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Cyber-physical systems often encompass complex concurrent behavior with tim-
ing constraints and probabilistic failures on demand. The analysis whether such
systems with probabilistic timed behavior adhere to a given specification is essential.
When the states of the system can be represented by graphs, the rule-based formal-
ism of Probabilistic Timed Graph Transformation Systems (PTGTSs) can be used to
suitably capture structure dynamics as well as probabilistic and timed behavior of
the system. The model checking support for PTGTSs w.r.t. properties specified using
Probabilistic Timed Computation Tree Logic (PTCTL) has been already presented.
Moreover, for timed graph-based runtime monitoring, Metric Temporal Graph Logic
(MTGL) has been developed for stating metric temporal properties on identified
subgraphs and their structural changes over time.
In this paper, we (a) extend MTGL to the Probabilistic Metric Temporal Graph

Logic (PMTGL) by allowing for the specification of probabilistic properties, (b) adapt
our MTGL satisfaction checking approach to PTGTSs, and (c) combine the ap-
proaches for PTCTL model checking and MTGL satisfaction checking to obtain a
BoundedModel Checking (BMC) approach for PMTGL. In our evaluation, we apply
an implementation of our BMC approach in AutoGraph to a running example.
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1 Introduction

Cyber-physical systems often encompass complex concurrent behavior with timing
constraints and probabilistic failures on demand [16, 17]. Such behavior can then be
captured in terms of probabilistic timed state sequences (or spaces) where time may
elapse between successive states and where each step in such a sequence has a desig-
nated probability. The analysis whether such systems adhere to a given specification
describing admissible or desired system behavior is essential in a model-driven de-
velopment process.

GraphTransformation Systems (GTSs) [4] can be used for themodeling of systems
when each system state can be represented by a graph and when the changes of
such states can be captured by rule-based graph transformation. Moreover, timing
constraints based on clocks, guards, invariants, and clock resets as in Probabilistic
Timed Automata (PTA) [12] have been combined with graph transformation in
Timed Graph Transformation Systems (TGTSs) [3] and probabilistic aspects have
been added to graph transformation in Probabilistic Graph Transformation Systems
(PGTSs) [10]. Finally, the formalism of PTGTSs [13] integrates both extensions and
offers model checking support w.r.t. PTCTL [11, 12] properties employing the Prism
model checker [11]. The usage of PTCTL allows for stating probabilistic real-time
properties on the induced PTGT state space where each graph in the state space is
labeled with a set of Atomic Propositions (APs) obtained by evaluating that graph
w.r.t. e.g. some property specified using Graph Logic (GL) [6, 17].

However, structural changes over time in the state space cannot always be directly
specified using APs that are locally evaluated for each graph. To express such struc-
tural changes over time, we introduced MTGL [5, 17] based on GL. Using MTGL
conditions, an unbounded number of subgraphs can be tracked over timed graph
transformation steps in a considered state sequence once bindings have been estab-
lished for them via graph matching. Moreover, MTGL conditions allow to identify
graphs where certain elements have just been added to (removed from) the cur-
rent graph. Similarly to MTGL, for runtime monitoring, Metric First-Order Temporal
Logic (MFOTL) [2] (with limited support by the tool Monpoly) and the non-metric
timed logic Eagle [1, 7] (with full tool support) have been introduced operating,
instead of graphs, on sets of relations and Java objects as state descriptions, respec-
tively.
Obviously, both logics PTCTL and MTGL have distinguishing key strengths but

also lack bindings on the part of PTCTL and an operator for expressing probabilistic
requirements on the part of MTGL.1 Furthermore, specifications using both, PTCTL

1PTCTL model checkers such as Prism do not support the branching capabilities of PTCTL as of now
due to the complexity of the corresponding algorithms.
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1 Introduction

and MTGL conditions, are insufficient as they cannot capture phenomena based on
probabilistic effects and the tracking of subgraphs at once. Hence, a more complex
combination of both logics is required. Moreover, realistic systems often induce
infinite or intractably large state spaces prohibiting the usage of standard model
checking techniques. Bounded Model Checking (BMC) has been proposed in [8]
for such cases implementing an on-the-fly analysis. Similarly, reachability analysis
w.r.t. a bounded number of steps or a bounded duration have been discussed in [9].

To combine the strengths of PTCTL and MTGL, we introduce PMTGL by enrich-
ing MTGL with an operator for expressing probabilistic requirements as in PTCTL.
Moreover, we present a BMC approach for PTGTSs w.r.t. PMTGL properties by com-
bining the PTCTL model checking approach for PTGTSs from [13] (which is based
on a translation of PTGTSs into PTA) with the satisfaction checking approach for
MTGL from [5, 17]. In our approach, we just support bounded model checking since
the binding capabilities of PMTGL conditions require non-local satisfaction checking
taking possibly the entire history of a (finite) path into account as for MTGL con-
ditions. However, we obtain even fullmodel checking support for the case of finite
loop-free state spaces and for the case where the given PMTGL condition does not
need to be evaluated beyond a maximal time bound.
As a running example, we consider a system in which a sender decides to send

messages at nondeterministically chosen time points, which have then to be trans-
mitted to a receiver via a network of routers within a given time bound. For this
scenario, we employ MTGL allowing to identify messages that have just been sent,
to track them over time, and to check whether their individual deadlines are met.

This paper is structured as follows. In chapter 2, we recall the formalism of PTA. In
chapter 3, we discuss further preliminaries including graph transformation, graph
conditions, and the formalism of PTGTSs. In chapter 4, we recall MTGL and present
the extension of MTGL to PMTGL in terms of syntax and semantics. In chapter 5, we
present our BMC approach for PTGTSs w.r.t. PMTGL properties. In chapter 6, we
evaluate our BMC approach by applying its implementation in the tool AutoGraph
to our running example. Finally, in chapter 7, we close the paper with a conclusion
and an outlook on future work.
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2 Probabilistic Timed Automata

In this section, we introduce the syntax and semantics of PTA [12] and probabilistic
timed reachability problems to be solved for PTA using Prism [11].

For a set of clock variables X, clock constraints ψ ∈ CC(X) are finite conjunctions
of clock comparisons of the form c1 ∼ n and c1 − c2 ∼ n where c1, c2 ∈ X,∼ ∈ {<,>
,≤,≥}, and n ∈ N ∪ {∞}. A clock valuation v ∈ CV(X) of type v : X R0 satisfies
a clock constraint ψ, written v |= ψ, as expected. The initial clock valuation ICV(X)

maps all clocks to 0. For a clock valuation v and a set of clocks X′, v[X′ := 0] is the
clock valuation mapping the clocks from X′ to 0 and all other clocks according to v.
For a clock valuation v and a duration δ ∈ R0 , v + δ is the clock valuation mapping
each clock x to v(x) + δ.
For a countable set A, µ : A [0, 1] is a Discrete Probability Distribution (DPD)

over A, written µ ∈ DPD(A), if the probabilities assigned to elements add up to 1,
i.e., ∑ {|µ(a) | a ∈ A|} = 1 using summation over multisets. Moreover, the support of
µ, written supp(µ), contains all a ∈ A for which the probability µ(a) is non-zero.
PTA combine the use of clocks to capture real-time phenomena and probabilism

to approximate/describe the likelihood of outcomes of certain steps. A PTA (such
as A from Figure 2.1a) consists of (a) a set of locations with a distinguished initial
location (such as `0), (b) a set of clocks (such as c0) which are initially set to 0, (c) an
assignment of a set of APs (such as {done}) to each location (for subsequent analysis
of e.g. reachability properties), (d) an assignment of constraints over clocks to each
location as invariants such as (c0 ≤ 5), and (e) a set of probabilistic timed edges.
Each probabilistic timed edge consists thereby of (i) a single source location, (ii) at
least one target location, (iii) an action (such as a or b), (iv) a clock constraint (such
as c0 ≥ 3) specifying as a guard when the edge is enabled based on the current
values of the clocks, and (v) a DPD assigning a probability to each pair consisting
of a set of clocks to be reset (such as {c0}) and a target location to be reached.

Definition 1 (PTA). A probabilistic timed automaton (PTA) A is a tuple with the
following components:
• locs(A) is a finite set of locations,
• iloc(A) is the unique initial location from locs(A),
• acts(A) is a finite set of actions disjoint from R0 ,
• clocks(A) is a finite set of clocks,
• invs(A) : locs(A) CC(clocks(A)) maps each location to an invariant for that

location such that the initial clock valuation satisfies the invariant of the initial
location (i.e., ICV(clocks(A)) |= invs(A)(iloc(A))),

• edges(A) ⊆ locs(A)× acts(A)× CC(clocks(A))× DPD(2clocks(A) × locs(A)) is a
finite set of PTA edges of the form (`1, a, ψ, µ) where `1 is the source location, a
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2 Probabilistic Timed Automata

`0 `3
a; c0 ≥ 3 1; ∅`1

`2

b; c0 ≥ 1
0.5; {c0}

0.5; ∅ c0 ≤ 5; ∅

>; {done}

>; {error1}
>; {error2}

(a) PTA A

(`0, c0 = 0) (`0, c0 = 1.5) (`0, c0 = 1.8) (`2, c0 = 1.8) (`2, c0 = 2.5)
1; 1.5 1; 0.3 0.5; b 1; 0.7

(b) Path of the PTA A for some adversary

(`0, c0 ≤ 5) (`3, c0 ≥ 3)
a; c0 ≥ 3 1; ∅(`1,>)

(`2, c0 ≥ 1)

b; c0 ≥ 1

0.5; {c0}

0.5; ∅ ∅

{done}

{error1}
{error2}

(c) Symbolic state space induced by the PTA A

Figure 2.1: PTA A, one of its paths, and its symbolic state space

is an action, ψ is a guard, and µ is a DPD mapping pairs (Res, `2) of clocks to be
reset and target locations to probabilities,

• aps(A) is a finite set of APs, and
• lab(A) : locs(A) 2aps(A) maps each location to a set of APs.

The semantics of a PTA is given in terms of the induced Probabilistic Timed Sys-
tem (PTS). The states of the induced PTS are pairs of locations and clock valuations.
The sequences of steps between such states define timed probabilistic paths. Each
successive step in a path (such as the one in Figure 2.1b) is determined by an adver-
sary which resolves the nondeterminism of the PTA by selecting either a duration by
which all clocks are advanced in a timed step or a PTA edge that is used in a discrete
step.

Definition 2 (PTS Induced by PTA). Every PTA A induces a unique probabilistic
timed system (PTS) PTAtoPTS(A) = P consisting of the following components:
• states(P) = {(`, v) ∈ locs(A)× CV(clocks(A)) | v |= invs(A)(`)} contains as PTS

states pairs of locations and clock valuations satisfying the location’s invariant,
• istate(P) = (iloc(A), ICV(clocks(A))) is the unique initial state from states(P),
• acts(P) = acts(A) is the same set of actions,
• steps(P) ⊆ states(P)× (acts(P) ∪ R0)× DPD(states(P)) is the set of PTS steps.1

A PTS step ((`, v), a, µ) ∈ steps(P) contains a source state (`, v), an action from

1See [12] for a full definition of induced timed and discrete steps.
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2 Probabilistic Timed Automata

acts(P) for a discrete step or a duration from R0 for a timed step, and a DPD µ

assigning a probability to each possible target state,
• aps(P) = aps(A) is the same set of APs, and
• lab(P)(`, v) = lab(A)(`) labels states in P according to the location labeling of A.

For model checking PTA [12], Prism does not compute the induced PTS according
to Definition 2 instead it computes a symbolic state space (as in Figure 2.1c). In this
symbolic state space, states are given by pairs of locations and clock constraints
(called zones) where one state (`, ψ) represents all pairs of states (`, v) such that
v |= ψ. To allow for such a symbolic state space representation, the syntax of clock
constraints has been carefully chosen.
In chapter 5, we will use Prism to solve the following analysis problems defined

for induced PTSs.

Definition 3 (Min/Max Probabilistic Timed Reachability Problems). Evaluate the
expression Pop=?(F ap) for a PTS P with op ∈ {min,max} and ap ∈ aps(P) to obtain
the infimal/supremal probability (depending on op) over all adversaries to reach
some state in P labeled with ap.

For example, for the PTS P = PTAtoPTS(A) induced by the PTA A from Fig-
ure 2.1a, (a) Pmax=?(F done) is evaluated to probability 0.5 since a probability max-
imizing adversary would enable the discrete step using action b at time point 1 to
reach `1 with probability 0.5 and (b) Pmin=?(F done) is evaluated to probability 0
since a probability minimizing adversary would enable the discrete step using action
a at time point 3 to reach `3 from which then no location labeled with done can be
reached.
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3 Probabilistic Timed Graph
Transformation Systems

In this section, we briefly recall graphs, graph transformation, graph conditions, and
the formalism of PTGTSs in our notation.
Using the variation of symbolic graphs [15] from [17], we consider typed at-

tributed graphs (short graphs) (such as G0 in Figure 3.1b), which are typed over a
type graph TG (such as TG in Figure 3.1a). In such graphs, attributes are connected
to local variables and an Attribute Condition (AC) over a many sorted first-order at-
tribute logic is used to specify the values for these variables. Morphisms m : G1 G2

between graphs must ensure that the AC of G2 is more restrictive compared to the
AC of G1 (w.r.t. themapping of variables by m). Hence, the AC⊥ (false) in TG means
that TG does not restrict attribute values. Lastly, we denote monomorphisms (short
monos) by m : G1 G2.
Graph Conditions (GCs) [6, 17] of GL are used to state properties on graphs

requiring the presence or absence of certain subgraphs in a host graph.

Definition 4 (GCs). For a graph H, φH ∈ GC(H) is a graph condition (GC) over H
defined as follows:

φH ::= > | ¬φH | φH ∧ φH | ∃( f , φH′) | ν(g, φH′′)

where f : H H′ and g : H′′ H are monos and where additional operators such
as ⊥, ∨, and ∀ are derived as usual.

The satisfaction relation [6, 17] for GL defines when a mono satisfies a GC. In-
tuitively, for a graph H, the operator ∃ (called exists) is used to extend a current
match of H to a supergraph H′ and the operator ν (called restrict) is used to restrict
a current match of H to a subgraph H′′.

Definition 5 (Satisfaction of GCs). A mono m : H G satisfies a GC φ over H,
written m |= φ, if an item applies:
• φ = >.
• φ = ¬φ′ and m 6|= φ′.
• φ = φ1 ∧ φ2, m |= φ1, and m |= φ2.
• φ = ∃( f : H H′, φ′) and ∃m′ : H′ G. m′ ◦ f = m ∧ m′ |= φ′.
• φ = ν(g : H′′ H, φ′) and m ◦ g |= φ′.
Moreover, if φ ∈ GC(∅) is a GC over the empty graph, i(G) : ∅ G is an initial
morphism, and i(G) |= φ, then the host graph G satisfies φ, written G |= φ.

A Graph Transformation (GT) step is performed by applying a GT rule ρ = (` :
K L, r : K R, γ) for a match m : L G on the graph to be transformed (see [17]
for technical details). A GT rule specifies that (a) the graph elements in L − `(K)

13



3 Probabilistic Timed Graph Transformation Systems

:Router

:Receiver :Message

clock:real
id:int

:Sender

num:int

:snd :at

:rcv

:next

:done

⊥

(a) Type graph TG

S:Sender

num=1

R1:Router R2:Router R3:Router

R4:Router R5:Router

R:ReceiverM1:Message

clock=c1

id=1

M3:Message

clock=c3

id=3

M2:Message

clock=c2

id=2
e1:snd

e2:rcv

e3:next e4:next

e5:next

e6:next

e7:next

(b) Initial graph G0

R1:RouterM:Message

clock=c
e1:at

c > 5
¬∃ ,>

(c) PTGT invariant φinv

M:Message
¬∃ ,

M:Message e1:done
¬∃ ,>

(d) PTGT AP φfin

Figure 3.1: Elements of the PTGTS and PMTGC χmax for the running example (1/2)
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3 Probabilistic Timed Graph Transformation Systems

[d
on

e]
reset: {c}

attribute effect: n′ = n + 1
∧ i′ = i

probability: 1

send attribute guard: n = i clock guard: > priority: 0

S:Sender

num=n

R1:Router M:Message

clock=c
id=i

e1:snd e2:at ⊕⊕⊕
[d

on
e]

reset: ∅

attribute effect: >

probability: 1

receive attribute guard: > clock guard: > priority: 1

R:Receiver R1:Router M:Message
e1:rcv e2:at 			

e3:done ⊕⊕⊕

[s
uc

ce
ss
]

[f
ai
lu
re
]

reset: {c}

attribute effect: >

probability: 0.8

reset: {c}

attribute effect: >

probability: 0.2

transmit attribute guard: > clock guard: c ≥ 2 priority: 0

R1:Router R2:RouterM:Message

clock=c
e1:at 			 e2:next

e3:at ⊕⊕⊕

R1:Router R2:RouterM:Message

clock=c
e1:at e2:next

(a) PTGT rules σsend, σreceive, and σtransmit

S:Sender R1:Router M:Message
e1:snd e2:at∀N ,Pmax=?

M:Messageν ,>U[0,5]
M:Message e3:done∃ ,>

(b) PMTGC χmax where the additional MTGL operator forall-new (written ∀N) is derived
from the operator exists-new by ∀N( f , θ′) = ¬∃N( f ,¬θ′)

Figure 3.2: Elements of the PTGTS and PMTGC χmax for the running example (2/2)
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3 Probabilistic Timed Graph Transformation Systems

are to be deleted and the graph elements in R − r(K) are to be added using the
monos ` and r, respectively, according to a Double Pushout (DPO) diagram and
(b) the values of variables of R are derived from those of L using the AC γ (e.g.
x′ = x + 2) in which the variables from L and R are used in unprimed and primed
form, respectively. Nested application conditions given by GCs are straightforwardly
supported by our approach but, to improve readability, not used in the running
example and omitted subsequently.

PTGTSs introduced in [13] are a probabilistic real-time extension of Graph Trans-
formation Systems (GTSs) [4]. We have shown in [13] that PTGTSs can be translated
into equivalent PTA and, hence, PTGTSs can be understood as a high-level language
for PTA.
Similarly to PTA, a PTGT state is given by a pair (G, v) of a graph and a clock

valuation. The initial state is given by a distinguished initial graph and a valua-
tion mapping all clocks to 0. For our running example, the initial graph (given in
Figure 3.1b) captures a sender, which is connected via a network of routers to a
receiver, and three messages to be sent. The type graph of a PTGTS also identifies
attributes representing clocks.1 For our running example, the type graph TG is given
in Figure 3.1a where each clock attribute of a message represents such a clock. PTGT
invariants are specified using GCs. Their evaluation for reachable graphs then results
in clock constraints representing invariants as for PTA. For our running example,
the PTGT invariant φinv from Figure 3.1c prevents that time elapses once a message
was at one router for 5 time units. PTGT APs are also specified using GCs but a state
(G, v) is labeled by such a PTGT AP if the evaluation of the GC for G results in a
satisfiable clock constraint (i.e., the labeling of (G, v) is independent from v). For
our running example, the AP φfin from Figure 3.1d labels states where eachmessage
has been successfully delivered to the receiver as indicated by the done loop.

PTGT rules of a PTGTS then correspond to edges of a PTA and contain (a) a left-
hand side graph L, (b) an AC specifying as an attribute guard non-clock attributes
of L, (c) an AC specifying as a clock guard clock attributes of L, (d) a natural num-
ber describing a priority where higher numbers denote higher priorities, and (e) a
nonempty set of tuples of the form (` : K L, r : K R, γ, C, p) where (`, r, γ)

is an underlying GT rule, C is a set of clocks contained in R to be reset, and p is a
real-valued probability from [0, 1] where the probabilities of all such tuples must
add up to 1. See Figure 3.2a for the three PTGT rules σsend, σreceive, and σtransmit from
our running example where the first two PTGT rules have each a unique underlying
GT rule ρsend,done and ρreceive,done, respectively, and where the last PTGT rule has two
underlying GT rules ρtransmit,success and ρtransmit,failure. For each of these underlying GT
rules, we depict the graphs L, K, and R in a single graph where graph elements
to be removed and to be added are annotated with 	 and ⊕, respectively. Further
information about the PTGT rule (i.e., the attribute guard, clock guard, and priority)
and each of its underlying GT rules (i.e., the attribute effect γ, set of clocks to be reset
called reset, and probability) is given in red (for ACs) and gray boxes (for the rest).

1For a PTGT state (G, v), the values of clocks of G are stored in v and not in G.
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3 Probabilistic Timed Graph Transformation Systems

The PTGT rule σsend is used to push the next message into the network by connect-
ing it to the router that is adjacent to the sender. Thereby, the attribute num of the
sender is used to push the messages in the order of their id attributes. The PTGT
rule σreceive has the higher priority 1 and is used to pull a message from the router
that is adjacent to the receiver by marking the message with a done loop. Lastly, the
PTGT rule σtransmit is used to transmit a message from one router to the next one. This
transmission is successful with probability 0.8 and fails with probability 0.2. The
clock guard of σtransmit (together with the fact that the clock of the message is reset
to 0 whenever σtransmit is applied or when the message was pushed into the network
using σsend) ensures that transmission attempts may happen not faster than every 2
time units.

The semantics of a PTGTS is given by its induced PTS as in [13] using here concrete
PTGT states instead of their equivalence classes for brevity.

Definition 6 (PTS Induced by PTGTS). Every PTGTS S induces, using the opera-
tion PTGTStoPTS, a unique PTS PTGTStoPTS(S) = P consisting of the following
components:
• states(P) contains as PTS states pairs (G, v)where G is a graph and v is a valuation

of the clocks of G satisfying the PTGT invariants of S,
• istate(P) is the unique initial state from states(P) consisting of the initial graph of

S and the initial clock valuation of its clocks,
• acts(P) contains tuples of the form (σ, m, sp) consisting of the used PTGT rule σ,

the used match m, and a mapping sp of each GT rule ρ in rules(σ) to the GT span
(k1 : D G, k2 : D H) constructed for a GT step from G to H using ρ,

• steps(P) ⊆ states(P)× (acts(P) ∪ R0)× DPD(states(P)) is the set of PTS steps.2
A PTS step ((G, v), a, µ) ∈ steps(P) contains a source state (G, v), an action from
acts(P) for a discrete step or a duration from R0 for a timed step, and a DPD µ

assigning a probability to each possible target state,
• aps(P) = aps(S) is the same set of PTGT APs, and
• lab(P)(G, v) = {φ ∈ aps(S) | G |= φ} labels states in Pwith PTGT APs based only

on the satisfaction of GCs for graphs.

2See [13] for a full definition of induced timed and discrete steps.
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4 Probabilistic Metric Temporal Graph
Logic

Before introducing PMTGL, we recall MTGL [5, 17] and adapt it to PTGTSs. To sim-
plify our presentation, we focus on a restricted set of MTGL operators and conjecture
that the presented adaptations of MTGL are compatible with full MTGL from [17]
as well as with the orthogonal MTGL developments in [18].
The Metric Temporal Graph Conditions (MTGCs) of MTGL are specified using

(a) the GC operators to express properties on a single graph in a path and (b) metric
temporal operators to navigate through the path. For the latter, the operator ∃N

(called exists-new) is used to extend a current match of a graph H to a supergraph H′

in the future such that some additionallymatched graph element could not have been
matched earlier. Moreover, the operator U (called until) is used to check whether
an MTGC θ2 is eventually satisfied in the future within a given time interval while
another MTGC θ1 is satisfied until then.

Definition 7 (MTGCs). For a graph H, θH ∈ MTGC(H) is a metric temporal graph
condition (MTGC) over H defined as follows:

θH ::= > | ¬θH | θH ∧ θH | ∃( f , θH′) | ν(g, θH′′) | ∃N( f , θH′) | θH UI θH

where f : H H′ and g : H′′ H are monos and where I is an interval over R0 .

For our running example, consider the MTGC given in Figure 3.2b inside the op-
erator Pmax=?(·). Intuitively, this MTGC states that (forall-new) whenever a message
has just been sent from the sender to the first router, (restrict) when only tracking this
message (since at least the edge e2 can be assumed to be removed in between), (until)
eventually within 5 time units, (exists) this message is delivered to the receiver as
indicated by the done loop.
In [5, 17], MTGL was defined for timed graph sequences in which only discrete

steps are allowed each having a duration δ > 0. We now adapt MTGL to PTGTSs
in which discrete steps and timed steps are interleaved and where zero time may
elapse between two discrete steps.
To be able to track subgraphs in a PTS path π over time using matches, we first

identify the graph π(τ) in π at a position τ = (t, s) ∈ R0 × N where t is a total time
point and s is a step index.1

Definition 8 (Graph at Position). A graph G is at position τ = (t, s) in a path π of
PTS P, written π(τ) = G, if pos(π, t, s, i) = G for some index i is defined as follows:
• If π0 = ((G, v), a, µ, (G′, v′)), then pos(π, 0, 0, 0) = G.

1To compare positions, we define (t, s) < (t′, s′) if either t < t′ or t = t′ and s < s′.
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4 Probabilistic Metric Temporal Graph Logic

• If πi = ((G, v), a, µ, (G′, v′)), pos(π, t, s, i) = G, and a ∈ R , then
pos(π, t + δ, s, i) = G for each δ ∈ [0, a) and pos(π, t + a, 0, i + 1) = G′.

• If πi = ((G, v), a, µ, (G′, v′)), pos(π, t, s, i) = G, and a 6∈ R , then
pos(π, t, s + 1, i + 1) = G′.

A given match m : H π(τ) into the graph π(τ) at position τ can be propa-
gated forwards/backwards over the PTS steps in a path to the graph π(τ′). Such a
propagated match m′ : H π(τ′), written m′ ∈ PM(π, m, τ, τ′), can be obtained
uniquely if all matched graph elements m(H) are preserved by the considered PTS
steps, which is trivially the case for timed steps. When some graph element is not
preserved, PM(π, m, τ, τ′) is empty.

We now present the semantics ofMTGL by providing a satisfaction relation, which
is defined as for GL for the operators inherited from GL and as explained above for
the operators exists-new and until.

Definition 9 (Satisfaction of MTGCs). An MTGC θ ∈ MTGC(H) over a graph H is
satisfied by a path π of the PTS P, a position τ ∈ R0 × N, and a mono m : H π(τ),
written (π, τ, m) |= ψ, if an item applies:
• θ = >.
• θ = ¬θ′ and (π, τ, m) 6|= θ′.
• θ = θ1 ∧ θ2, (π, τ, m) |= θ1, and (π, τ, m) |= θ2.
• θ = ∃( f : H H′, θ′) and ∃m′ : H′ π(τ). m′ ◦ f = m ∧ (π, τ, m′) |= θ.
• θ = ν(g : H′′ H, θ′) and (π, τ, m ◦ g) |= θ′.
• θ = ∃N( f : H H′, θ′) and there are τ′ ≥ τ, m′ ∈ PM(π, m, τ, τ′), and m′′ :

H′ π(τ′) s.t. m′′ ◦ f = m′, (π, τ′, m′′) |= θ, and for each τ′′ < τ′ it holds that
PM(π, m′′, τ′, τ′′) = ∅.

• θ = θ1 UI θ2 and there is τ′ ∈ I × N s.t.
◦ there is m′ ∈ PM(π, m, τ, τ′) s.t. (π, τ′, m′) |= θ2 and
◦ for every τ ≤ τ′′ < τ′ there is m′′ ∈ PM(π, m, τ, τ′′) s.t. (π, τ′′, m′′) |= θ1.

Moreover, if θ ∈ MTGC(∅), τ = (0, 0), and (π, τ, i(π(τ))) |= θ, then π |= θ.

We now introduce the ProbabilisticMetric Temporal Graph Conditions (PMTGCs)
of PMTGL, which are defined based on MTGCs.

Definition 10 (PMTGCs). Each probabilistic metric temporal graph condition (PMTGC)
is of the form χ = P∼c(θ) where ∼ ∈ {≤,<,>,≥}, c ∈ [0, 1] is a probability, and
θ ∈ MTGC(∅) is anMTGC over the empty graph. Moreover, we also call expressions
of the form Pmin=?(θ) and Pmax=?(θ) PMTGCs.

The satisfaction relation for PMTGL defines when a PTS satisfies a PMTGC.

Definition 11 (Satisfaction of PMTGCs). A PTS P satisfies the PMTGC χ = P∼c(θ),
written P |= χ, if, for any adversary Adv, the probability over all paths of Adv that
satisfy θ is∼ c. Moreover, Pmin=?(θ) and Pmax=?(θ) denote the infimal and supremal
expected probabilities over all adversaries to satisfy θ (cf. Definition 3).

For our running example, the evaluation of the PMTGC χmax from Figure 3.2b
for the PTS induced by the PTGTS from Figure 3.1 and Figure 3.2 results in the
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4 Probabilistic Metric Temporal Graph Logic

probability of 0.86 = 0.262144 using a probability maximizing adversary Adv as
follows. Whenever the first graph of the PMTGC can be matched, this is the result
of an application of the PTGT rule σsend. The adversary Adv ensures then that each
message is transmitted as fast as possible to the destination router R3 by (a) letting
time pass onlywhen this is unavoidable to satisfy some guard and (b) never allowing
to match the router R4 by the PTGT rule σtransmit as this leads to a transmission
with 3 hops. For each message, the only transmission requiring at most 5 time units
transmits the message via the router R2 to router R3 using 2 hops in 2 + 2 time units.
The urgently (i.e., without prior delay) applied PTGT rule σreceive then attaches a done
loop to the message as required by χmax. Since the transmissions of the messages
do not affect each other and messages are successfully transmitted only when both
transmission attempts succeeded, themaximal probability to satisfy the innerMTGC
is (0.8 × 0.8)3.
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5 Bounded Model Checking Approach

We now present our approach for reducing the BMC problem for a fixed PTGTS
S, a fixed PMTGC χ = P∼c(θ), and an optional time bound T ∈ R0 ∪ {∞} to a
model checking problem for a PTA and an analysis problem fromDefinition 3. Using
this approach, we can analyze whether S satisfies χ when restricting the discrete
behavior of S to the time interval [0, T). In fact, we only consider PMTGCs of the form
Pmin=?(θ) orPmax=?(θ) for computing expected probabilities since they are sufficient
to analyze the PMTGC P∼c(θ).1 See Table 5.1 for an overview of the subsequently
discussed steps of our approach.
Step 1: Encoding the Time Bound into the PTGTS
For the given PTGTS S and time bound T, we construct an adapted PTGTS S′ into
which the time bound T is encoded (for T = ∞, we use S′ = S). In S′, we ensure
that all discrete PTGT steps and all PTGT invariants are disabled when time bound
T is reached. For this purpose, we (a) add an additional node b of a fresh node
type Bound with a clock x to the initial graph of S and to the graphs L, K, and R of
each underlying GT rule ρ = (` : K L, r : K R, γ) of each PTGT rule σ of S,
(b) add a PTGT rule with a priority higher than all other used priorities deleting
the node b urgently with a guard x = T, and (c) extend each PTGT invariant φ to
φ ∨ ¬∃(b:Bound,>) disabling it for states where the b node has been removed. For
the resulting PTGTS S′, we then solve the model checking problem for the given
PMTGC χ.
Step 2: Construction of an Equivalent PTA
For the PTGTS S′ from step 1, we now construct an equivalent PTA A using the
operation PTGTStoPTA, which is based on a similar operation from [13].
As a first step, we obtain the underlying GTS (G0, P) of S′ where G0 is the initial

graph of S′ and P contains all underlying GT rules ρ of all PTGT rules σ of S′ as in
[13]. As a second step, we construct for this GTS its GT state space (Q, E) consisting
of states Q and edges E as in [13] but deviate by not identifying isomorphic states,
which results in a tree-shaped GT state space with root G0.2 Note that the paths
through (Q, E) symbolically describe all timed probabilistic paths through S′. As a
third step, we again deviate from [13] andmodify (Q, E) into (Q′, E′) by adding time
point clocks throughout the paths of (Q, E) as follows: If N is the maximal number
of graphs in any path π of (Q, E), we (a) create additional time point clocks tpc1
to tpcN , (b) add the i time point clocks tpc1 to tpci to the ith graph in any path of
the state space, and (c) add the clock tpci to the reset set of the step leading to the

1For example, Pmin=?(θ) = c implies satisfaction of P≥c′ (θ) for any c′ ≥ c.
2Our BMC approach cannot be used if the PTGTS S′ results in an infinite (Q, E).
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5 Bounded Model Checking Approach

Table 5.1: Overview of the steps of our BMC approach

Step Inputs Outputs
1 PTGTS S Time Bound T PTGTS S′

2 PTGTS S′ PTA A
3 PTA A GH-Map MGH

4 PMTGC χ GC φ

5 GC φ GH-Map MGH AC-Map MAC

6 PTA A Zone-Map MZone

7 PMTGC χ GH-Map MGH AC-Map MAC Zone-Map MZone AP-Map MAP

8 PTA A AP-Map MAP Probability Interval I

graph Gi in any path of the state space. Consequently, the AC tpci − tpcj for j ≥ i
expresses the time expired between the graphs Gi and Gj. Finally, as in [13], we
construct the resulting PTA A from the given PTGTS S′ and the state space (Q′, E′)

by (a) aggregating GT steps with a common source state and a match belonging to
one PTGT rule, (b) annotating such aggregated GT steps with the clock-based timing
constraints given by the guards and resets of the used PTGT rule, and (c) adding
the clock-based timing constraints given by the PTGT invariants to the resulting PTA.
This PTA construction ensures that the resulting PTA A is equivalent to the given
PTGTS S′.

Lemma 1 (Soundness of PTA Construction). If the given PTGTS S′ has a finite
tree-shaped state space (Q, E), then the two PTSs PTAtoPTS(PTGTStoPTA(S′)) and
PTGTStoPTS(S′) return the same results for the analysis problems fromDefinition 3.
See appendix for a proof sketch.

In step 8, we will apply the Prism model checker [11] to the obtained PTA A and
an analysis problem from Definition 3 corresponding to the given PMTGC χ. For
this purpose, we obtain in steps 3–7 the set of leaf-locations of the PTA, in which the
MTGC θ used inside the PMTGC χ is not violated, and then label precisely those
locations from that set with an additional AP success. Employing this AP, the analysis
problems from Definition 3 can be used to express the minimal/maximal probability
to reach no violation.

Step 3: Folding of Paths into Graphs with History

For the given PTA A, we consider its structural paths π, which are the paths through
the GT state space (Q′, E′) from which A was constructed. Such paths π may have
timed realizations π′ in which timed steps and discrete steps using the PTA edges of
π are interleaved. Following the satisfaction checking approach for MTGL from [5,
17], we translate the MTGC satisfaction problem into an equivalent GC satisfaction
problem using an operation fold (introduced subsequently) and an operation encode

(introduced in step 4). Both operations together ensure for each timed realization π′

of a structural path π of the given PTA A that π′ |= θ iff G′
H |= φ when fold(π) = GH

is a Graph with History (GH), the graph G′
H is obtained from GH by adding the
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5 Bounded Model Checking Approach

durations of steps in π′ as ACs over the time point variables contained in GH, and
encode(θ) = φ.
The operation fold is applied to each structural path π of the given PTA A ag-

gregating the information about the nature and timing of all GT steps into a single
resulting GH. As a first step, we construct the colimit GH for the diagram of the GT
spans of π (given by the sp components of step actions according to Definition 6),
which contains all graph elements that existed at some time point in π. As a second
step, each node and edge in GH is equipped with additional creation/deletion time
stamp attributes cts/dts and creation/deletion index attributes cidx/didx. As a third step,
the ACs cts = tpc0 − tpcj and cidx = j are added for each node/edge that appeared
first in the graph Gj in the path π. As a fourth step, the ACs dts = tpc0 − tpcj and
didx = j are added for each node/edge that is removed in the step reaching Gj in the
path π. Finally, the ACs dts = −1 and didx = −1 are added for nodes/edges that are
never removed in π.3

As output, we obtain the so-called GH-restrictions GH-Map MGH mapping all leaf-
locations ` of the PTA A to the GH constructed for the path ending in `.

Step 4: Encoding of an MTGC as a GC

We now discuss the operation encode for translating the MTGC θ contained in the
given PMTGC χ into a corresponding GC φ. Intuitively, this operation recursively
encodes the requirements (see the items of Definition 9) expressed using MTGL op-
erators on a timed realization π′ (of a structural path π of the PTA A folded in step 3)
using GL operators on the GH GH (obtained by folding π) with additional ACs. In
particular, quantification over positions τ = (t, s), as for the operators exists-new and
until, is encoded by quantifying over additional variables xt and xs representing t
and s, respectively. Moreover, matching of graphs, as for the operators exists and
exists-new, is encoded by an additional AC alive. This AC requires that each matched
graph element in the GH GH has cts, dts, cidx, and didx attributes implying that this
graph element exists for the position (xt, xs) in π′. Lastly, matching of new graph
elements in the exists-new operator is encoded by an additional AC earliest. This AC
requires, in addition to alive, that one of the matched graph elements has cts and cidx
attributes equal to xt and xs, respectively.3

As output, we obtain the GC φ, which expresses the MTGC θ based on the graph
G′

H obtained from the timed realization π′ in step 3.

Step 5: Construction of AC-Restrictions of Violations

For each GH GH (from the given GH-Map MGH) obtained in step 3 for some path π,
we evaluate the negation of the given GC φ obtained in step 4 for this GH . The result
of this evaluation is an AC γ, which describes valuations of the variables contained

3The presented operations fold and encode are adaptations of the corresponding operations from [5,
17] to the modified MTGL satisfaction relation defined for PTSs (see Definition 9). The adapted
operation fold uses ACs to express clock differences instead of concrete assignments and employs
additional index attributes cidx/didx. The adapted operation encode uses the additional step index
variable xs in the alive and earliest ACs to take not only the time stamp but also the step index into
account.
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5 Bounded Model Checking Approach

in GH. Each such valuation describes a timed realization π′ of π not satisfying the
MTGC θ (i.e., a violation) by providing real-valued time points for the additional
time point clocks contained in GH . In the sense of the equivalence discussed in step 3,
such a valuation represents the durations of timed steps in π′, which can be added
in the form of an AC to GH resulting in the graph G′

H such that π′ 6|= θ and G′
H 6|= φ.

For our running example, any path π ends with all messages being received. The
obtained AC γ describes then that a violation has occurred when, for one of the
messages, the sum of the timed steps between sending and receiving exceeds 5 time
units. Certainly, due to possible interleavings of discrete steps and different routes
from R1 to R3, there are various structural paths of A ending in different GHs each
resulting in a different AC γ.
As output, we obtain the so-called AC-restrictions AC-Map MAC mapping all leaf-

locations ` of the PTA A to the AC γ constructed for the GH GH (which is obtained
for the path π ending in `).

Step 6: Construction of Zone-Restrictions of Violations

We adapt the given PTA A from step 2 to a resulting PTA A′ by adding an additional
AP terminal and by labeling all leaf-locations with this AP. We then construct the
symbolic zone-based state space for the PTA A′ by evaluating Pmax=?(F terminal)
(see Definition 3) using a minor adaptation of the Prism model checker that outputs
the states s = (`, ψ) labeled with the AP terminal containing a location ` and a
clock constraint ψ as a zone (which is unique due to the tree-shaped form of the
PTA A). For each structural path π of the PTA A ending in the location `, the zone
ψ symbolically represents all timed realizations π′ of π, which respect the timing
constraints of the PTA A, in terms of differences between the additional time point
clocks added in step 2.

For our running example, the zone ψ obtained for some leaf-location then contains
the clock constraints capturing for each message that (a) 2 to 5 time units elapsed
before each transmission attempt and (b) no time elapsed between the arrival of that
message at router R3 and its reception by the receiver.
As output, we obtain the so-called zone-restrictions Zone-Map MZone mapping all

leaf-locations ` of the PTA A to the zone ψ obtained for `.

Step 7: Construction of Violations

We now combine the restrictions captured by the given mappings GH-Map MGH,
AC-Map MAC, and Zone-Map MZone to determine the leaf-locations of the PTA A
representing violations. A leaf-location ` represents a violation when it is reached by
a structural path π of A that is realizable in terms of a timed realization π′ such that
the interleaving of timed and discrete steps in π′ (which depends on the considered
adversary) results in a violation when reaching `. For this purpose, we compare
the AC-restrictions with the zone-restrictions in a way that depends on whether
the given PMTGC χ is of the form Pmax=?(θ) or Pmin=?(θ). In the following, we
consider the case for max (and the case for min in brackets). We define the AC γcheck
as MZone(`) ∧ ¬(MAC(`) ∧ MGH(`).ac) (for min: MZone(`) ∧ MAC(`) ∧ MGH(`).ac)
where MGH(`).ac denotes the AC of the GH MGH(`). This AC is satisfiable (for min:
unsatisfiable) iff a violation is avoidable (for min: unreachable) for any probability
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5 Bounded Model Checking Approach

maximizing (for min: probability minimizing) adversary based on interleavings of
timed steps. We use the SMT solver Z3 [14] to decide whether the obtained AC γcheck
is satisfiable (for min: unsatisfiable).
As output, we obtain the so-called AP-Map MAP, which maps all leaf-locations `

of the PTA A to a set of APs. The set of APs MAP(`) contains (a) the APs success and
maybe, if Z3 returns that the checked AC γcheck is satisfiable (for min: unsatisfiable)
and (b) the AP maybe, if Z3 does not return a result. Hence, structural paths of
the PTA A ending in locations labeled with the AP success represent PTGTS paths
definitely (formin: possibly) satisfying the considered MTGC whereas PTGTS paths
ending in locations labeled with the AP maybe may or may not represent such paths.

Step 8: Computation of Resulting Probabilities

In steps 1–7, we reduced the considered BMC problem to one of the analysis prob-
lems from Definition 3 for which Prism can be applied. For this last step, we adapt
the given PTA A from step 2 to a PTA A′ by adding the labeling captured by the
given AP-Map MAP from step 7. We compute and output the probability intervals
I = [Pmin=?(success),Pmin=?(maybe)] and I = [Pmax=?(success),Pmax=?(maybe)] of
possible expected probability values for Pmin=?(θ) and Pmax=?(θ), respectively. If
Z3 always succeeded in step 7, this probability interval I will be a singleton. Lastly,
we state that the presented BMC approach is sound (up to the imprecision possibly
induced by Z3).

Theorem 1 (Soundness of BMC Approach). The presented BMC approach correctly
analyzes (correctly approximates) satisfaction of PMTGCs when the returned prob-
ability interval I is (is not) a singleton. See appendix for a proof sketch.
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6 Evaluation

To evaluate our BMCapproach,we applied its implementation in the toolAutoGraph
(where Prism and Z3 are used as explained before) to our running example given
by the PMTGC χmax from Figure 3.2b and the PTGTS from Figure 3.1 and Figure 3.2.
In this application, we used the time bound T = ∞ for which the PTGTS was not
adapted in step 1 because it already resulted in a finite tree-shaped GT state space
(Q, E) in step 2.1 The constraint solver Z3 was always able to decide all satisfaction
problems in step 7, and the probability interval obtained in step 8 using Prism was
[0.262144, 0.262144], which is in accordance with our detailed explanations below
Definition 11.
We also applied our BMC approach to the same PTGTS (again using the time

bound T = ∞) and the PMTGC Pmin=?(θ)where θ is the MTGC used in the PMTGC
χmax from Figure 3.2b. In this case, we obtained the probability interval [0, 0] in step 8
since there is a probability minimizing adversary that sends the first message at time
point 0 and then delays the first two transmission attempts of that message to time
points 5 and 10 ensuring that the message is not received within 5 time units as
required in the MTGC θ.

Both discussed applications of our BMC approach (where steps 1–7 can be reused
for the second application) required negligible runtime and memory.

1In (Q, E), each of the three messages has either not yet been sent, is at one of the five routers, or has
been received resulting in at most 73 states.
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7 Conclusion and Future Work

In this paper,we introduced the ProbabilisticMetric Temporal GraphLogic (PMTGL)
for the specification of cyber-physical systems with probabilistic timed behavior
modeled as PTGTSs. PMTGL combines (a) MTGL with its binding capabilities for
the specification of timed graph sequences and (b) the probabilistic operator from
PTCTL to express best-case/worst-case probabilistic timed reachability properties.
Moreover, we presented a novel Bounded Model Checking (BMC) approach for
PTGTSs w.r.t. PMTGL properties.
In the future, we will consider the case study [13, 16] of a cyber-physical system

where, in accordance with real-time constraints, autonomous shuttles exhibiting
probabilistic failures on demand navigate on a track topology. For this case study, we
will evaluate the expressiveness and usability of PMTGL as well as the performance
of our BMC approach. Also, we will integrate our MTGL-based approach from [18]
for deriving so-called optimistic violations.
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Glossary

AC Attribute Condition.

AP Atomic Proposition.

BMC Bounded Model Checking.

DPD Discrete Probability Distribution.

GC Graph Condition.

GH Graph with History.

GL Graph Logic.

GTS Graph Transformation System.

MFOTL Metric First-Order Temporal Logic.

MTGC Metric Temporal Graph Condition.

MTGL Metric Temporal Graph Logic.

PGTS Probabilistic Graph Transformation System.

PMTGC Probabilistic Metric Temporal Graph Condition.

PMTGL Probabilistic Metric Temporal Graph Logic.

PTA Probabilistic Timed Automaton.

PTCTL Probabilistic Timed Computation Tree Logic.

PTGTS Probabilistic Timed Graph Transformation System.

PTS Probabilistic Timed System.

TGTS Timed Graph Transformation System.
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A Proofs

In this appendix, we provide proof sketches omitted in the main body of this paper.

Lemma 1, p. 22: Soundness of PTA Construction. The nonidentification of isomorphic
states and the addition of time point clocks does not affect the possible steps of the
resulting PTA. This PTA is therefore, following [13], equivalent to the given PTGTS
S′ w.r.t. the analysis problems from Definition 3.

Theorem 1, p. 25: Soundness of BMC Approach. We conclude that the presented BMC
approach computes the correct results (a) by encoding the time bound T properly in
step 1, (b) from the soundness of the operation PTGTStoPTA according to Lemma 1
(following [13]), (c) from the soundness of the adapted translation of MTGC satis-
faction problem into an equivalent GC satisfaction problem along the lines of [5, 17],
and (d) from the correct computation of zones in Prism.

31



B Details for Simplified Running Example

In this appendix, we present the steps of our BMC approach for a simplified form of
our running example where only a single message is transmitted to the receiver.

S:Sender

num=1

R1:Router R2:Router R3:Router

R4:Router R5:Router

R:ReceiverM1:Message

clock=c1

id=1
e1:snd

e2:rcv

e3:next e4:next

e5:next

e6:next

e7:next

{tpc0}

S:Sender

num=2

R1:Router R2:Router R3:Router

R4:Router R5:Router

R:Receiver

M1:Message

clock=c1

id=1

e1:snd
e2:rcv

e3:next e4:next

e5:next

e6:next

e7:next

e8:at

{tpc0, tpc1}

S:Sender

num=2

R1:Router R2:Router R3:Router

R4:Router R5:Router

R:Receiver

M1:Message

clock=c1

id=1

e1:snd
e2:rcv

e3:next e4:next

e5:next

e6:next

e7:next

e9:at

{tpc0, . . . , tpc2}

PTGT rule: σsend
GT rule: ρsend,done
probability: 1.0
satisfied guard: >
clock resets: {c1, tpc0}

PTGT rule: σtransmit
GT rule: ρtransmit,success
probability: 0.8
satisfied guard: c1 ≥ 2
clock resets: {c1, tpc1}

Figure B.1: Visualization for step 2 of our BMC approach: A structural path π of the
PTA A (using an adapted initial graph with a single message) (1/2)
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B Details for Simplified Running Example

S:Sender

num=2

R1:Router R2:Router R3:Router

R4:Router R5:Router

R:Receiver

M1:Message

clock=c1

id=1

e1:snd
e2:rcv

e3:next e4:next

e5:next

e6:next

e7:next

e10:at

{tpc0, . . . , tpc3}

S:Sender

num=2

R1:Router R2:Router R3:Router

R4:Router R5:Router

R:ReceiverM1:Message

clock=c1

id=1
e1:snd

e2:rcv

e3:next e4:next

e5:next

e6:next

e7:next

e11:done

{tpc0, . . . , tpc4}

PTGT rule: σtransmit
GT rule: ρtransmit,success
probability: 0.8
satisfied guard: c1 ≥ 2
clock resets: {c1, tpc2}

PTGT rule: σreceive
GT rule: ρreceive,done
probability: 1.0
satisfied guard: >
clock resets: {tpc3}

Figure B.2: Visualization for step 2 of our BMC approach: A structural path π of the
PTA A (using an adapted initial graph with a single message) (2/2)

33



B Details for Simplified Running Example

S:Sender

num=2
cts=0
dts=− 1
cidx=0
didx=− 1

R1:Router

cts=0
dts=− 1
cidx=0
didx=− 1

R2:Router

cts=0
dts=− 1
cidx=0
didx=− 1

R3:Router

cts=0
dts=− 1
cidx=0
didx=− 1

R4:Router

cts=0
dts=− 1
cidx=0
didx=− 1

R5:Router

cts=0
dts=− 1
cidx=0
didx=− 1

R:Receiver

cts=0
dts=− 1
cidx=0
didx=− 1

M1:Message

clock=c1

id=1
cts=0
dts=− 1
cidx=0
didx=− 1

e1:snd

cts=0
dts=− 1
cidx=0
didx=− 1

e2:rcv

cts=0
dts=− 1
cidx=0
didx=− 1

e3:next

cts=0
dts=− 1
cidx=0
didx=− 1

e4:next

cts=0
dts=− 1
cidx=0
didx=− 1

e5:next

cts=0
dts=− 1
cidx=0
didx=− 1

e6:next

cts=0
dts=− 1
cidx=0
didx=− 1

e7:next

cts=0
dts=− 1
cidx=0
didx=− 1

e11:done

cts=tpc4 − tpc0
dts=− 1
cidx=4
didx=− 1

e8:at

cts=tpc1 − tpc0
dts=tpc2 − tpc0
cidx=1
didx=2

e9:at

cts=tpc2 − tpc0
dts=tpc3 − tpc0
cidx=2
didx=3

e10:at

cts=tpc3 − tpc0
dts=tpc4 − tpc0
cidx=3
didx=4

Figure B.3: Visualization for step 3 of our BMC approach: GH GH obtained for the
structural path π from Figure B.2
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B Details for Simplified Running Example

{xt,0:real, xs,0:int} Θ0 ,∃
S:Sender

cts=tS,c

dts=tS,d

cidx=sS,c

didx=sS,d

R1:Router

cts=tR1,c

dts=tR1,d

cidx=sR1,c

didx=sR1,d

M:Message

cts=tM,c

dts=tM,d

cidx=sM,c

didx=sM,d

e1:snd

cts=te1,c

dts=te1,d

cidx=se1,c

didx=se1,d

e2:at

cts=te2,c

dts=te2,d

cidx=se2,c

didx=se2,d

{xt,1:real, xs,1:int} Θ1 ,∀

M:Message

cts=tM,c

dts=tM,d

cidx=sM,c

didx=sM,d

{xt,0:real, xs,0:int, xt,1:real, xs,1:int} Θ2 ,ν

{xt,2:real, xs,2:int} Θ3 ,∃
M:Message

cts=tM,c

dts=tM,d

cidx=sM,c

didx=sM,d

e3:done

cts=te3,c

dts=te3,d

cidx=se3,c

didx=se3,d

Θ4 ,>∃

Θ0 = {xt,0 = 0, xs,0 = 0}
Θ1 = Θ0 ∪ {xt,0 < xt,1 ∨ (xt,0 = xt,1 ∧ xs,0 < xs,1),

alive((xt,1, xs,1), {S, R1, M, e1, e2}), earliest((xt,1, xs,1), {S, R1, M, e1, e2})}
Θ2 = Θ0 ∪ {alive((xt,1, xs,1), {M})}
Θ3 = Θ2 ∪ {xt,1 < xt,2 ∨ (xt,1 = xt,2 ∧ xs,1 < xs,2), xt,2 ≤ xt,1 + 5}
Θ4 = Θ3 ∪ {alive((xt,2, xs,2), {M, e3})}

Figure B.4:Visualization for step 4 of our BMCapproach: GC φ obtained by encoding
of the MTGC from the PMTGC χmax
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B Details for Simplified Running Example

¬∃xt,0:real, xs,0:int.

xt,0 = 0 ∧ xs,0 = 0

∧ ∀xt,1:real, xs,1:int.

xt,0 < xt,1 ∨ (xt,0 = xt,1 ∧ xs,0 < xs,1)

∧
alive((xt,1, xs,1), {S, R1, M1, e1, e8})
∧
earliest((xt,1, xs,1), {S, R1, M1, e1, e8})
→ ∃xt,2:real, xs,2:int.

xt,1 < xt,2 ∨ (xt,1 = xt,2 ∧ xs,1 < xs,2)

∧
xt,2 ≤ xt,1 + 5

∧
alive((xt,2, xs,2), {M1, e11})

Intuitively, this expression captures an untimely reception in the sense of:

(tpc4 − tpc0) > (tpc1 − tpc0) + 5

or even in the simplest form:

tpc4 > tpc1 + 5

Technically, it refers to all attributes of the GH GH (in the alive and earliest ACs),
which makes the usage of GH in step 7 necessary.

Figure B.5:Visualization for step 5 of our BMC approach: AC-restriction of violations
(result of evaluating the negation of the GC φ from Figure B.4 for the GH GH from
Figure B.3)
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B Details for Simplified Running Example

tpc1 − tpc0 ≥ 0

∧ tpc2 − tpc1 ≥ 2

∧ tpc2 − tpc1 ≤ 5

∧ tpc3 − tpc2 ≥ 2

∧ tpc3 − tpc2 ≤ 5

∧ tpc4 − tpc3 ≤ 0

∧ c1 ≥ 0

Intuitively, the guards and invariants stated for the clock of the message result in a
restriction of the time point clock variables.

Figure B.6: Visualization for step 6 of our BMC approach: Zone-restriction of viola-
tions (result for the structural path π from Figure B.2)

For the case of Pmax=?(θ), we construct the AC γcheck using the AC from Figure B.5,
the AC from Figure B.6, and the AC of the GH from Figure B.3 (given by the
conjunction of all ACs contained in the graph). γcheck is equivalent to the following
simplified AC.

γcheck ≡ 4 ≤ tpc4 − tpc1 ≤ 10 ∧ ¬(tpc4 > tpc1 + 5)

This AC γcheck is satisfiable. In fact, it is satisfied by the clock valuation
{tpc1 7→ 0, tpc4 7→ 4} describing the fastest transmission of the message M1. From
the satisfiability, we obtain the labeling of GH from Figure B.3 using the APs
success and maybe.

Figure B.7: Visualization for step 7 of our BMC approach: Derivation of labeling

The probability maximizing adversary will find at least the path to the location
given by the GH GH from Figure B.3. This path has a probability of
1 × 0.8 × 0.8 × 1 and is labeled with the APs success and maybe. Prism returns the
probability interval I = [0.64, 0.64] since all other paths will not be labeled with
one of these APs because the timing constraint of at most 5 time units from the
PMTGC χmax is not satisfied by the other paths.

Figure B.8: Visualization for step 8 of our BMC approach: Derivation of probabilities
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C Example for Step 7 of the BMC
Approach

In this appendix, we provide a short example on why step 7 is defined as described.
For this purpose, we consider different combinations of zone-restrictions and AC-
restrictions for the two cases of Pmax=?(θ) and Pmin=?(θ).

Example 1 (Computation of Labeling in Step 7). We consider a zone-restriction
4 ≤ x ≤ 10 as well as AC-restrictions x ≥ 3, x ≥ 5, and x ≥ 12. For the two cases
from above, we then determine whether the corresponding leaf-location should be
labeled with success and maybe.

max

(4 ≤ x ≤ 10) ∧ ¬(x ≥ 3) is unsatisfiable, hence no labeling
(4 ≤ x ≤ 10) ∧ ¬(x ≥ 5) is satisfiable, hence labeling with {success, maybe}
(4 ≤ x ≤ 10) ∧ ¬(x ≥ 12) is satisfiable, hence labeling with {success, maybe}

min

(4 ≤ x ≤ 10) ∧ (x ≥ 3) is satisfiable, hence no labeling
(4 ≤ x ≤ 10) ∧ (x ≥ 5) is satisfiable, hence no labeling
(4 ≤ x ≤ 10) ∧ (x ≥ 12) is unsatisfiable, hence labeling with {success, maybe}

For the case of Pmax=?(θ), satisfiability means that some interleaving with timed
steps does not result in a violation.
For the case of Pmin=?(θ), unsatisfiability means that each interleaving with timed
steps does not result in a violation.
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