that a GT step is not guaranteed to be timed reachable due to e.g. the guard
that is created for it in the corresponding TA edge even when its source and target
graphs are timed reachable. Hence, in the operation IPTGTStoTA, we split each most
recently added GT step G1

ρ ,m G2 into two edges in the resulting TA. The first edge
implements the GT step but has a fresh target state G′ from which the second edge
is taken urgently (using an additional single fresh clock employed globally in that
translation) leading to G2.
For our running example, this improvement is essential as the priority-free GT

state space for the IPTGTS would be infinite since an unbounded number of errors
could be created by an unbounded number of applications of the GT rule ρsend:failure

without ever applying the GT rule ρprocess:done. The described procedure solves this
problem since the priorities of the IPTGT rules are encoded in the constructed TA
similarly as in operation IPTGTStoIPTA ruling out further applications of the GT
rule ρsend:failure.

4.4 Analysis of Timed and Structural Properties

The presented analysis approach is also applicable to simpler analysis problems
compared to those in Definition 4, which often provide valuable insights when e.g.
unexpected results are obtained for more complex properties.

On the one hand, properties not referring to probabilities but time can be analyzed
based on the TA constructed in section 4.3. For our running example, Uppaal can
be used to verify the satisfaction of e.g. the timed CTL property EF≤6 φfin (where E
and F are the exists and eventually operators, respectively), stating that the AP φfin

can be satisfied within 6 time units.
On the other hand, properties referring to neither probabilities nor time can be

analyzed based on the GT state space (Q, E) constructed in section 4.1. For our

5The operation IPTGTStoTA is defined similarly to the operation IPTGTStoIPTA and deviates primar-
ily by not aggregating GT steps belonging to a common IPTGT rule.
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running example, the CTL property AG φcon (where A and G are the always and
globally operators, respectively), stating that all errors are always connected to an
observer, can be verified based on the GT state space (Q, E) since each graph in Q
would be labeled by the AP φcon. Similarly, we can also verify the CTL property
AG φ2err stating that there can never be two unprocessed errors. This property is
satisfied since in the timed GT state space each graph would be labeled by the AP
φ2err due to the higher priority of the IPTGT rule σprocess. In both cases, we would
use the procedure from section 4.3 where GT step generation is interleaved with the
timed reachability analysis to ensure that the state space (Q, E) is finite.

31



5 Evaluation

To exemplify our model checking approach for IPTGTSs and to strengthen the im-
portance of using IPTGTSs with probability intervals instead of PTGTSs with precise
probabilities, we now consider the IPTGTS of our running example for which the
components have been discussed in chapter 3 and visualized in Figure 2.2. Note
that the IPTGT rule σsend:I1,I2 contains two underlying GT rules with the assigned
probability intervals I1 and I2. In our evaluation, we apply our implementation of
the presented model checking approach in the tool AutoGraph for multiple instanti-
ations of σsend:I1,I2 by considering concrete probability intervals and different analysis
problems relying on the AP φfin.
See Table 5.1 for an overview of the obtained results. The first column shows

the five considered IPTGTSs instantiations where the chosen singleton probability
intervals result in PTGTSs in the last three lines. The other columns show the results
for computing the minimal/maximal probability to reach a graph labeled with φfin

within 6 or 15 time units in the instantiated IPTGTS. The property Pmin=?(F≤6 φfin)

is omitted in the table because its model checking results in the probability of 0 for
each of the IPTGTSs instantiations as some adversary can delay sending for up to 5
time units preventing that any state labeled with φfin can be reached within 6 time
units. Note that the probability values in the first two columns are identical since 6
time units used in the first column are already sufficient to reach a state labeled with
φfin with maximal probability. Moreover, the results obtained for the PTGTSs differ
in each case from the results obtained for the IPTGTSs, because, on every path to
a graph labeled with φfin in the IPTGTS, the adversary chooses two different PMFs
from the DIPD of the IPTGT rule σsend:I1,I2 . For example, for the IPTGTS instantiation
S[0.7,0.8],[0.2,0.3], the adversary defines three paths such that the resulting probability
of 0.4056 = 0.3 × 0.8 × 0.8 × 0.8 + 0.7 × 0.3 × 0.8 × 0.8 + 0.7 × 0.7 × 0.3 × 0.8 is
obtained in the first line of the first two columns. This resulting probability is the
sum of the probabilities of the three paths each containing three successful sending
steps with probabilities 0.7 or 0.8 and one unsuccessful sending stepwith probability
0.3 occurring as the first, second, or third step. See also Figure 5.1 for two furthermore
detailed computations of resulting probabilities for the property Pmax=?(F≤6 φfin)

and two further IPTGTSs listed in Table 5.1 where the deadline of 6 time units is
again not relevant. From the different resulting probabilities, we conclude that both
of the considered IPTGTSs cannot be approximated by any such PTGTSs instantiation
appropriately in the sense of obtaining the same probabilities since using singleton
intervals precludes adversaries that would choose different interval borders in some
of their generated paths.
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Table 5.1:Model checking results for the running example

Instantiation Pmax=?(F≤6 φfin) Pmax=?(F≤15 φfin) Pmin=?(F≤15 φfin)

S[0.7,0.8],[0.2,0.3] 0.4056 0.4056 0.2366
S[0.3,0.8],[0.2,0.7] 0.5952 0.5952 0.0387

S[0.8,0.8],[0.2,0.2] 0.3072 0.3072 0.3072
S[0.7,0.7],[0.3,0.3] 0.3087 0.3087 0.3087
S[0.3,0.3],[0.7,0.7] 0.0567 0.0567 0.0567
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(a) We consider the example IPTGTS S[0.3,0.3],[0.7,0.7]. In this IPTGTS, each DIPD has a
unique PMF resolution. We have three paths depending on when the failure occurs. The
overall probability to reach the target state is 0.7 × 0.3 × 0.3 × 0.3 + 0.3 × 0.7 × 0.3 × 0.3 +
0.3 × 0.3 × 0.7 × 0.3 = 0.3 × 0.0189 = 0.0567.
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(b) We consider the example IPTGTS S[0.3,0.8],[0.2,0.7]. We have three paths depending
on when the failure occurs. The overall maximal probability to reach the target state is
0.2 × 0.8 × 0.8 × 0.8 + 0.8 × 0.7 × 0.8 × 0.8 + 0.8 × 0.3 × 0.7 × 0.8 = 0.1024 + 0.3584 +
0.1344 = 0.5952. Note that we can easily apply here the algorithm MinMaxProbReach from
Definition 21 to obtain the given probabilities. The target state 6 has probability 1, the
state 5 is maximized to 0.8 by taking 0.8 ∈ [0.3, 0.8]; the state 3 is maximized to 0.7 × 0.8
by taking 0.7 ∈ [0.2, 0.7], the state 4 is maximized to 0.8 × 0.8 by taking 0.8 ∈ [0.3, 0.8];
the state 1 is maximized to 0.7 × 0.8 × 0.8 + 0.3 × 0.7 × 0.8 by taking 0.7 ∈ [0.2, 0.7] and
0.3 ∈ [0.3, 0.8] since 0.8 × 0.8 ≥ 0.7 × 0.8 implying that the probability to reach state 4
must be maximized before the probability to reach state 3, the state 2 is maximized to
0.8 × 0.8 × 0.8 by taking 0.8 ∈ [0.3, 0.8]; the state 0 is maximized to 0.8 × (0.7 × 0.8 × 0.8 +
0.3 × 0.7 × 0.8) + 0.2 × (0.8 × 0.8 × 0.8) by taking 0.8 ∈ [0.3, 0.8] and 0.2 ∈ [0.2, 0.7] since
0.7 × 0.8 × 0.8 + 0.3 × 0.7 × 0.8 ≥ 0.8 × 0.8 × 0.8 implying that the probability to reach
state 1 must be maximized before the probability to reach state 2.

Figure 5.1: Computation of the probabilities for our running example
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6 Conclusion and Future Work

We introduced the formalism of IPTGTSs as a high-level description language for
the modeling and analysis of complex distributed embedded probabilistic real-time
systems. IPTGTSs support, in addition to a nondeterministic passage of time (spec-
ified using clocks), a nondeterministic description of the probabilistic rule-based
behavior (specified using probability intervals in rules). Moreover, we presented a
model checking approach for IPTGTSs w.r.t. worst-case/best-case probabilistic timed
reachability properties. This model checking approach is implemented in our tool
AutoGraph and is based on a translation of IPTGTSs into PTA via IPTA. The PTA
resulting from this translation can then be analyzed using the Prism model checker.

As future work, we will extendMetric Temporal Graph Logic (MTGL) to IPTGTSs
to be able to specify more complex properties on the structure dynamics, timed
behavior, and probabilistic behavior of the given IPTGTSs. Such an extension is then
to be included into the mapping of IPTGTSs to PTA to allow for the automated
verification using Prism.
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Glossary

AP Atomic Proposition.

DIPD Discrete Interval Probability Distribution.

GTS Graph Transformation System.

IPA Interval Probabilistic Automaton.

IPTA Interval Probabilistic Timed Automaton.

IPTGTS Interval Probabilistic Timed Graph Transformation System.

IPTS Interval Probabilistic Timed System.

PA Probabilistic Automaton.

PGTS Probabilistic Graph Transformation System.

PMF Probability Mass Function.

PTA Probabilistic Timed Automaton.

PTCTL Probabilistic Timed Computation Tree Logic.

PTGTS Probabilistic Timed Graph Transformation System.

PTS Probabilistic Timed System.

TA Timed Automaton.

TGTS Timed Graph Transformation System.
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A From IPTA to PTS via IPTS

We now present the semantics of IPTA by (a) translating an IPTA into an IPTS (cf.
[6]) and (b) translating an IPTS into an PTS. This complements the direct step from
Definition 3where an IPTA induces a PTS directly. Based on IPTSs as an intermediate
model, it is easier to state equivalence (e.g. between IPTA and PTA obtained from
them) w.r.t. probabilistic real-time reachability properties and to verify such equiva-
lences. The first translation of IPTA into IPTSs removes clocks as used in guards and
invariants from the model. The second translation of IPTSs into PTSs then removes
probability intervals from the model. Note that already the IPTS representation but
also the PTS representation will usually1 have an infinite number of states because
of the precise representation of all real-time delays and the corresponding steps.

We now introduce the syntax of IPTSs.

Definition 11 (Interval Probabilistic Timed System (IPTS)). An interval probabilistic
timed system (IPTS) I is a tuple with the following components.
• states(I) is a (possibly infinite) set of states,
• istate(I) is the unique initial state from states(I),
• acts(I) is a finite set of actions disjoint from R0 ,
• steps(I) ⊆ states(I)× (acts(I) ∪ R0)×DIPD(states(I)) is a (possibly infinite) set

of IPTS steps of the form (s1, a, (µ1, µ2)) where s1 is the source state, a is an action
or a duration, and where (µ1, µ2) is a DIPD on the set states(I) containing target
states,

• aps(I) is a finite set of APs, and
• lab(I) : states(I) 2aps(I) maps each state to a set of APs that are true in that state.

We now define a translation from IPTA to IPTSs by determining solutions for
valuations w.r.t. invariants, guards, and resets. States of the induced IPTS are then
given by a pair of a locations and corresponding valuation. See Figure A.1 for a
visualization regarding the case of discrete transitions.

Definition 12 (IPTS induced by IPTA). Every IPTA A induces a unique interval
probabilistic timed system (IPTS) IPTAtoIPTS(A) = I consisting of the following com-
ponents.
• states(I) = {(`, v) ∈ locs(A)× CV(clocks(A)) | v |= invs(A)(`)},
• istate(I) = (iloc(A), ICV(clocks(A))),
• acts(I) = acts(A),
• ((`, v), a, (µ1, µ2)) ∈ steps(I) iff one of the two following cases applies.

1Unless invariants are chosen to prevent the passage of time entirely, which would be an undesirable
modeling error.
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◦ Timed step:
. a ∈ R0 ,
. (`, v + t′) ∈ states(I) (for all 0 ≤ t′ ≤ a), and
. (µ1, µ2) = DIPD1(states(I), (`, v + a)).

◦ Discrete step:2
. a ∈ acts(A),
. (`, a, ψ, (µ′

1, µ′
2)) ∈ edges(A),

. v |= ψ, and

. µi(`
′, v′) = ∑ {|µ′

i(X, `′) | X ⊆ clocks(A), v′ = v[X := 0]|} (for all (`′, v′) ∈
states(I) and i ∈ {1, 2}).

• aps(I) = aps(A), and
• lab(I)(`, v) = lab(A)(`).

We now define the translation from IPTSs to PTSs by determining solutions for
each DIPD used in some IPTS step. Thereby, the remaining nondeterminism given
by the DIPDs is resolved into all possible choices of PMFs explicitly.

Definition 13 (PTS induced by IPTS). Every IPTS I induces a unique probabilistic
timed system (PTS) IPTStoPTS(I) = P consisting of the following components.
• states(P) = states(I),
• istate(P) = istate(I),
• acts(P) = acts(I),
• (s, a, µ) ∈ steps(P) iff there is some IPTS step (s, a, (µ1, µ2)) ∈ steps(I) such that

µ ∈ 〈(µ1, µ2)〉.
• aps(P) = aps(I), and
• lab(P) = lab(I).

We now state that the operations IPTAtoIPTS and IPTStoPTS presented here are
equivalent to the direct translation using IPTAtoPTS.

Lemma 1 (Equivalent Translation from IPTA to PTS). If A is an IPTA, then the two
PTSs IPTStoPTS(IPTAtoIPTS(A)) and IPTAtoPTS(A) coincide.

2Note that 〈(µ′
1, µ′

2)〉 may be empty but that the discrete step can then not be used in a path of the
semantics of the resulting IPTS.
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A From IPTA to PTS via IPTS

`0 `1
a1; x0 ≥ 0 [1.0, 1.0]; {x0}

`2

a2; x0 ≥ 0 [0.3, 0.6]; {x1}

[0.2, 0.3]; {x0, x1}[0.4, 0.5]; ∅
x0 ≤ 5; ∅ x0 ≤ 3; ∅ >; {done}

(a) An IPTA to be translated into the IPTS from Figure A.1b

(`0, {x0 7→ 0, x1 7→ 0}) (`0, {x0 7→ 2, x1 7→ 2})2 [1.0, 1.0]

(`1, {x0 7→ 0, x1 7→ 2})

a1

[1.0, 1.0]

(`2, {x0 7→ 0, x1 7→ 0})
a2[0.5, 0.9]

[0.4, 0.5]

∅ ∅

∅{done}

(b) A small fragment of the IPTS obtained from the IPTA from Figure A.1a using IPTAtoIPTS
where only one timed step has been included here. Note that one of the intervals for the
a2 step is [0.5, 0.9] because the resulting valuation can be obtained by resetting only x1 or
by resetting x0 and x1 since x0 has already the value of 0 exemplifying the need for using
summation over multisets in various definitions in this paper

(`0, {x0 7→ 0, x1 7→ 0}) (`0, {x0 7→ 2, x1 7→ 2})2 1.0

(`1, {x0 7→ 0, x1 7→ 2})

a1

1.0

(`2, {x0 7→ 0, x1 7→ 0}) a2

0.6 0.4

a20.55
0.45

∅ ∅

∅{done}

(c) A small fragment of the PTS obtained from the IPTS from Figure A.1b using IPTStoPTS.
Note that here, not all PMFs are included for a given DIPD. Especially for the last step, it is
important that there are actually uncountably many steps with probabilities 0.6 − x and
0.4 + x for each x ∈ [0.0, 0.1]

Figure A.1: Visualization for translation from IPTA via IPTS to PTS
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Structures

We now discuss the formal specification of PTSs as they can be obtained from
IPTA, PTA, PTGTSs, and IPTGTSs using Probabilistic Timed Computation Tree Logic
(PTCTL), which has been introduced in [10] and for which decidability has been
shown for PTSs induced by PTA [10, Section 6, pp. 116] in terms of a model checking
algorithm. However, this proposed algorithm exhibits a runtime that is exponential
in the number of clocks and the largest constant appearing in clock constraints of
the PTA or PTCTL condition. Subsequently, simpler inputs have been considered in
terms of (a) subclasses of PTA and (b) either subclasses of PTCTL or similar spec-
ifications such as so called probabilistic real-time queries. For such simpler inputs,
model checking procedures have been devised such as in [10, Section 7, pp. 128]
and [8, 9, 11]. See also [16] for a later survey. Furthermore, the probabilistic model
checking tool Prism has been extended to cover multiple of these approaches using
so called engines but the full support in terms of the decision procedure for PTCTL
has not been implemented.

We now introduce PTCTL from [10] in our notation with its syntax and semantics
on PTSs before focussing on probabilistic real-time queries for which Prism has
implementation support.

Definition 14 (Syntax of PTCTL). If AP is a finite set of APs and X, Z are disjoint
finite sets of system and condition clocks, then ψ is a PTCTL condition, written ψ ∈
PTCTL(AP, X, Z), if it is generated using the following grammar.

ψ ::= > | ap | ψ | ψ ∧ ψ | ¬ψ | z. ψ | Pwλ(ψ ∃U ψ) | Pwλ(ψ ∀U ψ)

where z ∈ Z is a condition clock, ap ∈ AP is an AP, ψ ∈ CC(X ∪ Z) is a clock
constraint over the system and condition clocks, λ ∈ [0, 1], and w ∈ {>,≥}.

The semantics of PTCTL is then given by a satisfaction relation for a state (`, vs)
of a PTS containing a location ` and a valuation vs of system clocks X (as obtained
from e.g. a PTA) and a valuation vc of the condition clocks Z.

Definition 15 (Semantics of PTCTL). If P is a PTS, X is a finite set of system clocks,
states(P) ⊆ L×CV(X), Z is a finite set of condition clocks, ψ ∈ PTCTL(aps(P), X, Z),
s = (`, vs) ∈ states(P) is a state, and vc : Z R0 is a clock valuation for the condition
clocks, then (s, vc) satisfies ψ, written (s, vc) |= ψ, if an item applies.
• ψ = >.
• ψ = ap and ap ∈ lab(P)(s).
• ψ = ψ and v |= ψ.
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B Specification of Probabilistic Timed Structures

• ψ = ψ1 ∧ ψ2, (s, vc) |= ψ1, and (s, vc) |= ψ2.
• ψ = ¬ψ′ and not (s, vc) |= ψ′.
• ψ = z. ψ′ and (s, vc[z := 0]) |= ψ′.
• ψ = Pwλ(ψ1 ∃U ψ2) and there is some A ∈ AdvD(P) such that Prob(P, A, s)({π ∈

Paths(P, A, s) | (π, vc) |= ψ1 U ψ2}) w λ.
• ψ = Pwλ(ψ1 ∀U ψ2) and for all A ∈ AdvD(P) it holds that Prob(P, A, s)({π ∈

Paths(P, A, s) | (π, vc) |= ψ1 U ψ2}) w λ.
where
• (π, vc) |= ψ1 U ψ2 holds if PUntilSat(π, vc,<∞, ψ1, ψ2) and
• PUntilSat(π, vc,∼t, ψ1, ψ2) holds if there is some ((`i, vsi), i, δ) ∈ pos(π) such that

dur(π, i) + δ ∼ t, ((`i, vsi + δ), vc+ (dur(π, i) + δ)) |= ψ2, and for all ((`j, vsj), j, δ′)

∈ pos(π) such that ((`j, vsj), j, δ′) < ((`i, vsi), i, δ) it holds that ((`j, vsj + δ′), vc +
(dur(π, j) + δ′)) |= ψ1 ∨ ψ2.
Here, ((`i, vsi), i, δ) is the position where the right PTCTL condition is satisfied,
the state (`i, vsi) and the valuation vc are adjusted for this purpose by shifting it
by δ and dur(π) + δ, and for, all intermediate states, the left or right condition is
satisfied.1

We now provide an example of PTCTL conditions used for the specification of a
PTS induced by an IPTA.

Example 4 (Specification using PTCTL). We may state the following PTCTL condi-
tions for the IPTA from Figure 2.4a.

z. P≥0.95(¬error ∃U success ∧ z ≤ 20) (B.1)
z. P≥0.95(¬error ∀U success ∧ z ≤ 20) (B.2)

The IPTA from Figure 2.4a only satisfies (B.1) but not (B.2) because an adversary
may let the IPTA stay in `0 for 20 time units.

In addition to PTCTL there are further operators Pmax=?(·) and Pmin=?(·) for ob-
taining the maximum and minimum probability (over all adversaries) that the sub-
condition is satisfied.

Definition 16 (Syntax of Probabilistic Real-time Queries). If AP is a finite set of
APs and X, Z are disjoint finite sets of system and condition clocks, then ψ is a
probabilistic real-time query, written ψ ∈ PTQ(AP, X, Z), if it is generated using the
following grammar.

ψ ::= Pmax=?(ψ) | Pmin=?(ψ)

ψ ::= > | ap | ψ | ψ ∧ ψ | ¬ψ | z. ψ | ψ U ψ | ψ Uvc ψ

1It is not only required that the left condition ψ1 is satisfied because for a PTA with the initial state
s0 labeled with the AP ap0 and with invariant x ≤ 2, with the state s1 labeled with the AP ap1 and
with invariant >, and one PTA edge from s0 with guard x ≤ 2 that reaches s1 with probability 1, then
P>2λ(ap0 ∃U ap1) needs to determine some δ > 2 such that the PTA was in state s0 until then. This
would not be the case since any δ > 2 allows for some 2 < t < δ where the PTA is not in state s0
anymore. With the presented semantics, the PTA would satisfy the condition as desired.
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B Specification of Probabilistic Timed Structures

where z ∈ Z is a condition clock, ap ∈ AP is an AP, ψ ∈ CC(X ∪ Z) is a clock
constraint over the system and condition clocks, c ∈ R0 is an upper bound duration,
and v ∈ {<,≤}.

Definition 17 (Semantics of Probabilistic Real-time Queries). If P is a PTS, X is
a finite set of system clocks, states(P) ⊆ L × CV(X), Z is a finite set of condition
clocks, v0 = ICV(Z) : Z R0 is the initial valuation of the condition clocks, and
ψ ∈ PTQ(aps(P), X, Z), then ψ has a result from [0, 1] as follows.

〈〈Pmax=?(ψ), P〉〉 = sup(R)

〈〈Pmin=?(ψ), P〉〉 = inf(R)

R = {Prob(P, A, istate(P))(

{π ∈ Paths(P, A, istate(P)) |
(π, v0) |= ψ}) | A ∈ AdvD(P)}

and where (π, vc) |= ψ is satisfied, if an item applies.
• ψ = >.
• ψ = ap and ap ∈ lab(P)(first(π)).
• ψ = ψ and vc |= ψ.
• ψ = ψ1 ∧ ψ2, (π, vc) |= ψ1, and (π, vc) |= ψ2.
• ψ = ¬ψ′ and not (π, vc) |= ψ′.
• ψ = z. ψ′ and (π, vc[z := 0]) |= ψ′

• ψ = ψ1 U ψ2 and2 PUntilSat(π, vc,< ∞, ψ1, ψ2).
• ψ = ψ1 Uvc ψ2 and2 PUntilSat(π, vc,v c, ψ1, ψ2).

However, Prism does not support conditions of PTCTL and all subconditions for
the two mentioned probabilistic real-time queries. We now provide overview of the
properties that can be analyzed using Prism.3
The Digital Clocks Engine supports the conditions φ generated by the following

grammar.

φ ::= Pmax=?(ψ) | Pmin=?(ψ) | P≥κ(ψ) | P>κ(ψ) | P≤κ(ψ) | P<κ(ψ)

ψ ::= ¬ψ | F χ | F≤c χ | F<c χ | χ U χ

χ ::= ¬χ | χ ∧ χ | > | ap | x = c | x ≥ c | x ≤ c

Here, κ ∈ [0, 1] and c ∈ N. As an additional restriction, the digital clocks engine
requires that clock constraints in the condition as well as in the PTA do not use
strict clock comparison (i.e., x < c and x > c are forbidden) and diagonal free (i.e.,
x + c ∼ x + c is forbidden for any∼). For this purpose, clock constraints of the form
x ≥ c may only occur in an even number of negations (for simplicity we keep this
out of the grammar above).

2See Definition 15.
3See also https://www.prismmodelchecker.org/manual/ThePRISMLanguage/PTAs
and https://www.prismmodelchecker.org/manual/PropertySpecification/
PTAProperties.
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It has to be noted that Pmax=?(x ≤ 1 U x ≥ 2) will (for suitable PTA) result in 1.0
because in the digital clocks analysis, clocks advance not by t ∈ R0 but by t ∈ N.
However, the digital clocks engine provides correct results (w.r.t. PTCTL and PTA)
for certain conditions such as Pmax=?(ap U x ≥ 2).

The Stochastic Games Engine supports the conditions φ generated by the following
grammar.

φ ::= Pmax=?(ψ) | Pmin=?(ψ)

ψ ::= F χ | F≤c χ | F<c χ

χ ::= ¬χ | χ ∧ χ | > | ap

The Backwards Reachability Engine supports the conditions φ generated by the fol-
lowing grammar.

φ ::= Pmax=?(ψ)

ψ ::= F χ | F≤c χ | F<c χ

χ ::= ¬χ | χ ∧ χ | > | ap

Note that the backwards reachability enginemay bemore efficient than the stochastic
games engine for certain inputs.
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C Analysis of Interval Probabilistic
Timed Automata

An approach to model check IPTA against PTCTL was presented in [21] but no
implementation is available as of now and no formal semantics of PTCTL for the
case of IPTA has been provided. Later on, a model checking procedure extending
the “stochastic games engine” of Prism was presented in [6] inheriting the same
restrictions of the original Prism stochastic games engine. However, the adaptation
was also not integrated into the official version of Prism as of now and the other en-
gines do not support IPTA even in this adaptation as of now. Besides this adaptation
of Prism, [6] also discusses a reduction of IPTA to PTA that is sound w.r.t. certain
probabilistic real-time queries. Both of these approaches are discussed subsequently
in more detail. Note, in parts, this chapter can be understood to provide additional
details for section 4.2.
We now recall the IPTA analysis algorithm MinMaxProbReach (compare [6, Sec-

tion 5.2.2, pp. 30]) for computing the minimal and maximal probability (w.r.t. the
choice among the adversaries) to reach one state in a set of target states T from the
initial state in the PTS obtained from the IPTS obtained from an IPTA.
Basically, it is important to understand that ∑ {|ai × bi | i ∈ I|} is maximized

(minimized) for a fixed probability vector b and an ordering of a probability vector
a with ∑ {|ai | i ∈ I|} = 1 (essentially a is a PMF later on) when the nth highest
value of b is paired with the nth highest (lowest) value of a.1 Hence, to maximize the
probability to reach a certain state, the nondeterminism of a DIPD (µ1, µ2) must be
resolved for a given probability vector b for reaching the target states (µ1, µ2) such
that the probabilities in b (associated with a target state) are paired with the highest
probability permitted by the DIPD for that target state. Certainly, we must resolve
nondeterminism of a DIPD to obtain a well-formed PMF from the semantics of the
DIPD: that is, each choice from an interval for some target state depends on the pre-
vious selections (the total probability of 1 may not be exceeded) and on the choices
that must be made for the subsequent intervals (the remaining probability must
suffice for these choices as well). To decouple this handling from the subsequently
presented algorithm, we now introduce the operation corner to obtain the so called
corners of a DIPD w.r.t. a given probability vector.
As a first step, we provide two operations for converting between orderings and

probability vectors. The operation orderedPV forgets about the precise probability

1For example, b = (0.4, 0.8) and a = (0.7, 0.3) results in the maximal value 0.8 × 0.7 + 0.4 × 0.3 =
0.64 + 0.12 = 0.76 minimal value 0.4 × 0.7 + 0.8 × 0.3 = 0.28 + 0.24 = 0.52.
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and only keeps the ordering induced by the forgotten values, which results in ambi-
guity (multiple possible orderings) when p(si) = p(sj) for some si 6= sj.

Definition 18 (Ordering of Probability Vector). If A is a finite set, p : A [0, 1] is a
probability vector, s = (s1, . . . , sn) is a duplication free ordering of A, p(si) ≥ p(si+1)

for each 1 ≤ i ≤ n − 1, then s is some ordering of p, written s ∈ orderedPV(p).

The operation pvector creates a precise probability vector based on the given or-
dering.

Definition 19 (Probability Vector of Ordering). If A is a finite set, s = (s1, . . . , sn) is
a duplication free ordering of A, p : A [0, 1] is a probability vector, p(si) = 1/i for
each 1 ≤ i ≤ n, then p is the probability vector induced by s, written pvector(s) = p.

The connection between these two support operations is obvious: information
forgotten is not reestablished in general but orderings are preserved.

Lemma 2 (Connection between orderedPV and pvector). If A is a finite set, p :
A [0, 1] is a probability vector, and s is a duplication free ordering of A, then
the following items are satisfied.
• orderedPV(pvector(s)) = {s}.
• If s ∈ orderedPV(p), then pvector(s) may be different from p.

We now define the corners (given by PMFs) of a DIPD w.r.t. a given ordering.

Definition 20 (Corner of DIPD w.r.t. Ordering). If A is a finite set, p : A [0, 1] is a
probability vector, s = (s1, . . . , sn) ∈ orderedPV(p), (µ1, µ2) ∈ DIPD(A) is a DIPD on
A, and op ∈ {min,max} is an operation, then (µ, µ) ∈ DIPD(A) is the corner of (µ1, µ2)

w.r.t. p, written corner(op, (µ1, µ2), p) = (µ, µ), if the following items are satisfied.
• op′ = min and (µ′

1, µ′
2) = (µ1, µ2) if op = max,

• op′ = max and (µ′
1, µ′

2) = (µ2, µ1) if op = min,
• taken(i) = ∑ {|µ(sj) | 1 ≤ j ≤ i − 1|} (for each 1 ≤ i ≤ n) is the accumulated

probability used for the states s1–si−1,
• reserved(i) = ∑ {|µ′

1(sj) | i + 1 ≤ j ≤ n|} (for each 1 ≤ i ≤ n) is the accumulated
probability that has to be reserved for the si+1–sn, and

• µ(si) = op′(µ′
2(si), 1 − taken(i)− reserved(i)) (for each 1 ≤ i ≤ n) is the probabil-

ity selected.

We now consider an example of two applications of the operation corner.

Example 5 (Corner of DIPD w.r.t. Ordering). Let A = {s1, s2, s3}, p : A [0, 1]
is a probability vector, p = {s1 7→ 1, s2 7→ 0.5, s3 7→ 0.2}, s = (s1, . . . , sn) ∈
orderedPV(p), and (µ1, µ2) ∈ DIPD(A) is a DIPD on A with

µ1 = {s1 7→ 0.3, s2 7→ 0.4, s3 7→ 0.2}
µ2 = {s1 7→ 0.7, s2 7→ 0.6, s3 7→ 0.8}.
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We construct (µ, µ) = corner(max, (µ1, µ2), p).

taken(1) = ∑ {|µ(sj) | 1 ≤ j ≤ 1 − 1|}
= 0

reserved(1) = ∑ {|µ1(sj) | 1 + 1 ≤ j ≤ 3|}
= µ1(s2) + µ1(s3)

= 0.4 + 0.2

= 0.6

µ(s1) = min(µ2(s1), 1 − taken(1)− reserved(1))

= min(0.7, 1 − 0 − 0.6)

= min(0.7, 0.4)

= 0.4

taken(2) = ∑ {|µ(sj) | 1 ≤ j ≤ 2 − 1|}
= µ(s1)

= 0.4

reserved(2) = ∑ {|µ1(sj) | 2 + 1 ≤ j ≤ 3|}
= µ1(s3)

= 0.2

µ(s2) = min(µ2(s2), 1 − taken(2)− reserved(2))

= min(0.6, 1 − 0.4 − 0.2)

= min(0.6, 0.4)

= 0.4

taken(3) = ∑ {|µ(sj) | 1 ≤ j ≤ 3 − 1|}
= µ(s1) + µ(s2)

= 0.4 + 0.4

= 0.8

reserved(3) = ∑ {|µ1(sj) | 3 + 1 ≤ j ≤ 3|}
= 0

µ(s3) = min(µ2(s3), 1 − taken(3)− reserved(3))

= min(0.8, 1 − 0.8 − 0)

= min(0.8, 0.2)

= 0.2

Finally, we obtain the PMF (µ, µ) with

µ = {s1 7→ 0.4, s2 7→ 0.4, s3 7→ 0.2}
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As a second application, we construct (µ′, µ′) = corner(min, (µ1, µ2), p).

taken(1) = ∑ {|µ′(sj) | 1 ≤ j ≤ 1 − 1|}
= 0

reserved(1) = ∑ {|µ2(sj) | 1 + 1 ≤ j ≤ 3|}
= µ2(s2) + µ2(s1)

= 0.6 + 0.8

= 1.4

µ′(s1) = max(µ1(s1), 1 − taken(1)− reserved(1))

= max(0.3, 1 − 0 − 1.4)

= max(0.3,−0.4)

= 0.3

taken(2) = ∑ {|µ′(sj) | 1 ≤ j ≤ 2 − 1|}
= µ′(s1)

= 0.3

reserved(2) = ∑ {|µ2(sj) | 2 + 1 ≤ j ≤ 3|}
= µ2(s1)

= 0.8

µ′(s2) = max(µ1(s2), 1 − taken(2)− reserved(2))

= max(0.4, 1 − 0.3 − 0.8)

= max(0.4,−0.1)

= 0.4

taken(3) = ∑ {|µ′(sj) | 1 ≤ j ≤ 3 − 1|}
= µ′(s1) + µ′(s2)

= 0.3 + 0.4

= 0.7

reserved(3) = ∑ {|µ2(sj) | 3 + 1 ≤ j ≤ 3|}
= 0

µ′(s1) = max(µ1(s3), 1 − taken(3)− reserved(3))

= max(0.2, 1 − 0.7 − 0)

= max(0.2, 0.3)

= 0.3

Finally, we obtain the PMF (µ′, µ′) with

µ′ = {s1 7→ 0.3, s2 7→ 0.4, s3 7→ 0.3}

We now continue this example by obtaining the minimal and maximal probabili-
ties based on µ′ and µ.
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Example 6 (Minimal and Maximal Probabilities). We obtain the following lower
and upper bounds by pairing largest with smallest and largest with largest values
while respecting the constraints of the DIPD.

∑ {|(µ′ × p)(si) | 1 ≤ i ≤ 3|} = 0.3 ∗ 1 + 0.4 ∗ 0.5 + 0.3 ∗ 0.2 = 0.53

∑ {|(µ × p)(si) | 1 ≤ i ≤ 3|} = 0.4 ∗ 1 + 0.4 ∗ 0.5 + 0.2 ∗ 0.2 = 0.64

We now state that the construction of corners has the desired properties in terms
of generating minimal/maximal probabilities given as lower and upper bounds.

Lemma 3 (Correctness of Corners). If A is a finite set, p : A [0, 1] is a probability
vector on A, p′ : A [0, 1]with p′(s) = 1− p(s), (µ1, µ2) ∈ DIPD(A) is a DIPD on A,
(µ̄, µ̄) ∈ 〈(µ1, µ2)〉, corner(max, (µ1, µ2), p) = (µ, µ), and corner(min, (µ1, µ2), p) =

(µ′, µ′), then
• Welldefined:
(µ, µ), (µ′, µ′) ∈ 〈(µ1, µ2)〉

• Optimal up to index (1/2):
∀1 ≤ j ≤ n. ∑ {|µ̄(si) | 1 ≤ i ≤ j|} ≤ ∑ {|µ(si) | 1 ≤ i ≤ j|}

• Optimal up to index (2/2):
∀1 ≤ j ≤ n. ∑ {|µ′(si) | j ≤ i ≤ n|} ≤ ∑ {|µ̄(si) | j ≤ i ≤ n|}

• Maximal versus Minimal Computation (1/2):
corner(min, (µ1, µ2), p) = corner(max, (µ1, µ2), p′)

• Maximal versus Minimal Computation (2/2):
corner(max, (µ1, µ2), p) = corner(min, (µ1, µ2), p′)

• Correct Lower and Upper Bounds:
∑ {|(µ′ × p)(si) | si ∈ A|} ≤ ∑ {|(µ̄ × p)(si) | si ∈ A|} ≤ ∑ {|(µ × p)(si) | si ∈ A|}

Based on the corners of DIPDs defined above, we now present the algorithm
MinMaxProbReachwhere we include explicitly the case of the minimal probability.

Definition 21 (AlgorithmMinMaxProbReach). If I is an IPTS, F ⊆ states(I) is a set of
target states of I, F̄ ⊆ states(I) is the set of states of I from which no state in F can be
reached, and op ∈ {min,max} is an operation, thenMinMaxProbReach(op, I, F, F̄) =
(limn→∞ pre(op, I, F, F̄)n(p0))(istate(I)) is the resulting minimal/maximal probabil-
ity using a fixed-point computation where

p0 =


0
if s ∈ states(I)− F

1
if s ∈ F

pre(op, I, F, F̄)(p)(s) =



p(s)
if s ∈ F ∪ F̄

op{corner(op, (µ1, µ2), p)× p
| (s, a, (µ1, µ2)) ∈ steps(I)}

if s ∈ states(I)− (F ∪ F̄)

We now state the correctness of this algorithm w.r.t. the semantics of the proba-
bilistic real-time queries Pmin=?(·) and Pmax=?(·).
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Theorem 1 (Algorithm MinMaxProbReach). If I is an IPTS, P is the PTS induced
by I, F ⊆ states(I) is a set of target states of I, ap ∈ lab(I)(s) iff s ∈ F (for each
s ∈ states(I)), and F̄ ⊆ states(I) is the set of states of I from which no state in F can
be reached, then
• MinMaxProbReach(min, I, F, F̄) = 〈〈Pmin=?(F ap), P〉〉 and
• MinMaxProbReach(max, I, F, F̄) = 〈〈Pmax=?(F ap), P〉〉.
The same also holds for time bounded properties since these time bounds can be
encoded beforehand.

For a better understanding of the algorithm, we provide an example.

Example 7 (Algorithm MinMaxProbReach). Consider the IPTA from Figure C.1a.
Note that the IPTAdoes not use clocks and, hence, the IPTS I induced by this IPTAhas
the same structure. MinMaxProbReach computes a sequence of probability vectors
pi until a fixed-point is reached.
We give names to the DIPDs of I.

(µ1
1, µ1

2) = ({s1 7→ 0.4, s2 7→ 0.3, s3 7→ 0.2}, {s1 7→ 0.6, s2 7→ 0.7, s3 7→ 0.8})
(µ2

1, µ2
2) = ({s4 7→ 0.6, s5 7→ 0.4}, {s4 7→ 0.6, s5 7→ 0.4})

(µ3
1, µ3

2) = ({s4 7→ 0.7, s5 7→ 0.3}, {s4 7→ 0.7, s5 7→ 0.2})
(µ4

1, µ4
2) = ({s4 7→ 0.2, s5 7→ 0.8}, {s4 7→ 0.2, s5 7→ 0.8})

We compute MinMaxProbReach(max, I, {s4}, {s5}).

p0 = {s0 7→ 0, s1 7→ 0, s2 7→ 0, s3 7→ 0, s4 7→ 1, s5 7→ 0}
corner(max, (µ1

1, µ1
2), p0) (note that: p0(s1) ≥ p0(s2) ≥ p0(s3))

=


s1 7→ min(µ1

2(s1), 1 − (0)− (0.3 + 0.2) = 0.5,
s2 7→ min(µ1

2(s2), 1 − (0.5)− (0.2) = 0.3,
s3 7→ min(µ1

2(s3), 1 − (0.5 + 0.3)− (0) = 0.2


corner(max, (µ1

1, µ1
2), p0)× p0 = 0.5 × 0 + 0.3 × 0 + 0.2 × 0 = 0

corner(max, (µ2
1, µ2

2), p0) (note that: p0(s4) ≥ p0(s5))

=

{
s4 7→ min(µ2

2(s4), 1 − (0)− (0.4) = 0.6,
s5 7→ min(µ2

2(s5), 1 − (0.4)− (0) = 0.4

}
corner(max, (µ2

1, µ2
2), p0)× p0 = 0.6 × 1 + 0.4 × 0 = 0.6

corner(max, (µ3
1, µ3

2), p0) (note that: p0(s4) ≥ p0(s5))

=

{
s4 7→ min(µ3

2(s4), 1 − (0)− (0.3) = 0.7,
s5 7→ min(µ3

2(s5), 1 − (0.7)− (0) = 0.3

}
corner(max, (µ3

1, µ3
2), p0)× p0 = 0.7 × 1 + 0.3 × 0 = 0.7

corner(max, (µ4
1, µ4

2), p0) (note that: p0(s4) ≥ p0(s5))

=

{
s4 7→ min(µ4

2(s4), 1 − (0)− (0.8) = 0.2,
s5 7→ min(µ4

2(s5), 1 − (0.2)− (0) = 0.8

}
corner(max, (µ4

1, µ4
2), p0)× p0 = 0.2 × 1 + 0.8 × 0 = 0.2
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p1 =



s0 7→ max(corner(max, (µ1
1, µ1

2), p0)× p0) = 0,
s1 7→ max(corner(max, (µ2

1, µ2
2), p0)× p0) = 0.6,

s2 7→ max(corner(max, (µ3
1, µ3

2), p0)× p0) = 0.7,
s3 7→ max(corner(max, (µ4

1, µ4
2), p0)× p0) = 0.2,

s4 7→ p0(s4) = 1,
s5 7→ p0(s5) = 0


corner(max, (µ1

1, µ1
2), p1) (note that: p1(s2) ≥ p1(s1) ≥ p1(s3))

=


s2 7→ min(µ1

2(s2), 1 − (0)− (0.4 + 0.2) = 0.4,
s1 7→ min(µ1

2(s1), 1 − (0.4)− (0.2) = 0.4,
s3 7→ min(µ1

2(s3), 1 − (0.4 + 0.4)− (0) = 0.2


corner(max, (µ1

1, µ1
2), p1)× p1 = 0.7 × 0.4 + 0.6 × 0.4 + 0.2 × 0.2 = 0.56

corner(max, (µ2
1, µ2

2), p0)× p0 = corner(max, (µ2
1, µ2

2), p1)× p1

corner(max, (µ3
1, µ3

2), p0)× p0 = corner(max, (µ3
1, µ3

2), p1)× p1

corner(max, (µ4
1, µ4

2), p0)× p0 = corner(max, (µ4
1, µ4

2), p1)× p1

p2 =



s0 7→ max(corner(max, (µ1
1, µ1

2), p1)× p1) = 0.56,
s1 7→ max(corner(max, (µ2

1, µ2
2), p1)× p1) = 0.6,

s2 7→ max(corner(max, (µ3
1, µ3

2), p1)× p1) = 0.7,
s3 7→ max(corner(max, (µ4

1, µ4
2), p1)× p1) = 0.2,

s4 7→ p1(s4) = 1,
s5 7→ p1(s5) = 0


Note that the next probability vector p3 is equal to p2 and, hence, we have reached a
fixed-point. The maximal probability to reach an end labeled state is therefore 0.56.

In the presented algorithm, target locations are sorted according to the current
probability vector pi. This sorting is not unique in general but it suffices to consider
a single such ordering as all such orderings result in the same probability vector
pi+1. In principle, the algorithm could also consider all orderings generating the
probability for each of these orderings and then determine the maximum/minimum
probability for each state. Constructing the ordering is done to only consider a single
ordering for efficiency.
Based on this observation, another analysis algorithm was presented in [6, Sec-

tion 3.3.2, pp. 21] for computing again the minimal and maximal probability (w.r.t.
the choice among the adversaries) to reach one state in a set of target states T from
the initial state in the PTS. The idea of this alternative algorithm is to convert the
IPTA into a PTA such that the PTS induced by the PTA can be analyzed using e.g. the
stochastic games engine or the digital clocks engine of Prism using a simpler form of
the presented algorithmMinMaxProbReach from above for the case without proba-
bility intervals. While each DIPD represents (often) an infinite set of PMFs, only the
corners from above have to be considered. That is, one edge in the IPTA with DIPD
(µ1, µ2) with n target states (i.e., n elements in supp((µ1, µ2))) results in n! edges in
the resulting PTA where each PMF is obtained using corner(op, (µ1, µ2), p) where p
determines a unique ordering by mapping each target location in that ordering to a
decreasing probability. Also note that when all orderings are considered, then the
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`0

`1

`2

`3

a1;>

[0.4, 0.8]; ∅

[0.3, 0.7]; ∅

[0.2, 0.4]; ∅

`4

`5

a2;>

a3;>

a4;>

[0.6, 0.6]; ∅

[0.4, 0.4]; ∅

[0.7, 0.7]; ∅

[0.3, 0.3]; ∅

[0.2, 0.2]; ∅

[0.8, 0.8]; ∅

>; ∅

>; ∅

>; ∅

>; ∅

>; {end}

>; ∅

(a) An IPTA for Example 7.

`0

`1

`2

`3

a1;>

a1;>

a1;>

0.5; ∅

0.3; ∅

0.2; ∅

0.4; ∅

0.4; ∅

0.2; ∅

0.4; ∅

0.3; ∅

0.3; ∅

`4

`5

a2;>

a3;>

a4;>

0.6; ∅

0.4; ∅

0.7; ∅

0.3; ∅

0.2; ∅

0.8; ∅

>; ∅

>; ∅

>; ∅

>; ∅

>; {end}

>; ∅

(b) A PTA alternative for maximum/minimum probability for the IPTA from Figure C.1a.

Figure C.1: Visualizations of IPTA for analysis

value of op does not matter according to Lemma 3. For an example, see Figure C.1b
where the PTA resulting from the IPTA from Figure C.1a is given. Note, in this par-
ticular example, (a) 3 PMFs of the 3! = 6 PMFs are duplicates and (b) the same
result is obtained for op = min and op = max. We now define this construction.

Definition 22 (Operation IPTAtoPTA). Every IPTA A1 induces a unique probabilistic
timed automaton (PTA) IPTAtoPTA(A1) = A2 consisting of the following compo-
nents.
• locs(A2) = locs(A1),
• iloc(A2) = iloc(A1),
• acts(A2) = acts(A1),
• clocks(A2) = clocks(A1),
• invs(A2) = invs(A1),
• (`1, a, ψ, (µ′, µ′)) ∈ edges(A2) if
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◦ (`1, a, ψ, (µ1, µ2)) ∈ edges(A1),
◦ s′ = (`′1, . . . , `′n) is an ordering of supp((µ1, µ2)), and
◦ corner(op, (µ1, µ2), pvector(s′)) = µ′,

• aps(A2) = aps(A1), and
• lab(A2) = lab(A1).

The presented construction is correct since the same maximal and minimal proba-
bilities would be computed.

Theorem 2 (Correctness of PTA construction from IPTA). If A1 is an IPTA, I1 is
the IPTS induced by A1, P1 is the PTS induced by I1, IPTAtoPTA(A1) = A2 is the
resulting PTA, P2 is the PTS induced by A2, and ap is an AP of A1, then
• 〈〈Pmin=?(F ap), P1〉〉 = 〈〈Pmin=?(F ap), P2〉〉 and
• 〈〈Pmax=?(F ap), P1〉〉 = 〈〈Pmax=?(F ap), P2〉〉.
The same also holds for time bounded properties since these time bounds can be
encoded beforehand.
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We now consider an example of a translation of an IPTGTS into an IPTA based on
Definition 10 especially considering the construction of guards encoding priorities
and target state invariants. For this purpose, we now define a custom IPTGTS, which
is very simple w.r.t. the other modeling capabilities of IPTGTSs. See Figure D.1 and
Figure D.2 for the components of this IPTGTS. The IPTA from Figure D.3 is obtained
from the IPTGTS Spe from Figure D.1 and Figure D.2 as follows.
• The structural state space consists of the initial graph G0 and seven steps to seven

further graphs where the variable k2 has the values 1 through 7.
• The global set of clocks is given by {c1, c2}.
• The two steps to graphs where k2 has values 6 and 7 belong both to the IPGT rule

σ6 and they are therefore to be grouped together in the resulting IPTA.
• The reset sets of each of the seven steps is taken from the GT rule used.
• The probability intervals of each of the seven steps is taken from the GT rule used.
• Each of the seven additional graphs is labeled with the IPTGT AP φpe:ap.
• The invariants of each of the eight states can easily be derived from the IPTGT

invariant φpe:inv.
The remaining problem is that guards need to be determined. Essentially, a step with
lower priority should be disabled (via its guard) when a step with a higher priority
could be taken. For this to work properly, the target state invariants of the higher
priority steps also need to be taken into account. Also, it is to be noted that guards
may not contain disjunctions: if a disjunction is obtained for some step subsequently,
we duplicate steps such that the disjunction of the guards of these copies equals the
computed guard. Due to such step duplications (for IPTGT rule σ4), unsatisfiable
guards (for IPTGT rule σ1), and step groupings (for IPTGT rule σ6), we obtain a
different number of IPTA edges compared to the steps in the structural state space.
For clarity, each location `i represents the graph where k2 has the value i.
• Priority 3 steps:

◦ IPTGT rule σ1:
The guard of the used IPTGT rule is 2 ≤ c2. The reset set for the used GT rule
is {c2}. The invariant of the target graph for k2 = 1 is 1 < c2. The conjunction
of the guards of IPTA edges generated for steps with higher priority is >. The
guard of the edge should be 2 ≤ c2 ∧ 1 < 0 ∧ >. This guard is unsatisfiable.
There is no resulting IPTA edge.

• Priority 2 steps:
◦ IPTGT rule σ2: The guard of the used IPTGT rule is 2 ≤ c1. The reset set for

the used GT rule is ∅. The invariant of the target graph for k2 = 2 is 6 ≤ c1.
The conjunction of the guards of IPTA edges generated for steps with higher
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priority is >. The guard of the edge should be 2 ≤ c1 ∧ 6 ≤ c1 ∧>. This guard
can be simplified to 6 ≤ c1. There is one resulting IPTA edge with guard 6 ≤ c1.

◦ IPTGT rule σ3: The guard of the used IPTGT rule is 3 ≤ c1 ∧ c2 ≤ 4. The reset set
for the used GT rule is ∅. The invariant of the target graph for k2 = 3 is 2 < c2.
The conjunction of the guards of IPTA edges generated for steps with higher
priority is >. The guard of the edge should be 3 ≤ c1 ∧ c2 ≤ 4 ∧ 2 < c2 ∧ >.
This guard can be simplified to 3 ≤ c1 ∧ 2 < c2 ≤ 4. There is one resulting IPTA
edge with guard 3 ≤ c1 ∧ 2 < c2 ≤ 4.

• Priority 1 steps:
◦ IPTGT rule σ4: The guard of the used IPTGT rule is 2 ≤ c2. The reset set for

the used GT rule is ∅. The invariant of the target graph for k2 = 4 is >. The
conjunction of the guards of IPTA edges generated for steps with higher priority
is ¬(6 ≤ c1) ∧ ¬(3 ≤ c1 ∧ 2 < c2 ≤ 4). The guard of the edge should be
2 ≤ c2 ∧> ∧ ¬(6 ≤ c1) ∧ ¬(3 ≤ c1 ∧ 2 < c2 ≤ 4). This guard can be simplified
to c1 < 3 ∧ 2 ≤ c2 ∨ c1 < 6 ∧ 2 ≤ c2 ≤ 2 ∨ c1 < 6 ∧ 4 < c2. There are three
resulting IPTA edges with guards c1 < 3 ∧ 2 ≤ c2, c1 < 6 ∧ 2 ≤ c2 ≤ 2, and
c1 < 6 ∧ 4 < c2.

• Priority 0 steps:
◦ IPTGT rule σ5: The guard of the used IPTGT rule is c1 < 8 ∧ c2 < 1. The reset

set for the used GT rule is ∅. The invariant of the target graph for k2 = 5
is >. The conjunction of the guards of IPTA edges generated for steps with
higher priority is ¬(6 ≤ c1) ∧ ¬(3 ≤ c1 ∧ 2 < c2 ≤ 4) ∧ ¬(c1 < 3 ∧ 2 ≤
c2) ∧ ¬(c1 < 6 ∧ 2 ≤ c2 ≤ 2) ∧ ¬(c1 < 6 ∧ 4 < c2). The guard of the edge
should be c1 < 8 ∧ c2 < 1 ∧> ∧ ¬(6 ≤ c1) ∧ ¬(3 ≤ c1 ∧ 2 < c2 ≤ 4) ∧ ¬(c1 <

3 ∧ 2 ≤ c2) ∧ ¬(c1 < 6 ∧ 2 ≤ c2 ≤ 2) ∧ ¬(c1 < 6 ∧ 4 < c2). This guard can
be simplified to c1 < 6 ∧ c2 < 1. There is one resulting IPTA edge with guard
c1 < 6 ∧ c2 < 1.

◦ IPTGT rule σ6: The guard of the used IPTGT rule is 3 < c1. The reset set for the
first used GT rule is {c2}. The reset set for the second used GT rule is ∅. The
invariant of the first target graph for k2 = 6 is c1 ≤ 4 ∧ c2 < 10. The invariant of
the second target graph for k2 = 7 is c1 < 4. The conjunction of the guards of
IPTA edges generated for steps with higher priority is ¬(6 ≤ c1) ∧ ¬(3 ≤ c1 ∧
2 < c2 ≤ 4)∧¬(c1 < 3∧ 2 ≤ c2)∧¬(c1 < 6∧ 2 ≤ c2 ≤ 2)∧¬(c1 < 6∧ 4 < c2).
The guard of the edge should be 3 < c1 ∧ (c1 ≤ 4 ∧ 0 < 10) ∧ c1 < 4¬(6 ≤
c1) ∧ ¬(3 ≤ c1 ∧ 2 < c2 ≤ 4) ∧ ¬(c1 < 3 ∧ 2 ≤ c2) ∧ ¬(c1 < 6 ∧ 2 ≤ c2 ≤
2) ∧ ¬(c1 < 6 ∧ 4 < c2). This guard can be simplified to 3 < c1 < 4 ∧ c2 < 2.
There is one resulting IPTA edge with guard 3 < c1 < 4 ∧ c2 < 2.

Note that since 0 ≤ c1 = c2 ≤ 7 in `0, the σ2 step is possible in [6, 7], the σ3 step is
possible in [3, 4], the σ4 step is possible in [2, 2]∪ (4, 6), the σ5 step is possible in [0, 1),
and the σ6 step is possible in ∅.
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:Container

id:int
val:boolean
inv:int
clock:real

:next ⊥

(a) Type graph
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val=v1

clock=c1

C2:Container

inv=k2

clock=c2

v1 = >∧ k2 = 0

(b) Initial graph G0
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e1
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rule1 attribute guard: k2 = 0 clock guard: 2 ≤ c2 priority: 3
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clock=c2
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probability interval: [1, 1]

rule2 attribute guard: k2 = 0 clock guard: 2 ≤ c1 priority: 2
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clock=c1
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inv=k2

clock=c2
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e3
]

reset: ∅

attribute effect: k′2 = 3

probability interval: [1, 1]

rule3 attribute guard: k2 = 0 clock guard: 3 ≤ c1 ∧ c2 ≤ 4 priority: 2

C1:Container

clock=c1

C2:Container

inv=k2

clock=c2

[d
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e4
]

reset: ∅

attribute effect: k′2 = 4

probability interval: [1, 1]

rule4 attribute guard: k2 = 0 clock guard: 2 ≤ c2 priority: 1

C1:Container

clock=c1

C2:Container

inv=k2

clock=c2

[d
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e5
]

reset: ∅

attribute effect: k′2 = 5

probability interval: [1, 1]

rule5 attribute guard: k2 = 0 clock guard: c1 < 8 ∧ c2 < 1 priority: 0
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clock=c1
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inv=k2

clock=c2

[d
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b]

reset: {c2}

attribute effect: k′2 = 6

probability interval: [0.5, 0.5]

reset: ∅

attribute effect: k′2 = 7

probability interval: [0.5, 0.5]

rule6 attribute guard: k2 = 0 clock guard: 3 < c1 priority: 0

C1:Container

clock=c1

C2:Container

inv=k2

clock=c2

C1:Container

clock=c1

C2:Container

inv=k2

clock=c2

(c) IPTGT rules

Figure D.1: IPTGTS to be Translated (1/2)
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C1:Container

clock=c1

C2:Container

inv=k2

clock=c2

k2 = 0 ∧ ¬(c1 ≤ 7)
∨ k2 = 1 ∧ ¬(1 < c2)

∨ k2 = 2 ∧ ¬(6 ≤ c1)

∨ k2 = 3 ∧ ¬(2 < c2)

∨ k2 = 6 ∧ ¬(c1 ≤ 4 ∧ c2 < 10)
∨ k2 = 7 ∧ ¬(c1 < 4)

¬∃ ,>

(a) IPTGT invariant φpe:inv

C2:Container

inv=k2

k2 > 0

∃ ,>

(b) IPTGT AP φpe:ap

Figure D.2: IPTGTS to be Translated (2/2)

`0

`2

`3

`4

`5

`6

`7

σ2; 6 ≤ c1 [1.0, 1.0]; ∅

σ3; 3 ≤ c1 ∧ 2 < c2 ≤ 4 [1.0, 1.0]; ∅

σ4; c1 < 3 ∧ 2 ≤ c2 [1.0, 1.0]; ∅

σ4; c1 < 6 ∧ 2 ≤ c2 ≤ 2 [1.0, 1.0]; ∅

σ4; c1 < 6 ∧ 4 < c2 [1.0, 1.0]; ∅

σ5; c1 < 6 ∧ c2 < 1 [1.0, 1.0]; ∅

σ6; 3 < c1 < 4 ∧ c2 < 2 [0.5, 0.5]; {c2}

[0.5, 0.5]; ∅

c1 ≤ 7; ∅

6 ≤ c1; {φpe:ap}

2 < c2; {φpe:ap}

>; {φpe:ap}

>; {φpe:ap}

c1 ≤ 4 ∧ c2 < 10; {φpe:ap}

c1 < 4; {φpe:ap}

Figure D.3: IPTA resulting from IPTGTS from Figure D.1 and Figure D.2
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