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Regression testing is a widespread practice in today’s software industry to ensure
software product quality. Developers derive a set of test cases and execute them
frequently to ensure that their change did not adversely affect existing functionality.
As the software product and its test suite grow, the time to feedback during regres-
sion test sessions increases, and impedes programmer productivity: Developers
wait longer for tests to complete and delays in fault detection render fault removal
increasingly difficult.

Test case prioritization addresses the problem of long feedback loops by reorder-
ing test cases, such that test cases of high failure probability run first, and test case
failures become actionable early in the testing process. We ask, given test execution
schedules reconstructed from publicly available data, to which extent can their fault
detection efficiency be improved, and which technique yields the most efficient test
schedules with respect to APFD?

To this end, we recover 6,200 regression test sessions from the build log files of
TRAVIS CI, a popular continuous integration service, and gather 62,000 accompa-
nying change lists. We evaluate the efficiency of current test schedules and examine
the prioritization results of state-of-the-art lightweight, history-based heuristics.
We propose and evaluate a novel set of prioritization algorithms, which connect
software changes and test failures in a matrix-like data structure.

Our studies indicate that the optimization potential is substantial because the
existing test plans score only 30 % APFD. The predictive power of past test failures
proves to be outstanding: simple heuristics, such as repeating tests with failures
in recent sessions, result in efficiency scores of 95% APFD. The best-performing
matrix-based heuristic achieves a similar score of 92.5 % APFD. In contrast to prior
approaches, we argue that matrix-based techniques are useful beyond the scope
of effective prioritization and enable a number of use cases involving software
maintenance.

We validate our findings from continuous integration processes by extending a
continuous testing tool within development environments with means of test prior-
itization and pose further research questions. We think that our findings are suited
to propel the adoption of (continuous) testing practices and that programmers’
toolboxes should contain test prioritization as an existential productivity tool.






Regressionstests sind in der heutigen Softwareindustrie eine weit verbreitete
Praxis, um die Qualitét eines Softwareprodukts abzusichern. Dabei leiten Entwick-
ler von den gestellten Anforderungen Testfille ab und fiihren diese wiederholt aus,
um sicherzustellen, dass ihre Anderungen die bereits existierende Funktionalitit
nicht negativ beeintrdchtigen. Steigt die Grofse und Komplexitédt der Software und
ihrer Testsuite, so wird die Feedbackschleife der Testausfitihrungen linger und
mindert die Produktivitdt der Entwickler: Sie warten langer auf das Testergebnis
und die Fehlerbehebung gestaltet sich umso schwieriger, je langer die Ursache
zuriickliegt.

Um die Feedbackschleife zu verkiirzen, &ndern Testpriorisierungs-Algorithmen
die Reihenfolge der Testfélle, sodass Testfélle, die mit hoher Wahrscheinlichkeit
fehlschlagen, zuerst ausgefiihrt werden. Der vorliegende Bericht beschiftigt sich
mit der Frage nach der Effizienz von Testpldanen, welche aus offentlich einse-
hbaren Daten rekonstruierbar sind und damit, welche anwendbaren Priorisierungs-
Techniken die effizienteste Testreihenfolge in Bezug auf APFD hervorbringen.

Zu diesem Zweck werden 6,200 Testsitzungen aus den Logdateien von TRAVIS
c1, einem oft verwendeten Dienst fiir Continuous Integration, und tiber 62,000 An-
derungslisten rekonstruiert. Auf dieser Grundlage wird die Effizienz der derzeit-
igen Testplane bewertet, als auch solcher, die aus der Neupriorisierung durch
leichtgewichtige, verlaufsbasierte Algorithmen hervorgehen. Zudem schldgt der
vorliegende Bericht eine neue Gruppe von Ansédtzen vor, die Testfehlschldge und
Softwarednderungen mit Hilfe einer Matrix in Bezug setzt.

Da die beobachteten Testreihenfolgen nur 30 % APFD erzielen, liegt wesentliches
Potential fiir Optimierung vor. Dabei besticht die Vorhersagekraft der unmittelbar
vorangegangen Testfehlschldge: Einfache Heuristiken wie das Wiederholen von
Tests, welche kiirzlich fehlgeschlagen sind, fiihren zu Testpldnen mit einer Effizienz
von 95 % APFD. Matrix-basierte Ansitze erreichen eine Fehlererkennungsrate von
bis zu 92.5% APFD. Im Gegensatz zu den bisher bekannten Ansitzen sind die
matrix-basierten Techniken auch tiber den Zweck der Testpriorisierung hinaus
niitzlich und in der Softwarewartung anwendbar.

Zusétzlich werden die Ergebnisse der vorliegenden Studie fiir Continuous Inte-
gration Systeme im Kontext integrierter Entwicklungsumgebungen validiert, indem
ein Tool fiir Continuous Testing um Testpriorisierung erweitert wird. Dies fiihrt
zu neuen Forschungsfragen. Die Untersuchungsergebnisse sind geeignet die Ein-
fithrung von Continuous Testing zu befordern und untermauern, dass Werkzeuge
der Testpriorisierung fiir produktive Softwareentwicklung essenziell sind.
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1. Regression Testing in Continuous
Integration Environments

Regression testing is a widespread technique in today’s software industry to en-
sure software product quality. A set of test cases is derived from an initial set of
requirements, which exercise the software system with known inputs and check
for correct outputs. As software development carries on, re-execution of all test
cases prevents developers from introducing faults in existing functionality, called
regressions. Therefore, the size of the test set can be assumed to be ever increasing;:
As new requirements arrive, new test cases are added, or as developers identify
error conditions (bugs), they introduce additional checks for corner cases. Typ-
ically, software developers are hesitant to remove test cases, as they fear future
detrimental changes may go undetected, and product managers rarely decrease
the software’s feature set significantly.

To catch detrimental changes, or out-of-date test oracles’, development teams
increasingly rely on the software development practice of Continuous Integration
(c1) [16]. Within this setting, programmers integrate code changes frequently (up
to several times a day) by creating a commit in the version control system and
publishing it to a central repository. From there on, a c1 server, which is oftentimes
a separate machine or can be a third-party service, runs through the entire build and
verification process of the software, which includes execution of the regression test
suite. In many development processes, the failure to complete a c1 cycle represents
an obstacle to integrating the current set of changes into mainline development,
also known as pre-merge check. This way, the check sets a minimum quality bar
for proposed changes, which are then required to be syntactically correct, to pass
all tests, and to cope with changes in the program’s environment.

Software development teams often benefit from an established c1 process, be-
cause the necessary infrastructure and the required degree of (test) automation
shorten release cycles or the time to fault localization [25]. While the initial c1 setup
might start small and builds may last only several minutes, build times increase as
the project gains in complexity and size. Subsequently, developer productivity is
at risk because programmers require more time to integrate their changes, even if
those are of minor nature.

A common development model for making use of c1 is built around version
control branches (see Figure 1.1). Within this model, developers require a cr build,

TA test oracle describes a mechanism to determine whether a test case passed or failed. The tech-
niques range from hard-coding known outputs to verifying system properties through comparing
two competing implementations, for example.
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1. Regression Testing in Continuous Integration Environments

Local Test Cl Test
: ; Increment : ' Merge
Developer »| Cl >
< = Build Success ~|_Request
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Build Failure
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Changes Requested

Figure 1.1.: In a branch-based development workflow, developers fork the develop-
ment mainline and spent multiple iterations on a single increment. They validate
their changes using a c1 through the main feedback loop, highlighted in bold.

before their code change can enter the review phase. While a single green build
would in principle suffice to integrate the change in the main line of development,
in reality, this feedback loop is entered many times over. When developers engage
in pre-submit testing, they may be confronted with an unstable build process, inte-
gration of recent changes from the trunk, or several (possibly mutually dependent)
program faults. Typically, addressing any of these issues requires restarting the
build process from the very beginning. As a result of increased build times, devel-
opers spend a larger fraction of their time waiting for the c1 build to complete, as
even very minor modifications undergo the same rigid build process. Eventually,
developers might start multi-tasking and begin to work on other features or bugs.
However, due to the mental overhead of switching between tasks and the natu-
ral upper limit to the capability to handle different tasks in parallel, this is poor
compensation for long build times. To worsen the problem, we observe a tendency
to skip local testing altogether and to increasingly rely on c1 systems for most of
integration tasks [2]. In tandem with long build times and frequent builds due
to high code churn, c1 services are subject to congestion [14, 37]. In consequence,
the time to feedback not only depends on the build duration but also needs to
factor in the size of the build backlog. In summary, we make the case that even
marginal increases in build time can negatively impact the efficiency of software
development.

For these reasons, a desirable c1 workflow entails a build time that is as short as
possible to maintain developer productivity. However, speedy software builds do
not appear to be the norm since 9o % of study respondents report actively spending
time on reducing build time [24]. While only experts can optimize general infras-
tructure, such as compilers or dependency management tools, product-specific test
suites resemble areas of great control to software engineers. Despite the fact that
programmers can easily change them, test suites grow in size, duration, and com-
plexity. The fact that most test automation tools employ the “retest all” strategy, in
which all tests execute in a fixed order regardless of their fault detection efficiency,
diminishes the chances of early feedback.

15



1. Regression Testing in Continuous Integration Environments

As a result of this development model, raised test cost, and growing code churn,
large software organizations increasingly focus on optimization of verification
efforts as a means to achieve faster feedback and shorter build times [9, 29, 35,
56]. For instance, they invest into regression test selection techniques. Based on
program analysis, an automated system schedules only the subset of test cases that
traverse the changed code for execution and therefore all newly introduced faults.
Alternatively, those organizations implement means of regression test prioritization
that prioritize test cases of higher failure probability, which therefore run first.
Either way, the time required to inform developers of failed test cases, which
mandate fixing production code or adjusting the test oracle, shortens.

The topic of resource congestion and prolonged feedback cycles does not only
affect large software companies but also extends to open-source projects. A sub-
stantial build overhead may negatively impact the time required to deliver a critical
bug fix; can frustrate existing developers, which oftentimes participate in their
spare time; or discourage new contributors. We find evidence of long build times
in open-source projects in a preliminary study of a dataset of a popular contin-
uous integration service [4]. Up to two-thirds of builds fail to meet the rule of
the ten-minute build [16] and their total time exceeds 40 minutes on average. In
accordance, reports of larger organizations, testing also contributes significantly to
prolonged feedback loops. On average, open source projects dedicate 40 % of build
time to testing activities. Also, we quantify the impact of checking a code change
using a test suite and a c1 system, and find that 11.8 % of all merge requests are
affected by test failures.

Getting hold of these test failures as soon as possible appears critical, because
they severely impede integration of the code change in many instances. Within
a merge request that possesses at least one test failure and one successful build
during the time frame of the observation, Figure 1.2 shows that 50 to 55 % of builds
fail due to tests, with another peak at 30 to 35 % percent. For individual projects
with a focus on test-driven development, up to two third of merge request builds
fail due to tests. Also, Figure 1.3 shows that the failure rate is independent of the
length of the merge request. Apparently, while still working on the same feature,
developers tend to continuously break tests, as they try to make the code compliant
to the feedback of the reviewer. In summary, the test suite is a suitable vantage
point for optimizing the build process and for shortening the feedback cycle, such
that developers can proceed to fix faults earlier in the testing process.

In response to the above constraints and challenges, we propose to deepen the
understanding of regression testing in a continuous integration environment by
studying open-source software and the extent to which test case prioritization
affects small- to medium-sized projects. To this end, we require a new dataset
of test execution histories of open-source projects to determine which existing
prioritization heuristics cope well with the projects” diversity. Additionally, we
investigate if extending existing heuristics with further inputs provides better
prioritization performance.
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Figure 1.2.:
failures

1. Regression Testing in Continuous Integration Environments
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Figure 1.3.: Contrary to our expectation, longer merge requests (in terms of build
count) sustain similar build failure rates
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1. Regression Testing in Continuous Integration Environments

List of Contributions We make the following contributions to the field of regres-
sion test prioritization, listed in no particular order:

1. Dataset To study a diverse set of projects, we present a newly derived dataset
of more than 6,000 regression test sessions from twenty open-source projects.
To this end, we analyze log files of TRAVIS c1, a popular continuous integra-
tion service, for traces of test execution and recover over 62,000 accompanying
change lists. This real-world dataset closes the gap between sets of small, di-
verse academic study subjects and industry-scale, homogeneous software
development artifacts.

2. Baseline To shed light on the state of regression testing on open-source projects,
we extensively evaluate prior work on the novel dataset. For reproducibility,
we investigate the performance of the observed test order and three more
baseline techniques of earlier works in the field of history-based regression
testing. To further quantify the potential impact of cost-aware test prioritiza-
tion, we compare test plans of different optimality criteria: detected faults per
test case run and detected faults per cost.

3. Matrix-based Regression Test Prioritization We extend prior history-based tech-
niques to include the current change of the software revision as the input
signal. To this end, we connect software changes to test failures in a matrix-
like data structure. This approach compensates the static prediction, a major
shortcoming of existing heuristics, which assign test priorities regardless of
the software change. We report on the prioritization performance of one al-
gorithm using a probabilistic interpretation and another set of techniques
consisting of four different weighting approaches. Our approaches perform
on par with respect to the best-performing baseline algorithm. Also, the rela-
tive prioritization performance of matrix-based approaches increases, as fault
repetitions spread over time. We emphasize that matrix-based models are use-
ful beyond the scope of test prioritization and that change-to-failure-matrices
enable a number of use cases involving test maintenance.

4. Exploratory Study We validate our research in the practical context of AutoTDD,
a continuous testing system for Squeak/Smalltalk. We corroborate that find-
ings from both, prior work and our approaches, can indeed be adapted from
a continuous integration setting to one within a development environment.
Our preliminary experiments outline the importance of test prioritization to
continuous testing and pose further research questions.

18



1. Regression Testing in Continuous Integration Environments

Structure of this Report In Chapter 2, we proceed to categorize and examine rel-
evant prior work from the fields of test prioritization and test selection. Chapter 3
describes how to connect changes and test outcomes in a matrix-like data struc-
ture and introduces novel prioritization algorithms, which utilize a probabilistic
interpretation of failure events or rely on weighting observations. We continue to
characterize the dataset and explain the procedure to create it in Chapter 4. Further,
this chapter details how to integrate test prioritization in continuous integration
workflows. Chapter 5 comprises the research method (5.1) and gives insights into
three differently themed series of experiments: the state of regression testing on
open-source projects (5.2), the fault detection efficiency of prior works (5.3), and
the efficiency of novel matrix-based approaches (5.4). We conduct an exploratory
study concerned with live testing in Chapter 6 and give an outlook to future
developments and applications in Chapter 7. Chapter 8 concludes this report.

19



2. Background and Related Work

In the following, we outline related works and how prior elaborations influence
our approach. Section 2.1 details related techniques in the field of Regression
Test Prioritization (RTP) and Section 2.2 on influences from the research area of
Regression Test Selection (RTs). Section 2.3 emphasizes the need for alternate test
orderings in the context of continuous testing and Section 2.4 synthesizes the
findings.

RTP techniques reorder test cases to maximize some metric early in the testing
process, such as faults detected or code covered. While the former approaches
rely on executing the entire test suite, RTs techniques select subsets of test cases
to run (Figure 2.1). Both research areas closely relate to each other, because both
approaches convert into each other. Trivially, every RTs approach resembles a
prioritization algorithm that assigns the highest priority to the selected test cases
and the lowest priority to the remaining ones. Conversely, prioritization techniques
convert into test selection algorithms by selecting the n topmost test cases. The
following section introduces related techniques from both fields, compares the
needed inputs, and elaborates on the resulting non-functional properties.

Figure 2.1.: A selection technique (oval) chooses an unordered subset of test cases
(dots) to execute. Contrarily, a prioritization algorithm establishes a test ordering
(arrows).

2.1. Regression Test Prioritization

The problem of shortening feedback cycles given a set of test cases to execute is
known as RTP. RTP aims at reordering test cases such that the time to test failure is
minimal (the tests with the maximum likelihood of detecting a failure with respect
to the changes execute first). Within the rTP field, we identify three clusters of

20



2.1. Regression Test Prioritization

related techniques. The first group prioritizes test cases based on a single change.
The second set of approaches uses linear histories of test runs. The third adapts
techniques of other computer science fields to the RTr problem, most notably from
Machine Learning (ML) and Information Retrieval (IR).

Ad-hoc Program Analysis

This family of approaches considers a single change, consisting of two versions of
the software, and tries to reason about how the former version transposes into the
current software version to prioritize test cases. For example, previously recorded
code coverage information can devise if the test case is likely to traverse the mod-
ified lines of code. Researchers proposed different strategies that reorder tests
according to statement coverage, branch coverage, and Fault Exposing Potential
(FEP) [44]. FEP is a mutant-based criterion, that denotes how many faults a test case
can detect relative to a known number of seeded faults. The authors conclude that
even simple strategies like randomized test ordering can improve fault detection
efficiency and that coverage-based strategies considerably increase the rate of fault
detection further. The main drawback to coverage and mutant-based prioritization
is the cost of obtaining coverage data, which imposes limits on the practical appli-
cability. Second, non-code artifacts, such as configuration files, are not part of the
model of a prioritization technique-based coverage statistics and do not influence
the resulting test ordering.

History-based Approaches

History-based approaches use a linearized development history to prioritize test
cases, which includes multiple regression test sessions and the respective test re-
sults. Researchers propose several prioritization heuristics in the context of resource-
constrained environments [27]. For example, the least-recently-used test algorithm
prioritizes test cases by temporal distance to the last execution, such that all test
cases execute regularly. Similarly, the least-recently-used function heuristic uses
coverage data to schedule test cases, which exercise program functions that have
not been run recently. Another algorithm, recently-failed, gives preference to test
cases that revealed faults in recent testing sessions. Building upon these simple
heuristics, more elaborate models have been proposed, which try to balance recent
execution and fault detection efficiency of a test case when determining its prior-
ity over others. Additionally, the researchers address the “cold-start problem”, a
situation in which no or small fractions of historic data are available, and find it
beneficial to seed the initial test priority with the percentage of code covered [13].
Continuing this line of work, researchers propose integrating varying test costs
(most commonly modeled as test runtime) and different fault severities into history-
based prioritization of test cases. Balancing these two factors shows better fault
detection efficiency per cost than functional coverage test case prioritization in a
controlled experiment [39].

21



2. Background and Related Work

A study of history-based approaches in continuous integration environments
finds that algorithms do not need large amounts of historic data to be effective [22].
While prioritization performance increases with larger history intervals, knowledge
about the test verdicts of the immediate previous revision suffices to increase
fault detection efficiency over random test ordering. To lower the integration cost
of software patches, researchers devise a hybrid approach that consists of two
stages: In the ‘pre-submit” phase, a cost-effective subset of test cases is selected
for execution; in the subsequent ‘post-submit’ stage, test cases run in a prioritized
order to get the complete picture [g]. In both instances, the algorithm uses test-case-
specific historic data — the time since the last failure, and the time since execution
— to prioritize or select tests. The authors conclude that the hybrid approach is
efficient at lowering the integration cost and propose to automatically extract the
respective threshold values from the historic data in a future iteration of their
approach.

Transfer Approaches and Machine Learning

Novel techniques have been proposed that adapt algorithms and models from other
fields of computer science to the RTP problem. Advances in information retrieval
power REPIR, a system which treats all test cases as a document repository and
equates changes in program text' with a document query. As a result, test cases
with semantic overlap with respect to the change gain higher priority than those
with little or no shared vocabulary [48]. A similar approach leverages vocabulary
previously associated with test failures [31]. Researchers built a recommender
system that combines telemetry of risky software components and exposure (usage
patterns) to prioritize test cases in the particular context of web applications [1].
Using reinforcement learning, the RETECS software agent rewards individual test
cases or entire test schedules according to historic test performance and thus is
able to propose new schedules with increased fault detection performance [49].
Interestingly, while open-source software projects seldom employ RTP tech-
niques, major software vendors appear to increasingly invest in test prioritiza-
tion (selection) to appease software quality constraints with increasing code-churn,
and to streamline developer workflows. Facebook engineers give insight into the
process of building their test failure predictor using boosted decision trees. The
classifier contains features such as file change history and cardinality, authorship
information, and distance measures with respect to modularity [29]. Researchers
at Google outline the design hypotheses for their Test Automation Platform (TAP),
regarding its use of dependency information, file type, and file modification fre-
quency [35]. Test engineers at Salesforce use features concerning code coverage, text
path and content similarity, failure history, as well as test age, to classify tests [5].
Other works apply ML techniques to industry-grade datasets, for example of a
large telecommunication company [12] or of the app development at Spotify [38].

'In this case, “program text” refers to the natural language components of the source code. REPIR
has been shown to be reasonably effective even when discarding program structure.
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2.2. Regression Test Selection

RTS techniques select subsets of test cases for execution. The main difference to
prioritization techniques are safety properties, that is, the technique guarantees that
the subset of selected test cases contains all fault-traversing test cases. To make
this type of provable statement, RTs strategies rely on analysis of program struc-
ture (compile-time static analysis) or program instrumentation (through on-the-fly
recorded coverage at runtime) to “firewall” the program change [10]. Approaches
specific to procedural and object-oriented programming languages exist. While
some approaches are agnostic to the programming language, many are tailored to
specific host environments [23, 42, 43]. For example, researchers propose EKSTAZI,
a dependency miner which collects file dependencies of test cases at runtime by
instrumenting I/O primitives. This approach allows performing change detection
not only on (binary) code artifacts but also incorporates files of any other type,
such as configuration files. EksTAZ1 shows that working on file granularity, which
is typically much coarser than class or method level, also results in efficient test
selection [19].

2.3. Continuous Testing

Continuous integration practices describe efforts to make integration of software
changes a frequent and frictionless activity. However, despite the fact that develop-
ers interact with c1 systems heavily, and expect build failures on a regular basis,
CI processes typically run decoupled from the development environment. As a
consequence, programmers have to pause development to create new changesets,
trigger remote CI processes, and wait for their completion. This results in wasted
engineering time and prolongs the time from introducing faults to test execution.
Continuous testing remedies this fact by continuously executing tests during devel-
opment time using spare CPU cycles on the programmers’ machine, and therefore
by providing faster feedback than through remote processes [46]. Early studies
show that continuous testing practices used when solving a programming assign-
ment promote program correctness as well as task completion on time [45]. When
working with test suites, which may grow in size and duration, test prioritization
is inherently required to continuously test. Only if tests of high failure probability
run first, developers can still perceive the feedback as immediate. To this end, re-
searchers propose test prioritization within continuous testing using code coverage
data [50] or code locations programmers are currently reading and editing in their
development environment [34].
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2.4. Summary

We continue to outline insights from the related field of regression test prioritiza-
tion, regression test selection, and continuous testing.

First, program instrumentation, although effective at test prioritization, appears
to be too heavy-weight for large-scale deployments, whose project size and code
churn place constraints on the computational complexity of the prioritization al-
gorithm. Using sampling for collecting coverage data may address performance
concerns to a certain degree but also impedes the safety and accuracy of the result-
ing test plan. But even in the face of accurate coverage data, we argue that those
techniques are prone to overestimate the test set. For instance, coverage-based algo-
rithms would elect integration tests on a regular basis which reach a comparably
large share of the system. This happens even though the test may not be effective in
fault detection because the ability to do so spreads over a large amount of covered
code.

Second, history-based prioritization heuristics address both problems. They fac-
tor in the fault detection ability of tests based on prior testing sessions, and not
only because the test can reach the modified code. Also, history-based heuristics
are lightweight and computationally inexpensive in comparison to coverage-based
approaches. Additionally, they perform on par with more complicated ML models
with respect to fault detection efficiency.

Third, we recognize the emerging need for test prioritization within continuous
testing environments and think that the generally lightweight, computationally
inexpensive nature of history-based heuristics caters to this need well.

Fourth, ExsTAzI shows that file granularity is sufficient for purposes of regres-
sion test prioritization. This represents a significant difference to prior works, which
focus on syntactic elements and program structure. Using file granularity, the pri-
oritization algorithm can remain independent of the host programming language
and encompass other non-code artifacts, such as configuration files.

With this background, investigating history-based prioritization algorithms ap-
pears worthwhile. One concern remains to be addressed: Existing history-based
approaches do not factor in the current code change, which makes their predic-
tion static. We plan to address this issue and explain other desirable traits of an
advanced history-based prioritization technique in Chapter 3.
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In this chapter, we find previously unmet needs of regression testers, which are
beyond the scope of effective prioritization, and introduce a novel approach to
meet these. Section 3.1 explores test prioritization requirements and identifies
shortcomings of existing approaches. In Section 3.2, we explore a novel approach
for modeling the software change along failure histories, and Section 3.3 presents
the set of novel prioritization techniques.

3.1. Research Gap

Because of the overhead due to the additional instructions, we observe that RTP
based on program instrumentation is too heavyweight to deploy for use with large-
scale code bases and is therefore rarely adopted in practice (Section 2). If it is
necessary to exercise all tests within an instrumented test run to gather the data
required to make an informed decision for the next iteration, the tests could have
already been run without instrumentation at a lower cost. Instead, major indus-
try players adopt lightweight, data-driven techniques based on machine learning,
which are mainly independent of the host language, and incorporate information
about modularity® and software version history [12, 29, 35]. On the other hand,
simple prioritization heuristics perform on par with ML techniques and are much
less data-intensive [38, 49]. The main drawback of existing history-based heuristics
is their static prediction. Because those heuristics base their prioritization on an im-
mutable history of test execution and test failure events, the ordering of test cases
in the next test session is fixed. That way, the software change of the current revi-
sion (or the delta to previously graded revisions) is not relevant for test ordering
(change independence).

We envision a novel RTP technique located between a simple heuristic and an
ML model in Figure 3.1 and which possesses the following traits:

Efficient. Minimizing the feedback time of a test suite helps programmer produc-
tivity. Therefore, a prioritization technique is efficient if the reordered test schedule
approximates the optimal test plan in which all tests with failures execute first.
Utilizing a technique efficient at the task of fault detection, developers can act upon
test failures earlier than without prioritization.

'In this context, modularity refers to build modularity. Independent of the implementation language,
a build tool may determine metrics from a dependency graph of software artifacts.
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explore prediction

| T1 T2<— ¢
Software Files/ —> F1 Test Classes/  Test

Change Classes e - Methods  Eailures

trace past test failures

Figure 3.1.: High-level overview of the approach: Contrary to existing algorithms,
our model is capable of tracing back test failures to the offending change list

Lightweight. Relying on few inputs is key to a broad adoption of a prioritization
technique. Some prior techniques rely on a large volume of input signals, such
as detailed authorship information, accurate dependency information, and full
change history, which systems may not expose at the required level of detail. A
lightweight prioritization technique relies on few, easily accessible key metrics and
is portable to a wide range of build systems and programming environments.

Explorable. The data model of the technique allows for exploration, that is, de-
velopers can query the model with different inputs and estimate the impact of a
software change. For a history-based heuristic, this requires adding another signal
to the prediction in addition to the immutable track record of failure histories
which describes the software modification. This way, the prioritization technique
can be useful beyond the scope of efficient prioritization.

Traceable. An traceable prediction model allows developers to reason about pre-
diction results and to turn (collections of) prediction results into actionable items
with respect to software quality (helps developers in performing software main-
tenance). To our perception, machine-learning models do not cater to this need
well. “After the fact” knowledge populates a large fraction of the feature space of
existing ML models. While this type of knowledge facilitates a good test failure
prediction using correlation, these features give little to no insight into the cause of
the test failure. An exemplary feature vector of an RTP classifier [29] may read the
following: This test case is more prone to breakage, because. ..

* the file is of type x.
¢ the test case is part of an actively developed (unstable) module.

e its distinct author count exceeds a certain threshold.

While the information above may reflect a useful model of reality, developers
cannot infer corrective action, for example, if test cases unexpectedly become part
of the set of prioritized tests. Those models give explanations only in terms of the
metadata of the software modification and do not incorporate which (parts of) the
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software change are relevant to the test ordering. A traceable model remedies this
fact and pinpoints what made the projected test failure likely, for instance, changes
to a certain class or piece of configuration.

3.2. File-to-Failure Matrix

In response to the challenges above, we propose to build a novel model connecting
software changes to test failures, which uses a direct description of the change
rather than a collection of derived metadata. To this end, Section 3.2.1 introduces
the file-to-failure-matrix, the core data structure of the set of novel prioritization
approaches, which connects test cases to file-level changes. Section 3.2.2 explains
how to create a failure matrix from the results of a single regression test session
and Section 3.2.3 details how to combine several observations into a single matrix.

3.2.1. Connecting File Changes to Test Case Failures

To overcome the limitations of simple heuristics and ML approaches, we propose a
novel model whose primary objective consists of connecting two entities, namely
files (identified by a hierarchical file path) and failure histories (modeled as a linear
sequence of failure events of a particular test case). Using these two entities, we
obtain the file-to-failure matrix by arranging test case failure counts in a table that
assigns each distinct test case name a row and each distinct file path a column.

We consider files as first-class citizens of our model because of the following
reasons: First, files are ubiquitous in modern computing and are conceptually
independent of their content which may consist of source code, configuration files,
or build artifacts. Second, sets of files form units of change. Modern version control
systems almost exclusively express their commit structure (an atomic change to
the software repository) in terms of sets of files that the developer changes. Third,
files form modules because their organization in a hierarchical file system resembles
structural information about software projects. For example, directories in Python
projects translate into packages and files into modules [40]. In Java, files export at
most one top-level type and the directory layout doubles as package hierarchy [20].
In summary, sets of files can be regarded as a high-level, lightweight description of
changes to modules in software repositories.

Failing test cases form the other integral component of the model because they
indicate the presence of a program fault or a misaligned test oracle. In either case,
the attention of a developer is required who can debug and devise a suitable patch
to green the test again. Because many development workflows require passing
the entire test suite, for example as part of a series of pre-merge checks or before
entering a review phase with another developer, correcting faults is crucial for
making progress toward mainline development.

Figure 3.2 shows an exemplary matrix connecting test cases (left axis) and
files (lower axis) via accumulated failure counts over 40 revisions. For instance,
given that file HPackDraft05.java has been changed, HttpResponseCacheTest
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3. Matrix-based RTP

and SpdyConnectionTest are likely test failures, according to the prior observa-
tions. If the pattern that connects file changes to failure events was indeed stable
across several revisions, a prioritization algorithm could receive a new batch of
changed files as input and extrapolate future test failures.

failureCount

ConnectionPoolTest 1

HttpOverHttp20Draft09Test -| 2
HttpResponseCacheTest -| 3
SpdyConnectionTest -| 4
URLConnectionTest -{ 5
© o© © o © © © © © © © © © © © © © © © = 6

> > > > > > > > > > > > > > > > > > > €

R R Q- R R A R A R - R A R R - %
= £ 7

> g

ByteString.java
ByteStringTest.java
CHANGELOG.md
Dispatcher.
ExternalHttp2Example.
Failure.
HpackDraft05.
HpackDraft05Test.
Http20Draft09.
HttpEngine.
HttpOverSpdyTest.
HttpResponseCacheTest.,
HttpTransport
MockResponse.
MockWebServer.
OkHttpClient.
OkResponseCache.
Request.
Response.
SpdyTransport.
URLConnectionTest.
mockwebserver/pom.xml
okhttp-apache/pom.xml

Figure 3.2.: Excerpt of one of the file-to-failure matrices from the okhttp project.
For brevity, class names refer to test cases instead of a fully-qualified name and file
names stand for the otherwise lengthy relative path.

3.2.2. Creating Failure Matrices

First, we describe the fundamental notation for failure matrices. Then, we proceed
to define how to derive a failure matrix, given the file changes for a single revision
and the test failures of a single regression test session.

Definition 1 Preliminaries. T = {To, Ty, ..., T,,} denotes the ordered set of test cases of
a single testing session at the class level. Further, the function red(t) — Ny, t € T returns
the number of “red” test methods of t, that is, the count of test methods which either result
in a runtime error or assertion failure.

At the file level, F = {Fo, Fi, ..., Fy} denotes the ordered set of files in the current
software revision. F' denotes a set of path names of files whose content is about to change.
They represent the query, which results in the prediction of future test failures.

Distributions are expressed using the following convenience notations: M(F,,) projects
a matrix row, that is, a vector containing all the per-test failure counts of F,,. Conversely,
M(T,) gives us the failure distribution of a test case (matrix column), a vector whose
entries consist of per-file failure counts.

We define matrix entries for a single revision in terms of a relation. Using the
schematic of Figure 3.3, this process is equal to populating the matrix columns
with the respective failure counts in the matrix rows which resemble the current
changeset.
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TO Tl Tn
F 2 1
FF 3 2

Fin
Figure 3.3.: Matrix schema. Files occupy a matrix row and the test case failure
distributions are equivalent to columns.

Definition 2 Matrix Relation. Using T, the current test suite and F', the current change-
set, the matrix for a single revision populates as follows:

red(T,) ifFy € F/

0 otherwise ' FneF TheT (3.1)

M(En, To) = {

The definition above also allows to express M as a set of triples (Fy, Ty, kin ), where
k is the number of failed test methods of test class T, given that file F,, has changed.
Further, F(M) denotes the distinct set of file identifiers contained in matrix M, and
T(M) returns all distinct test names, respectively.

3.2.3. Combining Historic Observations

All matrix approaches are history-based and exploit collections of past failure
events from different regression test sessions. Therefore, we describe a way to
create a single matrix for an ordered set of revisions that devalues observations of
older revisions. This proposal is an extension of prior work to matrices [27].

Definition 3 Combining Failure Matrices. Given two consecutive regression testing ses-
sions which result in failure matrices M and N and factor « € [0,1] C R, the combined
matrix M o N computes as follows:

(f,t,aN(f,t) + (1 —a)M(f,1)); if f € F(N)NF(M)

(f k) otherwise ;(fit,k) € MUN

MoN = {
(3-2)

In case M and N are of equal dimensions, Equation 3.2 resembles a normal
matrix sum in which the factor a determines the weights of the summands. A high
« value emphasizes recent observations, while low values of x emphasize older
observations. But because files and test cases might be added and removed, the
equation also needs to account for summands of different dimensions. In that case,
we form the union of file and test case pairs and devalue only observations whose
files are present in both summands. As a result, a failure event for a file ages all
prior observations connected to it.
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Finally, we proceed to find the failure matrix M*, which combines all past failure
events with respect to a software revision into a single failure matrix. Subsequently,
this matrix is the basis for all matrix-based prioritization efforts.

Definition 4 Combining Multiple Matrices. Given a list of matrices My, My, . .., M; for
software revisions 1 through i, we define the reduced matrix M7, which combines all failure
events of the individual revisions up to i, to be the result of a left-associative reduction
operation:

M; = (((MpoMj)oMp)o---oMq) (3-3)
In summary, we generalize a history-based approach for failure events for test
cases to work in an additional dimension and show how to cope with different

underlying sets of files and test cases, respectively.

3.2.4. Exemplary Matrix Combination

To T h T o, T T
F 30 21 o Fp 6 24 _ F 06 52 19.2
F 1 4 R 5 6 F, 02 48 48

F, 10 8 F 0 10 8

Figure 3.4.: Combining two failure matrices using « = 0.8

Figure 3.4 shows how to combine two exemplary matrices and aids in discerning
three different cases of Equation 3.2.

First, we observe that failure counts for F, appear in the final matrix without
modification because prior observations for F, do not exist. Similarly, if more files
did exist in the left summand, their records would appear unchanged in the final
matrix. This way, the final matrix accumulates a memory of past failure events.

Second, the algorithm devalues failure events of Ty because of the arrival of new
failure events for both files, Fy and F;. The failure events of the right-hand-side
matrix are more recent and should therefore dominate over prior entries.

Third, the failure counts of T;, the only test case common to both summands,
consists of a weighted sum of the respective entries of both input matrices. The
failure counts of test case T, experience the same devaluation, given that the prior
failure counts are zero.

For a detailed understanding of the definition, creation, and combination of fail-
ure matrices, the implementation provides further guidance (see listings A.2, A.3,
and A.4).
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3.3. Prioritization Algorithms

The following section explains how our proposed algorithms leverage the file-
to-failure-matrix M* for test prioritization. In principle, we offer two possible
interpretations: Viewing the failure matrix as an information source for computing
conditional probabilities that test cases will fail and an alternative view in which
the algorithm weighs individual failure distributions of files to make an informed
decision. Table 3.1 gives an overview of all proposed approaches.

The problem statement for matrix-based test prioritization is as follows: Given
a new set of test cases T in untreated order and a set of changed files F’/, find
vector F* of length |T|, which assigns the new priorities F to test cases T;. The
final output of the prioritization algorithm consists of the list of test cases sorted by
their priority in descending order, such that test cases of higher priority do execute
first.

Table 3.1.: Weighting Function Overview

Shorthand Implementation Idea

conditional-prob A Decision tree; select roots in F’

path-similarity - Favor similar path names according to
LCS

recently-changed A6 Favor test cases of recently changed files

file-similarity Ay Favor similar file failure distributions

tc-similarity - Favor similar test case failure distribu-
tions

3.3.1. Conditional Probability

Each matrix entry is equivalent to a failed test method count in case of M or a
weighted sum of failed test method counts in case of M*, given that file F,, has
changed. This allows to transpose the matrix into a decision tree of depth two in
which the first level encodes which file has been changed and the second level
indicates which tests failed (Figure 3.5).

Therefore, we determine the selection priority of a test case by summing the
probabilities that this test case fails in conjunction with any of the files of the
current changeset:

. J LP(Tinf)=Y¢P(f)*P(T; | f); iffeF
i _{ Of ’ otherwise (3-4)

In which P(f) is the relative amount of failures that f attracted and P(T; | f) is
the relative amount of failures which T; attracted given that f has been changed.
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T T
FF 2 1
E 3 2

Figure 3.5.: Exemplary conversion of a failure matrix to a decision tree

Because all test cases which have never failed in conjunction with any of the files of
the current changeset possess priority zero, execution of those test cases will keep
the chronology of the untreated test order.

3.3.2. Weighted Sum

We introduce a set of approaches that use a weighted sum of failure distributions
to prioritize test cases. We propose to find F* by using a weighted sum of the
individual file failure distributions F,, according to different weighting criteria. In
the following, we first discuss details of the weighted sum of failure distributions
and then proceed to explain the individual weighting functions.

Definition 5 Weighted Sum Prioritization. Assign test priorities by finding vector F*,
which summarizes failure distributions of all F,, using a weighted sum, determined by
weighting function w : F(M*) x T(M*) — RJ. We use the shorthand w,,, to refer to the
weight of the combination of change F,, and test failure T,,.

|F|
F* =Y [wmo * M(Fu, To), Wy % M(F, T1), - . ., Wy % M(F, T (3.5)
m=0
For brevity, we elided further input parameters to w, which remain fixed per
invocation of the prioritization algorithm. In addition to a combination of a file and
a test case, the weighting function has also access to the current reduced matrix
M* as well as the set of changed files F’, and possibly other state inferred from
earlier invocations of the prioritization algorithm.
In the following, we introduce four weighting functions and describe the ratio-
nale behind them. Table 3.1 gives an overview of shorthands and the main ideas of
each algorithm.

3.3.2.1. Path Similarity

The path-similarity weighting functions assign higher weights to files that possess
an absolute path name similar to any of the changed file paths. As Section 3.2.1
outlines, programming languages encourage using directory layouts to express
modularity concepts. In consequence, we expect to see cohesion between the path
names of files that group related software concepts. A file with a similar path name
may treat the same concept or feature, and the related test cases are more likely
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to reveal faults in this particular module. Conversely, the algorithm assigns lower
priorities to files with dissimilar path names, because their associated tests treat a
different problem domain and are therefore less likely to reveal faults.

Wyn = max{ LCS(f,Fu) | f € F'} (3.6)

Equation 3.6 uses the Longest Common Subsequence (Lcs) between a file and
any of the changed files to determine the weight of a matrix row.

3.3.2.2. Change Recency

The recently-changed weighting function factors in how recently the files were part
of a change list. The algorithm assigns higher priorities to files that participated
in the current or recent changesets. Given that the change to a module might be
spread over several changesets and builds, we expect test cases connected to files
changed in a nearby revision to stay relevant for the next testing session. For this to
work, the prioritization strategy using recently-changed tracks an additional history
per file.

feE(M),ieN:

1 iff € F atrevisioni
Gi(f) = { 0 otherwise

(3-7)
axCi(f)+ (1 —a)*recency(f,i—1); ifi>0

recency(f,i) = { 0 otherwise

Wyn = recency(F,,, currentRevision)

Equation 3.7 shows the definition of recency. It uses the same devaluation algo-
rithm that is also applicable to failure events in one of the simpler heuristics [27]
and adopts it to change events to files. C(f) denotes a vector that contains the
per-file history. In turn, recency uses smoothing constant « € [0,1] C R to devalue
older observations and emphasize to recent changes of the file. Finally, seeding the
recency computation with the current revision number yields the weight of a file
in the current test session.

3.3.2.3. File Failure Distribution Similarity

The weighting function file-similarity uses the cosine similarity of the failure distri-
bution of files. This way, file-similarity assigns higher weights to related files which
frequently trigger the same test cases, and lower weights to failure distributions
that do not cover related functionality.

Equation 3.8 shows how to compute the cosine of 6, the angle between two
failure distributions A and B, using the Euclidean dot product formula. A; and B;
denote the respective vector component at position i. Because there are no negative
failure counts, both vectors remain in the positive space and the respective cosine is
bounded in [0, 1]. As a result, pairs of identical vectors will possess a similarity score
of one and orthogonal vectors will obtain zero, the score of maximum dissimilarity.
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Equation 3.9 shows the actual file weights, which consist of the maximum sim-
ilarity of a file’s failure distribution to the failure distributions of any of the files
contained in the current change list.

similarity(A, B) = cos(6) = (3-8)

Wy = max {similarity(M*(Fy), M*(f)) | f € F'} (3-9)

3.3.2.4. Test Case Failure Distribution Similarity

The weighting function tc-similarity looks for links between test cases using an
indirection. The algorithm first collects the set of test cases that have been failing
given any of the files from the current changeset. Then tc-similarity assigns higher
weights to test cases, which possess a similar failure distribution and lower weights
to farther distant test cases, using the previously introduced cosine similarity.
Analogously to the file failure distribution, we expect similar test cases to be
related, and to test the same or adjacent software functionality as contained in the
current changeset.

relevantTC(f) = {t | (f,t,k) € M*; k> 0,f € F'}

(3.10)
Wn = max{similarity(M*(T,), M(t)) | t € relevantTC}

3.3.3. Examples

To show how different sets of changed files impact the prediction and how to
put Equation 3.5 to work, we examine two end-to-end examples for matrix-based
prioritization: First for the probabilistic interpretation and subsequently for the
file-similarity weighting function.

T, T Ty
. F 2 8 0
M="F 10 14 6

FE 2 4 1

Figure 3.6.: Running Example

Figure 3.6 shows the file-to-failure-matrix M*, which serves as running example,
and Figure 3.7a shows the result of transposing the matrix into a decision tree of
depth two. Assuming both files have changed (F' = {F;, F,}), the probability of T
computes as follows:
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10 2 20 10
FF=PENT)+PENT) ==*—+—*—=0.
P=PENT)+PENT) =55+ 15+ 35 * 59 ~ 04
The probabilities for T, and T3 compute accordingly. Figure 3.7b shows that

indeed different definitions of F’ result in differing test orderings.

FFlT, T, Tz
2 8 10 4 6 {h} % 1% 0| = [LNhT
B} n 5% o 2 [NMiBT
{(FLB} | 5% % = | = [TaT
(a) Decision Tree. (b) Prediction Results for different F’.

Figure 3.7.: Conditional probability example

In the following, we exemplify the weighting-based approach on the example of
the file-similarity weighting function. Assuming F' = {F; }, we begin by computing
the cosine similarities to the remaining files F, and F3, respectively:

251 4
sim(Fy, By) = ——+10+8x4+0%6 45
V22 4 82 % /10% + 42 + 62
242+ 8%4
sim(Fy Fy) = ——x2 7 8*4 0%l 545

V2222142112

This gives us the weight vector w,, = [1 0.51 0.95], which assigns a weight to
every F,. Using these weights, we proceed to find the column sums, which indicate
the final priorities of the T:

[2+0.51 %10 + 0.95 % 2
F*= 840514 +095%4 =[9 13.84 5.01]
9+051%6 +0.95%1]

Since the output consists of the test cases sorted by priority in descending order,
this leaves us with a final result of [T, Ty T3].
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Our newly derived dataset contains prolonged build histories of small to medium
size open-source projects.” In contrast to prior studies, which operate on relatively
small test execution histories of less than one hundred revisions [19, 48], the dataset
allows studying history-based approaches given sufficiently long build histories.
Concerning project size, the elaboration that is based on this dataset is located
between prior works that target academic test programs, which seldom exceed 500
lines of code [27, 44], and studies of large-scale enterprise code bases [29, 38].

The dataset enables us to study a diverse set of projects of small to medium
size and gives insight into testing efforts resulting from an open contribution
model. Because software builds are not reproducible in general? we reconstruct
test execution histories from build log files of a popular continuous integration
service [53]. Because logfiles may not contain all test events, fully reconstructible
test executions are not commonplace. Therefore, the following section describes
how we obtained the dataset, elaborates on the project selection, and discusses the
difficulties of extracting test execution histories from publicly available data.

Test Job Change
n 1 n
travisjobld travisjobld sha <-—-|
name gh_project_name n filename ! @
index git_all_built_commits T
duration A
failures @ :
errors |
skipped !
|
]

Figure 4.1.: Dataset Overview. Data source and derived entities connect via arrows;
solid lines show a foreign-key relationship.

Section 4.1 details the TRAVIS cI service and its peculiarities. The TrRAVIS-
TORRENT project provides us with a database of past c1 jobs that have run on
the TRAVIS cI infrastructure. Figure 4.1 shows this database with the central Job

'The dataset has been published as RTPTorrent [32].

2This also applies to projects adhering to continuous integration principles, which prescribe building
the software project from scratch in a fixed environment. Non-deterministic test cases, such as
induced by using a RNG without seed, querying online third-party services, or referring to
dependencies with fuzzy coordinates, hinder reproducibility.
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relation (@), which contains important metadata, such as the project name, and
a pointer to relevant commits. Further, we access the collection of raw logfiles of
TrRAVISTORRENT ((2), redo the build log analysis, and recover the additional at-
tributes of the Test relation, which Section 4.3 explains in detail. Lastly, our dataset
consists of Changes, which we recover from GHTORRENT, a database of commits
from GITHUB ((3). Section 4.4 details the recovered changes on a per-project ba-
sis. The dataset consists of one csv file per project per entity of Figure 4.1 and
totals 1.7 GB in size.

4.1. Continuous Integration at Travis CI

TRAVIS CI is a popular hosted continuous integration service, allowing developers
to re-execute procedures for build, test, and deployment upon every check-in to the
software repository. Central to this service is a dedicated configuration file, which
lays out the build commands to be run, as well as their environment. Furthermore,
developers can view the software build process live on the web and there is a
tight integration to third-party services, such as GiTHuUB. This integration allows
triggering builds as soon as new commits arrive and informs contributors of the
current build status at project or merge request level. Because open-source projects
can utilize TRAVIS c1 for their builds free of charge, the service is popular in the
open-source community. Also, larger organizations, such as the Apache Software
Foundation, are adopting TRAVIS cI at an increasing scale [14]. This is true even
though TrRAVIS cI imposes several limitations on its non-paid services: At most
five concurrent builds are allowed per project, a job may not take more than 50
minutes to complete, and might be terminated if the build does not create any
output every ten minutes [52].

In the following, we refine the terms build and job, discuss the structure of build
histories, and detail how this affects prioritization. Figure 4.2 shows the structure of
a project build history consisting of two builds. Each build consists of one or more
jobs. Jobs resemble variations in the build process, which might require the software
version to successfully compile and pass the test suite, given different operating
systems, processor architectures, or language runtime versions. In particular, jobs
execute in isolation and possibly in parallel. As a result, there is no particular order
between jobs of the same build. A build is completed after all subordinate jobs are
completed and it is successful if all associated jobs terminated normally.

4.2. Build Linearization and Learning

We adapt existing as well as newly conceived prioritization heuristics to this setting
as follows. We split the algorithms in two stages: The first stage incorporates
knowledge about the outcomes of past regression test sessions (learning) and the
second stage prioritizes test cases. Figure 4.2 shows that, while prioritization takes
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place for every job, learning occurs after every build. This setup implements two
important design rationales.

First, jobs cannot see test outcomes from another job of the same build. This way,
the predictions for jobs within the same build are independent of each other and
the results of a particular job only influence prediction after completely grading
the software revision. Learning once per build also abstracts from the scheduling
policy of jobs. The prioritization results are the same, regardless of whether jobs
execute sequentially, or in parallel.

Second, builds cannot see test results of partially completed builds even though
a subset of jobs of the latter builds may have completed. To this end, we keep a
list of pending builds whose outcome is yet to be determined, when prioritizing
test cases for the current build. As a direct result, the learning stage consists of
incorporating knowledge about a set of builds, which make the transition from
pending to completed, before the prioritization algorithm grades the next build. By
implementing basic build isolation, we set up a linearized, deterministic history of
prioritization and learning steps.

Job 42 Job 44

Build 123 Build 124 —)Q

Job 43 Job 45
Reprioritization Learning

Figure 4.2.: Jobs and builds within history

4.3. Recovering Test Execution Histories from Public Data

Our dataset is based on projects from TRAVISTORRENT [4], a publicly available
dataset of projects from GiTHUB [18], a popular code hosting service, ranked by
highest accumulated test failure count. Because computing fault detection efficiency
measures, such as APFD, require all executed test cases regardless of their test
verdict as input, we redo the build log analysis to recover all test cases and to
include additional per-test metadata. Table 4.1 explains attributes of concern in
detail. Furthermore, the number of red tests refers to the sum of failures and errors
for a given test class. For the remainder of this report, we do not assign significance
to whether the fault in question manifests as runtime exception or assertion failure.
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Table 4.1.: Recovered test attributes from build log analysis

Test Attribute Description

Name Name of test class, possibly fully qualified
Index Position of the test case in this build
Duration Execution time in seconds
Count Number of test methods of this test class
Failures Number of test methods with assertion failure
Errors Number of abnormally completed test methods (exception)
Skipped Number of skipped test methods (unmatched precondition)

From a programming language perspective, this study is limited to Java projects
despite the fact that the TRAVISTORRENT dataset also contains projects with Ruby
or JavaScript as their primary programming language. This is due to the fact that
only very few test runners output test results to the console regardless of their
verdict. The majority of test runners prefer to reduce verbosity by outputting only
red tests along with their cause, which renders reconstruction of all executed tests
by means of build log analysis infeasible. To the best of our knowledge, only two
build tools possess detailed enough output, including the Apache Maven Surefire
integration [51] and Facebook’s Buck build tool [11], whose primary application
domain is Java projects.

Table 4.2 lists all projects, their primary functionality, and basic project statistics,
such as the number of test classes. We observe that the problem of RTP boils down
to finding that one test class that fails often. Second, all projects employ the “fail-at-
end” strategy during test execution. That means, the build system does not abort
the test run after the first failure and executes the remainder of the test suite, even
though the build outcome has already been determined (verification failure due to
at least one red test). For all projects, we can observe builds with multiple, distinct
test failures of up to 63 simultaneously failing tests on average.
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Table 4.2.: Study subjects with basic statistics: number of test classes (= TC), test methods (= TM), and failed test cases, averaged

Project Description Jobs  RedJobs TC TM Failed TC
achilles Object-relational mapper 803 27 3% 205 1,566 2
buck Build system 1,547 341 22% 652 3,909 1
cloudify Cloud orchestration 5752 496 9% 38 125 1
deeplearning4j Deep learning & linear algebra 2,791 566 20% 12 28 1
dspace Digital asset management system 2,142 82 4% 58 175 35
dynjs ECMAScript runtime for the JVM 1,009 41 4% 74 844 1
graylog2-server  Log management 8859 247 3% 40 239 1
hikaricp High-performance JDBC connection pool 1,611 125 8% 40 171 1
jade4j Implementation for Jade template language 1,122 96 9% 41 247 19
jcabi-github Object Oriented Wrapper of Github API 2,360 337 14% 158 627 2
jetty.project HTTP Server 408 327 80% 111 1,116 1
jooq Write SQL in Java 3897 523 14% 32 195 1
jsprit Vehicle routing problem solver 1,097 51 5% 82 963 1
littleproxy High performance HTTP proxy 671 62 9% 17 68 2
okhttp An HTTP+HTTP/2 client for Android 5781 779 13% 35 813 1
optiq Dynamic data management framework 1,554 70 5% 47 1,355 1
sling REST framework 4,412 812 18% 174 949 1
sonarqube Continuous Inspection 30,142 620 2% 413 2,334 1
titan Distributed Graph Database 1,061 254 24% 38 204 2
wicket-bootstrap Twitter Bootstrap for Wicket 1,167 342 29% 41 146 29

40



4.4. Changesets

4.4. Changesets

We recover changesets, that is, sets of file paths that are changed together in one Git
commit, by looking up the Git commit IDs of TRAVISTORRENT (commits in the
push that triggered the build, or commits since the last build) in the GHTORRENT
dataset [21]. Table 4.3 gives insight into the number of changes and the average size
of changes in open-source software. In the table, we can see that only a handful
of files are changed within one commit on average. A tendency exists towards
comparatively small sets of changes that pinpoint a particular problem or feature,
as opposed to mass-committing large refactorings. The number of unique files
indicates the maximum cardinality of files that prioritization algorithms work on.
Because the metric denotes the number of files that exist over the entire lifetime
of a project, the number may overestimate the projects’ true size in terms of the
number of files and may rather be an indicator to rename activity.

Table 4.3.: Changeset statistics

Project Commits Files per Commit Unique Files
achilles 763 5 2,684
buck 7,160 4 12,074
cloudify 11,078 2 3,724
deeplearning4j 2,607 4 26,470
dspace 3,779 2 4,840
dynjs 531 2 781
graylog2-server 6,146 2 4,123
hikaricp 1,703 1 446
jade4j 374 3 1,621
jcabi-github 753 1 471
jetty.project 205 2 602
jooq 2,006 2 7,147
jsprit 308 1 426
littleproxy 611 2 399
okhttp 2,315 3 1,257
optiq 846 3 1,771
sling 13,763 2 13,200
sonarqube 5,253 4 14,961
titan 679 2 1,813
wicket-bootstrap 1,294 2 1,407
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In the following, we proceed to evaluate the dataset and prioritization techniques
in detail. To this end, Section 5.1 explains the relevant measures for fault detection
efficiency and test schedule similarity. Section 5.2 introduces the state of affairs in re-
gression testing on open-source software projects and examines the fault detection
efficiency of current real-world test schedules. We continue to analyze the perfor-
mance of prioritization approaches from related work in Section 5.3. Section 5.4
reports on the performance of the proposed set of matrix-based approaches. From
these three sets of experiments, we extrapolate further findings in Section 5.5 and
detail the threats to validity in Section 5.6.

5.1. Method

In the following, we describe the study’s environment, detail on compared ap-
proaches, measures, and implementation details. Section 5.1.1 describes prioriti-
zation approaches from related work, to which we will compare the novel set of
matrix-based approaches. Further, Section 5.1.2 introduces Average Percentage of
Faults Detected (APFD), a measure for fault detection efficiency of individual test
schedules and Section 5.1.3 outlines Rank-biased Overlap (RB0O), which we use to
quantify similarities between two test schedules. We give insight into the technical
details of the c1 simulation in Section 5.1.4.

5.1.1. Baseline Approaches

The following section elaborates on all six baseline approaches in detail and we
compare the novel approaches in the following experiments.

5.1.1.1. Untreated

The untreated test schedule consists of tests in order of test discovery, which is
largely a black box defined by implementation details of the test runner. We gener-
ally believe the untreated test order to be arbitrary, but fixed to a reasonable degree.
Newly developed test cases may appear at any index, but the relative order of tests
to each other stays the same across different regression test sessions. Many factors
weigh in on the untreated order: Among others, we identified the order of file
directory traversal, declaration order of tests in the target programming language,
and build dependencies on multi-module projects, to be influential.
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5.1.1.2. Randomized

Because the untreated test order is relatively fixed, we propose to randomize
test order. For example, a randomized test order would bring improvement in
situations when test discovery has a tendency to append newly developed and
therefore unstable test cases at the end of the test schedule. Also, if the position
of a test case with high fault detection ability is fixed towards the end of the test
schedule, a randomized test order would allow earlier test execution on average.
Earlier experiments consistently show an improvement in fault detection efficiency
of a randomized test schedule [44].

5.1.1.3. Least Recently Used (LRU)

Originally developed for test case prioritization in resource constrained environ-
ments [27], we adapt the notion of the least recently used (executed) test case to
non-constrained settings. On every invocation, the LRU algorithm seeds the test
order with newly developed (previously unseen) test cases. Subsequently, the last
test case of the prior testing session is queued and after that, the remaining test
cases are scheduled in order of their last execution. This way, the algorithm cycles
through all tests, similar to the functionality of a ring buffer. We expect to see
improvements in fault detection efficiency in scenarios in which newly added test
cases are the most unstable ones and need several test sessions to stabilize, in which
they still claim top positions in the test schedule.

5.1.1.4. Recently Failed

Without modification, we implement history-based test case prioritization based on
demonstrated fault effectiveness [27]. Because a test case failure may be an indicator to
several faults, which are hiding each other, the test case requires execution in mul-
tiple, subsequent regression test sessions, until the developer eliminated all failure
causes. Similarly, performing development iterations on the same production code,
either for different behavior due to changing requirements or due to bug removal,
may require several test case failures until that code stabilizes. For these reasons,
the recently-failed algorithm assigns high selection probabilities to test cases that
failed in recent regression testing sessions and low probabilities to those which
did not fail, or whose failures are increasingly in the past. Listing A.1 contains the
implementation of the recently-failed algorithm.

5.1.1.5. Optimal Failure

Optimal test schedules only approximate an Average Percentage of Faults Detected
(APFD) value of 1.0, but in practice never reach it. Therefore, we need to compute
the optimal ordering, in which all red test classes execute first, to be able to pre-
cisely determine the gap between prioritization strategies and theoretical optimal
ordering concerning fault detection efficiency. The optimal failure test plan orders
failed test classes by the ratio between failed test methods and all test methods of
this class.
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5.1.1.6. Optimal Failure Duration

This prioritization algorithm reorders tests such that classes with a better trade-off
with respect to the duration of failed test methods to the duration of the entire test
class execute first.

5.1.2. Fault Detection Efficiency Measure

We introduce Average Percentage of Faults Detected (APFD) [8, 44] as a state-of-
the-art measure for fault detection efficiency for regression test prioritization. The
measure grades individual regression testing sessions with respect to how fast
this particular test order detected faults. AP¥D values range from zero to one and
higher APFD values imply that the tests reveal more faults earlier in the process.
Figure 5.1a shows an exemplary plot showing the fault detection progress, given
the percent of the test suite executed and the percent of faults detected. The APFD
value is equal to the Area Under Curve (Auc); if the test plan detected faults earlier,
the curve moved to the top left corner, increasing the area accordingly. Assuming
that all faults have equal severity and that all test cases have equal cost, the APFD
value computes as follows, using ordered sets F = {fo,---, fm}, the present faults,
and T = {Ty,..., Ty}, the test schedule:
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Figure 5.1.: APFD plots of the untreated test order of the okhttp project

If we report on the performance of a prioritization strategy on a collection of re-
gression test sessions, we use the median APFD value. Figure 5.1b gives an overview
of the fault detection efficiency of the untreated test order on all 779 regression test
sessions of the okhttp project. When comparing different prioritization approaches,
we transpose the detailed ArFp distribution into a boxplot.
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5.1.3. Similarity Measure for Test Schedules

In addition to comparing the efficiency of prioritization techniques, we also require
a measure for assessing test schedule similarity. To this end, we introduce Rank-
biased Overlap (RBO), a similarity measure for indefinite ranked lists [55], argue
why the measure fits our use case using relevant properties of RBO, and briefly
outline its calculation.

Despite the fact that prioritization algorithms provide different test schedules, the
APFD score may vary insignificantly, if the test classes contain failed test methods at
a similar rate. In particular, which test class revealed the faults is not relevant to the
APFD metric. For this reason, comparing APFD is a good indicator for prioritization
performance, but not for similarities of compared test schedules. Second, because
APFD employs a uniform cost model, the measure is unsuited to estimate the
impact of cost-cognizant versus non-cost-cognizant prioritization. Therefore, we
view prioritized test schedules as ranked lists, in which test cases of higher failure
probability occupy higher ranks and turn to RBO, a similarity measure for indefinite
rankings, to quantify differences in prioritization.

In particular, the combination of the following properties makes RBO a good
fit for the test prioritization scenario. First, the RBo measure handles ties without
further modification or preprocessing. This is beneficial, given that ties are a fre-
quent occurrence because all prioritization heuristics will attempt to place likely
test failures first. Second, the RBO measure is symmetric, which is particularly
helpful in absence of a gold standard to compare other prioritization approaches
to. In fact, we propose two different optimality criteria for test schedules and re-
quire to mutually compare them. Third, the RBO measure employs configurable
top-weightedness. Driven by the objective to minimize feedback time, we naturally
assign greater weight to the first couple of tests to execute and are less interested in
which test case executes last or second-to-last. Conversely, the similarity measure
should emphasize the agreement of the prefix of two different test schedules more
and emphasize the remainder less, as it is of diminishing relevance to regression
testers.

We outline the basics of RBO. As opposed to correlation-based measures, RBO is
based on the size of the set intersection at depth d:

Definition 6 Given two lists S and T, the agreement-at-depth A, consists of the size of
the intersection of the prefixes of S and T of length d, in relation to the number of distinct

elementsin S and T:
o 2 % ‘S:d N T:d‘

Asa =
0 Sal + T4l
Above formulation of agreement accounts for ties. Using the geometric progression
as weights, we express RBO as a weighted sum of agreements:

(5-2)

Definition 7 Given user persistence parameter p € [0,1] and the ranked lists S and T,
the Rank-biased Overlap constitutes a weighted sum of agreements:

RBO(S,T,p) = (1—p) Y p" '« Ag1a (5-3)
i=1
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The parameter p models the user’s persistence. If p is zero, the top-weightedness
of RBO is at its maximum, and only the topmost element of both lists is compared
and denotes the similarity of the two lists. As the persistence increases, the prefix
becomes longer, and the user’s evaluation becomes arbitrarily deep, resulting in a
lower degree of top-weightedness.

Because RBO is conceptually geared towards the list of infinite length, we need to
bound prefix evaluation up to a given d. Therefore, it is possible to report on RBO
using a min-max-interval, in which the former is a lower bound to the rRBO value,
assuming that all elements past index d are different, and the latter is an upper
bound, assuming that all remaining elements are equal. However, min-max-values
are dependent on the length of the evaluated prefix in a significant manner. There-
fore, we choose to report on RBOgxt, which assumes that the rate of similitude
of the prefix continues indefinitely. The value of the RBO extrapolation stays in
between the min-max-range and represents the best guess using the information
from the bounded prefix. Detailing the calculation of RBOgxt appears outside the
scope of this project; the existing elaboration should be sufficient for evaluation
purposes.

5.1.4. Implementation

For our series of experiments, we need to simulate the c1 workflow and examine
the resulting test schedules. In the following, we describe three components: log
extraction, c1 simulation, and evaluation. The log extraction component takes a set
of TRAVIS cI log files as input and reconstructs a regression test session as a list
of test events (see Section 4.3). To this end, the log extraction uses standard parsing
techniques based on regular expressions, as well as simple heuristics for error tol-
erance in case of inconsistent logs. For example, the Apache Maven log parser first
splits the log files by module and then treats module-specific snippets individually.
This way inconsistencies in one module do not propagate into the parsing result
of subsequently built modules of the same c1 job. The c1 simulation component
has two responsibilities: first, implement an algorithm, which runs through the
builds in their original order and ensures visibility and isolation properties (see
Section 4.1). Second, house the prioritization strategies, which reorder the test cases
given the currently available past test results and changesets. Listing 5.1 shows the
basic prioritization strategy trait and parameter object. In particular, prioritization
strategies need to cope with an incomplete picture of the past: Inside the reorder
method, some prior builds might not have completed yet. Once pending builds
have finished, the job dispatcher calls acceptFailedRun, to update the memory of
the prioritization strategy. For further implementation details of a curated subset of
strategies, we refer the reader to Appendix A. We implemented both components —
log extraction and c1 simulation — in Kotlin [26].



5.2. Regression Testing on Open-source Software Projects

Listing 5.1: Prioritization Strategy Trait and Parameter Object.

class Params(
val job: Job,
val priorJobs: List<Job>,
val changedFiles: List<String>,
val testResults: List<TestResult>

)

interface PrioritizationStrategy {
fun reorder(p: Params): List<TestResult>

fun acceptFailedRun(p: Params) {}
}

For inspection of the resulting test ordering, we resort to a standard data science
stack in Python [41], using Pandas [33] for data analysis and Altair [54] for most
visualization tasks.

5.2. Regression Testing on Open-source Software Projects

Because the dataset is novel and contains relevant real-world software projects, we
examine their current performance without any prioritization efforts by heuristics.
Also, we investigate the relevance of test cost (duration) for prioritization.

RQ 1.1 To what extent do open-source projects require RTP? We determine the
performance of the current test schedule and quantify the gap to the
fault detection efficiency of the hypothetical optimal test ordering.

RQ 1.2 How does fault detection efficiency develop over time? Analyzing the
current test schedules, is there a trend in fault detection efficiency over
the projects” observation span?

RQ 1.3 Do open-source projects require cost-cognizant RTr? Prior work finds
that incorporating test cost into prioritization can help find test sched-
ules that are better suited. Therefore, we estimate the impact and check
if newly developed approaches should account for test cost.

To this end, Figure 5.2 shows the distribution of the APFD values of all projects,
of the currently used untreated and theoretical optimal-failure test schedule (see Sec-
tion 5.1.1). Further, we examine the fault detection performance of the untreated
test schedule over all observations of a project using Figure 5.3. Lastly, we com-
pute optimal-failure-duration, a test schedule with a different optimality criterion
— detected faults per cost — and compare it with the optimal schedule according
to detected faults per test class. For this purpose. we report on RBO, a similarity
measure outlined in Section 5.1.3, in Table 5.2.
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5.2.1. Performance of Untreated Test Schedules

Figure 5.3 shows that the untreated test schedule for most projects is not efficient
at the task of fault detection. The projects” default test runner orders tests, such
that the resulting schedule fails to meet at least 50 % APFD on a regular basis.
For half of the projects, we can identify at least one stretch of jobs with inferior
fault detection efficiency below 10% AP¥D, for example in the graphs of jooq or
deeplearning4j. Other projects, such as cloudify or sling, appear to be adding
faults almost exclusively at the end of their test schedules, thus resulting in very
low AP¥D scores. Figure 5.2, which shows the distribution of APFD values for all
projects, confirms this observation: on average, untreated test schedules attain an
APFD value of 30 %, which is far from the median optimal of 97.5 % APFD. Factoring
in that prediction models cannot constantly predict the optimal test order, finding
enhanced test schedules with up to a threefold increase in fault detection efficiency
appears possible. In conclusion, we find that the gap toward optimal test ordering
is sizable, and prioritizing tests in those projects can lead to significant benefits.

5.2.2. Trends in Fault Detection Efficiency

We cannot extrapolate clear trends with respect to fault detection efficiency in Fig-
ure 5.3. This is contrary to our expectation: Because almost all projects accumulate
more test cases over time, we estimate that, on average, more tests must execute be-
fore a test detects a randomly seeded fault. Instead, we attribute visible temporary
declines in fault detection efficiency, as for projects deeplearning4j, okhttp, or
titan, to developmental trends. These “dents” in APFD then resemble periods of
time, in which developers introduce novel features, whose test cases initially lack
maturity and stability, or modify code, which is covered by test cases that appear
towards the end of the untreated test schedule.

5.2.3. Cost-cognizant Prioritization

Because the overarching objective of test case prioritization is faster feedback,
we investigate if prioritization techniques, which also incorporate test duration,
are justified for use with the dataset at hand. This is of particular importance
because prior work finds that cost-cognizant prioritization techniques can improve
fault detection efficiency [39] or can be helpful in at least some scenarios [30].
Studying test cost will also show, if APFD is an appropriate measure for assessing
the resulting test schedules,or if its cost-cognizant counterpart APFD. is better
suited [8]. To estimate the impact of cost-cognizant RTP, we compare the test
schedule, which is the result of reordering test classes by faults detected per test
methods executed, to another test schedule, which is the result of prioritizing
test classes by faults detected per time spent. Table 5.2 shows the results of the
test schedule comparison using RBO similarity measure with top-weightedness
parameter p set to 0.98. With a median test schedule similarity of 0.94, we conclude
that the durations of the failing test cases per build vary marginally. This is not
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surprising, given that the dataset characteristics in Table 4.2 show that for the
majority of projects, one test class fails per build on average, leaving no room
for variation between the two different schedules. However, if the test schedules
are indeed different, their median similarity is still at 0.93 RBo. We conclude that
the two different optimality criteria, namely detected faults per test class and
detected faults per duration, result in very similar, if not identical, test schedules.
Therefore the original formulation of Ar¥D, which is based on identical test costs
and fault severities, is well applicable in this scenario. Due to the similarities of the
compared test schedules, we cannot find an imminent need for cost-cognizant test
prioritization on this dataset.

Table 5.2.: RBO values for comparing the optimal test schedule accounting for test
cases ran versus time spent. The overall median is 0.94.

Project RBO Project RBO
achilles 0.980 jetty.project 0.922
buck 0.683 jooq 1.0

cloudify 1.0 jsprit 1.0

deeplearning4j 0.970 littleproxy 0.948
dspace 0.647 okhttp 0.944
dynjs 1.0 optiq 0.927
graylog2-server 1.0 sling 0.920
hikaricp 0.980 sonarqube 1.0

jade4] 0.832 titan 0.928
jcabi-github 1.0 wicket-bootstrap o0.772

49



5. Evaluation

100% T

80% 1

60% -

APFD

40% -

20% 1

0%

untreated optimal-failure
30.03% 97.50%

Figure 5.2.: AP¥D distribution for the unchanged and optimal test schedule of all
projects
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5.3. Baseline Performance

Section 5.1.1 detailed on the four baseline approaches. In the following, we investi-
gate their performance on the newly derived dataset of test execution histories of
open-source projects.

RQ 2 How do state-of-the-art baseline approaches and history-based heuristics
perform with respect to fault detection efficiency?

To this end, Figure 5.4 compares the median AP¥D of the baseline approaches
untreated, random, lru, recently-failed (see Section 5.1.1).

The history-based heuristic recently-failed outperforms all other heuristics on each
of the projects at a median APFD of 95 %, which is close to the fault detection effi-
ciency of 98 % AP¥D of the optimal plan. The good performance is in accordance
with prior reports, which show that simple heuristics can perform on par with
state-of-the-art machine-learning algorithms [38, 49] or generally present consid-
erable improvements over the untreated test order [9]. Figure 5.5 provides further
insight into the failure distribution on an example project and aids in explaining
the efficiency of the recently-failed heuristic. The visualization shows that a small
subset of very unstable test cases exists, which subsequently possess a high failure
probability in any of the builds. Also, if a test case fails, it will continue to be red
for a couple of iterations in the majority instances. Both aspects might explain the
efficiency of prioritizing recently failed test cases.

Even though the Iru algorithm assigns higher priorities to novel test cases, which
are subject to active development and may require to stabilize, we find no evidence
that [ru performs better than random prioritization. The projects” opinion towards
novel test cases is split: Out of 20 subjects in total, random prioritization supersedes
Iru on eleven projects. Contrary to related work [9, 13, 27], which emphasize the
incorporation of last executions in their prioritization heuristics, we infer that the
Iru algorithm did not adapt well to the execution histories in the dataset.

While the untreated strategy appears to have the worst fault detection perfor-
mance, this is true only for 60 % of projects. On the remaining 40 % of instances,
either the Iru or random prioritization heuristics yield test plans of inferior fault
detection efficiency. We conclude that disregarding the untreated test order in favor
of the simplest of heuristics can lead to unsatisfactory results and is possibly detri-
mental to the ability to detect faults early. On a subset of projects, the untreated
test order favors faulty test cases during the time frame of the observation.

5.4. Matrix Prioritization Performance
This section examines the performance of matrix-based prioritization approaches

and discusses the applicability of the weighting functions presented in Section 3.3.2.
Finally, we reason about the impact and frequency of re-emerging test failures.
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Figures 5.8 and 5.9 show the prediction performance of re-emerging test failures
and their distribution.

RQ 3.1  How do prioritization efforts employing weighting functions compare
to a probabilistic interpretation of file changes and test outcomes?

RQ 3.2 Which type of weighting function is best applicable when using a
matrix-based prioritization heuristic?

RQ 3.3 Do matrix-based prioritization techniques improve fault detection effi-
ciency in case repeating faults spread over longer periods of time?

To this end, Figure 5.6 shows the distribution of APFD values of all matrix-based
approaches. For better comparison, recently-failed, the best performing history-based
heuristic, is also included.

5.4.1. Comparison of Weighted Sum and Probabilistic Approaches

Previously, we introduced a prioritization approach, which assigns failure probabil-
ities to test cases using a decision tree whose roots consist of the changed files and
whose leaves leaves are test cases. Figure 5.6 shows that the Interquartile Range
(1QR) of the probabilistic approach is almost twice as large as the 1QR of prioritiza-
tion efforts, which utilize the weighted-sum approach. In comparison to weighting
approaches, as well as the best baseline heuristic, the probabilistic interpretation
has the lowest median APFD score of only 54 %.

We conclude that the lower fault detection efficiency is due to the fact that the
probabilistic approach only selects only a couple of roots of the decision tree, which
represent the changed files of each graded revision. As a consequence, only a small
fraction of test cases, which previously failed given any of the changed files, possess
non-zero failure probabilities and executes first. The remainder of the test cases,
which has no prior relation to the current changeset, has failure probability zero
and therefore follow prioritized test cases in the order of the untreated test suite.
This behavior is supported by the fact that, on average, there are twice as many
files as test cases per build. As a result, the cardinality of the set of prioritized
test cases using the probabilistic approach can even be lower than the number of
changed files.

5.4.2. Applicability of Weighting Functions

5.4.2.1. tc-similarity

The matrix-based prioritization, which prioritizes test cases by the similarity of
their failure distribution to the distributions of a set of test cases relevant for the
changeset, has comparable performance to the previously discussed probabilistic
approach (see 5.4.1) and has a bottleneck for a similar reason. Given that the input
to the prioritization algorithm consists of a set of changed files, the algorithm has
to determine the set of relevant test cases first, whose failure distributions form the
basis for assigning priorities for the remaining test cases. To do that, the tc-similarity

53



5. Evaluation

weighting function relies on test cases, which have failed because some of the files
of the current changeset have been modified. Therefore, none of the previous failure
events may connect any of the test cases to any of the files of the current changeset.
In this case, this prioritization heuristic prioritizes no test cases and outputs the
untreated test order. The fact that this heuristic assigns priorities to all test cases, for
which failure events have been recorded, explains the improvement in performance
to 66 % APFD with regard to the probabilistic approach.

5.4.2.2. file-similarity, path-similarity

These two weighting functions determine the weight of the individual matrix rows
by comparing their failure distribution or path name, to corresponding traits of
the files which are part of the current changeset. At 84 % APFD, file-similarity and
path-similarity are the second-best performing matrix-based approaches and possess
identical 1QRrs. We attribute the remarkable similarity in the effectiveness of these
two approaches to the fact, that the path name is a good predictor for the failure
distribution of a file, and vice versa. This appears rational, because both, failure
distribution and path names, are strongly linked to the production code they cover.
Given that the failure distributions of two files are sufficiently similar and the files
are covered by the same test cases, they are therefore likely to implement related
or mutually dependent software concepts. As a result of the tendency of software
developers to co-locate those files in similar positions in the source tree, the files
possess a similar path. Alternatively, if two given files share vocabulary in their
path names, which might consist of module and package names, or indicate the
respective feature of the software, they likely treat the same core concept and thus
“fail together”. The good performance of these two weighting functions is the result
of the ability to cope with (partly) unseen changesets. In the case of file-similarity,
changesets containing only one file with a failure history are already sufficient to
assign priorities to all test cases. For path-similarity, none of the files of the input
changesets are required to be known to the heuristic a priori, because the path
name comparison naturally allows for partial matches.

5.4.2.3. recently-changed

The matrix-based prioritization technique using the recently-changed weighting
functions performs best at a median APFD of 93 %. As a result, this prioritization
method is on-par with the recently-failed heuristic with respect to 1QR, as well as
median fault detection efficiency (95 % APFD). The good performance matches prior
findings, which emphasize the fault affinity of recently churned code [35].

5.4.3. Sensitivity to Failure Distance

Because the matrix-based strategies spread test failure events across files, their
potential to correctly identify repeated test failures increases. If a change contains
the same or similar change list, matrix-based strategies assign higher priorities to
test cases, which have been previously connected to that change list. This stands in
contrast to recently-failed, which only assigns priorities by the proximity of the last
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failure of the test case to the current build. In principle, the efficiency of recently-
failed declines, as the distance between failures of the same test case increases.

Because of these characteristics, we investigate the extent to which different
failure patterns influence test prioritization on this dataset and start by defining the
term failure distance. The failure distance is a property of a build, which denotes the
shortest distance (in the number of builds) of any of the test failures of this build
to a failure of the same test case of a prior build." Therefore, the distance property
allows us to make statements such as ‘a test case of the current build has last failed
N builds ago” and ‘the closest related build (= at least one common test failure) lies
N builds in the past’. As a result of this definition, the size of the underlying set
of builds of the following elaboration decreases by 7%, because the set excludes
builds, which lack a preceding related build. In other words, 7 % of builds possess
a set of failed test cases, none of which has been seen before, which means all of
them constitute first occurrences of a particular test failure.

Figure 5.8 compares the fault detection efficiency of the best-performing matrix-
based prioritization technique to the performance of the best baseline heuristic with
respect to different classes of failure distances. We recognize that the prioritization
efficiency for builds with failure distances of up to 51 builds varies only slightly
around 95 % APFD. This means, that the change lists, also being a potentially noisy
signal, do not impede the performance of the matrix-based technique. Further, the
matrix-based prioritization shows superior performance by a margin of 10 % APFD
over the baseline heuristic in three failure distance categories (51 — 101, 151 — 201,
251 — 301). This shows that spreading the memory of faults not only across time,
but also across files, can help prioritization performance on repeating, distant
failures. Within the failure distance buckets 101 — 151 and 201 — 251, the recently-
failed heuristic shows better performance characteristics. These data points stem
from sonarqube and sling projects and show that in some instances, the low test
failure cardinality per build helps the performance of recently-failed.

In case there are few test cases with recent failures, the algorithm will assign
historic relevance similar to those shown in the sketch in Figure 5.7. Because the
rank constitutes the resulting priorities, they are independent of the differences in
historic relevance. Test cases three and four will occupy a top rank in the prioritized
test schedule, even though the last failure may be located hundreds of builds ago.
In combination with a low cardinality set of preceding test failures, this behavior
makes recently-failed effective in predicting repetitions of distant test failures, even
though the failures did not occur recently.

Also, Figure 5.8 shows that the matrix-based technique is in principle capable
of correctly predicting failures with distances exceeding 450 builds. However, Fig-
ure 5.9 shows that the evidence is theoretical because the vast majority of test
failures permeate within 50 builds. As such, improvements in the prediction per-
formance of test failures of higher fault distance do not contribute significantly to
the overall fault detection efficiency of this dataset.

'In agreement to Section 4.1, prior builds are builds, that did not only start before the current build
but also have completed by the time the current build began.
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5.5. Discussion

In the following, we discuss the findings of the individual experiments that re-
volved around the state of regression testing in open-source projects, the perfor-
mance of existing approaches, and matrix-based prioritization. We also extrapolate
further observations.

Using only failure events, simple heuristics approximate optimal test plans.

We observe that failure events sufficiently approximate the optimal test ordering.
The prioritization heuristics achieve good performance, in the dismissal of age
and duration information, precise authorship information, code coverage data, call
trees, dependency graphs, or change-level textual similarity scores. As a result, the
remaining gap towards the optimal test ordering of 3% APFD leaves only room
for minor improvements. We suspect that advanced models, for example, machine-
learning approaches, are seldom worth the added complexity, considering their
potential contribution to this dataset.

Also, related works suggest combining history-based with diversity-based ap-
proaches [22]. In the latter, the algorithm does not prioritize similar test cases, but
rather tries to find test cases of maximum dissimilarity. This way, the diversity-
based algorithm reaches different parts of a software system quickly, rather than
exercising sets of test cases which target the same fault. While diversity-based
approaches alleviate potential problems of history-based approaches, such as the
cold-start problem, or prediction of unprecedented test failures, the upper bound
to their potential contribution to fault detection efficiency on this dataset is also 3 %
APFD.

Aspects of time and duration are of secondary importance to RTP.

We observe that the existing heuristics, as well as the set of newly developed
approaches, have good performance characteristics and do not employ information
about test duration. Because the over-arching objective of RTP consists of faster
feedback for developers and testers, this fact surprises us. However, this study
revealed that failing test cases took equally long and that a majority of jobs resulted
in one failing test case. For the presented reasons, duration-aware test execution
plans differ only by a small margin from test plans, which do not incorporate timing
information. Therefore, we do not assign relevance to duration-aware prioritization
in this particular context of open-source projects.

Also, we observe that prioritization algorithms of reasonable performance do not
employ information about points in time, for example, how much time has passed
between regression test sessions or the timely distance between failures of the
same test case. This way, all presented algorithms are independent of development
frequency and their fault detection efficiency does not deteriorate in case of stalled
development activity. This is in contrast to machine-learning approaches [5, 29],
which discretize periods of up to two months for determining test failure rates, for
example. To approximate the optimal test plan sufficiently, the algorithms relied
only on ordered sets of test events without timing information.
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Matrix-based techniques can predict distant faults.

The experiments in Section 5.4.3 show how the failure patterns in our dataset
slightly work to the advantage of the recently-failed heuristic. In the following, we
take the opposite route and describe a setting in which matrix-based prioritization
methods provide better fault detection performance. In particular, those methods
benefit from a combination of the following parameters to failure patterns:

1. Intermittent Test Failures. As the failure distance experiment shows, we find
evidence that matrix-based strategies can predict re-emerging test case fail-
ures based on the correlations between changes and the induced test failures.
Because matrix-based strategies do not necessarily allocate top ranks to test
failures of the last test session, the ability to predict faults improves over
recently-failed, when the test cases fail intermittently (as opposed to consecu-
tive streaks of test failures in Figure 5.5). In case of alternating test failures,
the prediction of the recently-failed algorithm is one step behind, whereas
a matrix-based technique can recognize the inducing change and prioritize
accordingly.

2. Increased Failure Distances. Because test failures go out-of-scope of the recently-
failed heuristic, as the distance between failures of the same test case enlarges
and the overall cardinality of the distinct set of failing test cases increases,
matrix-based algorithms can likely provide better prioritization in instances
of distant repeating test failures.

3. Edge Changelists. After a prolonged series of regression test sessions without
test failures, all test cases appear to be of low historic relevance to recently-
failed. In those instances, the prioritization performance of recently-changed is
likely better, because the strategy can update its model without relying solely
on failure events. The recently-changed algorithm can learn about recently
churned code from the change lists of green builds and prioritize tests for
the next test session accordingly, which may contain an edge change list
(discontinue the streak of green builds).

In summary, the prioritization of matrix-based techniques can benefit from pro-
longed failure distances and higher cardinality of the distinct set of failing test
cases, over the simpler recently-failed heuristic.x

Matrix-based models are useful beyond effective prioritization.

While the family of matrix-based approaches achieves better prioritization per-
formance on only 25 % of projects, we argue that there are qualitative arguments.
For instance, we make the case that files indeed connect to failures. To surpass
the best baseline heuristic, it would only require distant test failures to re-emerge.
Because matrix-based approaches can connect the new change to priorly seen fail-
ures, they would still place relevant test cases first. In contrast, the performance of
the recently-failed heuristic would deteriorate, because failures of the re-emergent
pattern are too far in the past and therefore have a very small influence on the
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current prediction. Second, the matrix-based approaches can deliver predictions for
parts of the software system. Due to the added flexibility, the matrix models enable
several use cases. For example, testers may limit testing to a subset of modules
and need a prediction concerning only the selected modules. Also, build tools
may choose to test modules in parallel and can make use of individual predictions
for each of the modules. Due to the inexpensiveness of the approach, developers
may observe changes in test prioritization, as they grow their change list during
the editing process and engage in pre-submit testing. Lastly, we envision that the
matrix-based models are useful beyond regression test prioritization. After this
data structure becomes available, it can be used for several test maintenance ac-
tivities. For instance, a file-to-failure matrix can be used for deflaking purposes.
Because flaky tests would show an abnormal failure distribution, they would be-
come easily identifiable. This is just one example of a “test smell” [36] which can
become detectable using the said data structure. We further explore the solution
space of regression test maintenance using file-to-failure-matrices in Section 7.

5.6. Threats to Validity

In the following, we discuss threats to the validity of this study.
Threats to Internal Validity

The first threat to validity are faults within our implementation. We mitigate this
threat by reusing standard components and by unit-testing the prioritization strate-
gies extensively. To support reproducibility, our implementation is available online.?
Further threats to internal validity consist of trade-offs within the parsing of build
log files. We develop two parsers, for the Apache Maven and Buck build systems,
to reconstruct regression test sessions from build logs. This works on a best-effort
basis; in particular, there are instances of interleaved test log lines, which may break
the association between test name and test outcome. Furthermore, the parsers may
not catch all possible permutations of the textual output of the build systems with
regard to test states, duration formats, or naming conventions. We mitigate this
threat by checking for the plausibility of parsing results, by probing test log files
and by basing our implementation on the existing parsers of TRAVISTORRENT [3].
Also, this study relies on the completeness of build log files, which we cannot
assume for a minority of jobs. In case the build process exits prematurely, for ex-
ample, due to a fatal exception, resource exhaustion, or users aborting the build,
the testing process can only be reconstructed partially.

>The code used in this report has been published and archived [7].
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Threats to External Validity

While we study open-source projects, the selected subset of projects might not be
representative. First, we rely on the TRAviISTORRENT dataset as the basis, which
links Travis projects to GITHUB projects and contains important metadata, such
as built Git commits. From there on, our project selection is subject to technical
limitations. While the dataset basis contains projects, whose main implementation
languages are Ruby, JavaScript, and Java, we found that only two build tools of
the latter type of project produce sufficient textual output. In detail, to reconstruct
regression test sessions in their entirety, we require both, passed and failed test
cases, to be printed. Second, to answer any of the research questions, we rely on
the presence of test failures in build logs. This assumption rules out projects, which
mute the build tool output, do not possess test automation, or conduct extensive
pre-submit testing.

Threats to Construct Validity

Our test model does not account for flaky tests, that is, tests that seemingly fail at
random, in ignorance of the actual change to the software. While prior works assign
value to deflaking tests in training their machine-learning classifier [29], this is not
possible due to the abstraction level of our method. We rely on the analysis of build
logs. This way, we can inspect actual development histories of prolonged duration
independent of build reproducibility concerns, but lose the ability to execute tests
for deflaking purposes.

Further, our test model is based on the following assumptions: First, we think
of test classes to be independent. We do not assign significance to the untreated
test order and do not think of it as deliberate. As a result, we disregard test class
dependencies, as we cannot reconstruct them from build logs due to missing evi-
dence. This includes explicit dependencies, in which developers design tests to run
in a specific order, and implicit dependencies, in which test classes inadvertently
affect each other through side effects.

Second, we disregard concurrent test execution. Neither do we have conclusive
evidence if the untreated test order was the result of concurrent test execution, nor
do we account for concurrent execution of the resulting prioritized test execution
plan. Assuming test linearity prevents us from making further assumptions, such
as the degree of parallelism. We think that research conducted on a linear test
ordering extends well to a concurrent setting; after all, likely test failures still have
to execute first.

Lastly, we disregard module boundaries and assume that, once all modules of
a multi-module project are compiled, we are free to pick any of the test classes
for execution. Assuming that test prioritization may freely reorder tests stands in
contrast to build tools, which may decide to interleave testing and compilation
phases of different modules. Because other build steps, such as compilation, are
not part of our cost model, we can make this simplifying assumption. Also, if
test prioritization saves cost in a single monolithic testing session, distributing the
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savings proportionally across multiple, module-specific test runs will not diminish
the return on investment.

Our fault model treats each test case failure as equivalent to a real-world fault. In
reality, a single fault may manifest in none, one, or many test case failures. Due to
working on build log files, we cannot locate or enumerate real-world faults; and if
we were to work on actual source trees, doing so for the presented number of revi-
sions and projects would be prohibitively expensive. Also, due to the granularity
of the textual output of test runners, this elaboration can only reason about faults
on the level of a test class. Because log files only contain method counters, such as
the number of passed or failed instances, we cannot determine if production code
changes correlate to subsets of methods of a test class.
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Prioritization for Continuous Testing

In the following, Section 6.1 introduces AutoTDD, a tool for continuous test exe-
cution in Squeak/Smalltalk. We continue to detail how we extended the tool for
test prioritization purposes and report preliminary findings of using the enhanced
AutoTDD version in Section 6.2. Because the early results are promising, we deem it
worthwhile to deepen our understanding of test prioritization within development
environments, and lay out potential user study designs in Section 6.3.

6.1. Introduction to AutoTDD

Figure 6.1 shows AutoTDD, which allows continuously executing tests inside
Squeak/Smalltalk. Its user interface follows the metaphor of a traffic light for tests:
a green check mark indicates that the unit tests are currently passing, a yellow
exclamation mark signifies that some tests are failing due to an unmet assertion,
and a red one tells the developer about runtime errors.

e ~ =
= =
“ ¢ Local

Local Local ¢

=]
|| | | Matrix Recently Changed | i
0 - 0 - Untreated
|_ J |_ J Recently Failed

vl Matrix Recently Changed

18 Passes I 18 Passes I Slug
User/Repository
YOUR TRAVIS ACCESS TOKEN

Figure 6.1.: AutoTDD traffic light in collapsed mode (left) and with settings pane
and open menu for strategy selection (right)

In addition to visual feedback, AutoTDD can also play a distinctive sound, in
event that a test session completed and the status of the test suite has changed.
The application triggers new test runs, as soon as the developer has modified the
implementation of a method in the browser and confirms (saves) the change. This
way, the size of the change is quite small and the developer can perceive the effect
on the unit test suite almost immediately. Because developers can connect changes
and test outcomes during this interleaved edit and testing process, they spent less
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time on fault localization and are therefore more productive [46]. The existing
implementation of AutoTDD does not practice test selection or prioritization and
executes all tests of a configured subset of packages in the untreated test order.

6.2. Extensions of AutoTDD

We extend AutoTDD to include an extensible set of prioritization strategies, which
initially consists of the untreated test order, recently-failed, the best-performing
baseline heuristic, and recently-changed, the best performing matrix-based approach.

Because the concept of source files is missing the image-based environment of
Squeak/Smalltalk, they are not available as unit of change to the matrix-based
strategies. As a result, the recently-changed algorithm uses the name of the class
as the identifier for the element the developer modified. Additionally, we include
a way to visualize the current fault detection efficiency trend. Figure 6.2 shows a
live-updating bar chart, which compares the efficiency of the untreated and the
matrix-based strategy, using the median Ar¥D values of an exemplary development
session (multiple test runs).

) Prioritization Performance (v 1+]
Matrix Recently Changed: 94.44%

Untreated: 16.67%
I

Figure 6.2.: Comparison of APFD values of an exemplary test session

We use AutoTDD with test prioritization to fuel further testing efforts of AutoTDD
and the prioritization strategies themselves. Despite the fact that the observed
number of instances is too low to be representative, we believe that this early
type of experiment incentivizes further research and tool development for next-
level regression testing within development environments. The insights from the
continuous integration setting appear to translate well to the new circumstances.
Table 6.1 details test prioritization using AutoTDD and clearly shows that test
prioritization efforts substantially increase fault detection efficiency in comparison
to the untreated test plan.

6.3. Proposed Research Directions

Due to the promising perspective resulting from our work on and with AutoTDD,
we recognize the need for further user studies. Those study proposals address
needs, which arise from the combination of continuous testing techniques with
test prioritization. In the following, we propose questions regarding the agree-
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Table 6.1.: Key statistics for test prioritization using AutoTDD

Description Value
Test Sessions 271
Red Test Sessions 19.92 %
Median untreated APFD 61 %

Medjian recently-changed APFD 97 %

ment between human and automated test discovery, the impact of prioritized and
continuous testing processes on test-driven development, and realized cost savings.

Test Discovery and Execution Policies

To prioritize tests more effectively within a development environment, we propose
to collect rationales for human test discovery, like naming conventions, directory
layouts, and prior experience. Such a study has to validate if existing techniques,
which have been primarily developed with c1 systems in mind, model those mo-
tives exhaustively. Quantitatively, this study can ask developers to assess the ap-
propriateness of test plans, which are the result of prioritization heuristics. Also,
we assign relevance to investigating the perceived immediacy of test results. Be-
cause the changeset considered by AutoTDD is at the method level, the application
spawns new test sessions frequently. In case a new edit has completed, AutoTDD
aborts the pending test run and schedules a new one. This behavior results in
generally higher processor load and stands in contrast to the fact that a mean-
ingful software change oftentimes consists of changing more than one method.
A study should investigate if debouncing test execution can save on resources
without impacting the immediacy of test results as perceived by the developer.*
This represents only one example of an alternative to the ‘run as many tests as
fast as possible’ policy and questions how to determine the appropriate pace of
prioritized, continuous test execution within AutoTDD.

Test-Driven Development

Given that real-world studies concerning the implementation the Test-Driven Devel-
opment (TDD) [17] process exist and that these studies provide us with an inference
model for detecting TDD usage from instrumented development environments [2],
how do both continuous and prioritized test execution impact adoption of TDD?
Also, prior works find that tests and production code do not co-evolve gracefully,

'The only earlier research we know employs tactics such as “execute tests after 5 seconds of idle
time if at least 15 seconds passed or 30 keystrokes occurred since the last run”, which appears
arbitrary [45].
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a problem that a tool like AutoTDD can potentially address using the immediate
feedback mechanism.

We can only hypothesize that relieving the developer from the burden of test
discovery, test selection, and test execution, is likely to make a test-driven or test-
first approach to software development more attractive. Getting an immediate hold
of disagreeing test and production code would also remove a lot of friction in the
development process. The proposed study has to extend the TpD inference model
to account for the asynchronous test execution of AutoTDD and observe developer
behavior in presence of prioritized, continuous test execution.

Hours Saved Metric

The computation of the hours saved metric is trivial (the difference between the time
to detect all faults in the untreated versus prioritized test order) but it is usually
not meaningful on its own. When comparing the time savings of individual test
sessions, the return on investment may appear minuscule and not worthwhile of
the prioritization effort. However, this conception does not account for environ-
mental circumstances. The yield of test prioritization increases considerably when
accounting for multiple developers working on the same software product, the
overhead of context switching when working on different features simultaneously
and the development time needed to locate faults once tests have been skipped to
ship faster.

While a prior work finds that participants of a controlled study are three times
more likely to complete an assignment correctly using continuous testing, the
participants did not complete the task faster [45]. However, the applicability is
limited, because respondents had been working towards a fixed deadline and the
test suite was too small for test prioritization. A new study has to address these
two concerns and has to investigate how much time savings are realistic for single
developers and teams.
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In the following, Section 7.1 lays out extensions to matrix-based test prioritization,
which require further research to quantify their impact and usefulness. Also, we
envision improvements to the software development process and tooling using
history-based regression test prioritization techniques. While previous chapters
covered this aspect tangentially, Section 7.2 extends the scope beyond what was
detailed in the reference implementation chapter (Section 6). Lastly, even if the com-
putational overhead of the proposed test prioritization method appears negligible,
creating the data structure cannot be assumed to be free of expenses. Therefore, we
investigate how file-to-failure-matrices may be useful beyond the scope of regres-
sion test prioritization in Section 7.3 by identifying abnormal test behavior.

7.1. Extensions to Matrix-based Test Prioritization

File Type Oracles The proposed set of matrix-based approaches correlates changes
in files to test failures. The algorithm assumes a uniform set of files and does not
make further distinctions and assumptions. This way, the approach is broadly
applicable and remains portable across different programming languages and
environments. However, it remains to be investigated, if additional gains in priori-
tization performance are possible for a subset of file types. In particular, we think it
might be fruitful to give up some of the abstraction and develop language-specific
oracles, which categorize files into “production code”, “test code”, or “configura-
tion/resource file”. Because of their different nature, files of different categories
may expose different test failure behavior and therefore may require the use of
different weighting functions.

Heterogenous Change Lists Prior elaboration focused on files, which are tangible
artifacts of the software development process and are well understood. We think
that files are worthy units of abstraction, but can be easily replaced with other
concepts. Because image-based programming environments, such as Squeak/S-
malltalk, do not possess files, exchanging them for classes has already been a
precondition to the successful completion of the reference implementation pre-
sented in Chapter 6. Also, we envision heterogeneous change lists, in which not
only the code changes in the source tree of the current project are present, but
also selected parts of the environment. In addition to files, changes to third-party
dependencies, such as programming libraries, could be part of the change list. This
would allow regression testers to formulate requirements such as “rerun all tests,
which previously failed due to changes in the Ar1 of the third-party computer
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graphics library”. Furthermore, we might also extend the reach of change lists
to platform changes, such as patches to the operating system or upgrades to the
compiler or interpreter infrastructure. This could help reveal tests sensitive to these
types of changes and prioritize those tests accordingly.

Model Bootstrapping In principle, history-based techniques suffer from a cold-
start problem. After the deployment of a new prioritization technique, no or little
historic data is present and prioritization performance can be weak. Because the
quality of the prediction is mainly dependent on the distance of the failures of
the same test case, the decline is project dependent. Prior works find that priori-
tization performance increases noticeably, as soon as more observations become
available [22]. Therefore, we assume that bootstrapping matrix-based models is
beneficial in the early stages of adoption and enabled by using means of mutation
testing [6]. In this scenario, a mutation agent syntactically modifies a source file
and observes if a test case signals a failure. This way, the test case “kills” the mutant
and detects a software modification, which might be detrimental to functioning
software. In turn, the modified source file forms a new change list and the observed
test failures constitute new entries in the file-to-failure-matrix. In summary, more
research is required to determine if matrix-based approaches are amenable to boot-
strapping through mutation testing and how this affects prioritization right after
deployment.

7.2. Software Development Process Improvements

While the benefits of regression test prioritization have already been discussed at
length within a continuous integration setting, we propose to extend the benefits
to development environments. Utilizing the set of inexpensive, matrix-based pri-
oritization approaches, it is possible to close the feedback loop on unit tests. In
principle, there are two directions within a development environment: automation
and manual intervention.

Viable test automation knows which files have been changed and automatically
re-executes high-risk test cases after a source file has been saved to disk. This way,
fast unit tests can become a valuable source of feedback to software developers,
which becomes available quickly, similar to how syntax errors are highlighted
during typing program source code. We investigated the potential of this type of
continuous testing [46, 50] within our reference implementation inside AutoTDD
(see Section 6) and are looking forward to future developments.

But also when the test suite is too slow for near-realtime feedback, we argue that
tools within a development environment, which require manual intervention, can
help foster programmers” productivity. Integrating a widget inside the develop-
ment environment, which displays currently relevant test cases with a live update,
would directly address the problem of human test discovery. We hypothesize that
developers rarely practice test case selection beyond simple naming conventions
and are seldom aware of all modification-traversing test cases. Therefore, such
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integration into the development environment would be worthwhile, because it
encourages test execution before going through the hurdles of bundling changes
into commits, publishing it to a central repository, and accessing a c1 server. We
also envision that seeing a new test case suddenly being prioritized may encourage
developers to run it to check if it still passes. However, such a user study is outside
the scope of this project and therefore remains for future work.

7.3. Test Maintenance Support

We envision that once the file-to-failure-matrices are available, several use cases
become viable, which involve test maintenance. In particular, we lay out three
areas of research directions: First, how connecting changes to test failures can help
identify and fix test smells; second, we frame the concept of sensitivity, which
describes how interdependence between code change and test failure may appear
irregular; and third, we outline implications of very similar failure distributions.

Test Smells Similar to a code smell, a test smell is a symptom of a problem with
the unit test suite that regression test practitioners may easily spot [15]. While
smells neither directly point to a root cause nor always be indicative of a problem,
they appear irregularly and deserve deeper investigation by developers. One ex-
ample is a flaky test: A test case that fails regardless of the change to software [36].
Reasons for occasional test failures are manifold and include bad assumptions
about the environment (ordering of records in a database or ignorance of daylight
saving time), randomizing test data, tainting the program’s global state, relying on
non-deterministic concurrency, and many more [47]. Because the matrix-based pri-
oritization models connect a stimulus (file changes) to test outcomes, we suggest it
is possible to develop a new, history-based approach for determining test flakiness,
which does not rely on manifold re-execution of test cases [28]. To this end, an
algorithm would have to identify test cases, whose failures almost evenly spread
over all changed files. Using this information, an automatied process could easily
flag suspected test cases and a suitably augmented test runner could quarantine
them until developers investigate the root cause. As a result, every build containing
a potentially flaking test would directly contribute to the test statistics and the need
for aggressive deflaking using repeated test executions would decline.

Sensitivity Also using file-to-failure-matrices, we describe the concept of sensi-
tivity. For instance, a test case is overly sensitive, when the failure of the test case
consistently depends on the same large set of files. Because this means the test case
covers a comparatively large share of the code base, test maintenance cost might
increase due to difficulties in fault localization. Also, the asserted test outcome
might be overly broad and might be insufficient to check the correct function of
the substantial amount of covered code. The concept of sensitivity also translates
to files, which inevitably make a large fraction of the test suite fail when changed.
We reason that the underlying file might be overly covered, either because the file
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constitutes a legitimate hotspot of verification efforts or because the file contains
overly critical or brittle, code. Because of the need for corrective action, we argue
that identifying overly sensitive files and test cases is interesting to maintenance
programmers and that such phenotypes should be considered code smells or test
smells.

Similarity Another possible research direction concerns the investigation of simi-
lar failure distributions, either of files or test cases, which can be used to cluster the
respective sets. Because test cases, which possess very similar failure distributions,
likely localize the same faults, test engineers might consider them duplicates. As a
result, those test cases are subject to elimination during test set reduction without
impeding fault detection effectiveness. In turn, a development team may save on
test code maintenance cost and experience shorter test suite runtime. A similar
notion extends to sets of files with very similar failure distributions. They may
resemble overly coupled or brittle units of code, which developers have to modify
together to green the test suite. While some instances may be the result of the
underlying software architecture, developers may deduce the need for refactoring.

72



8. Conclusion

Regression testing continues to be one of the most common verification and val-
idation activities and is one of the core building blocks to successful continuous
integration and continuous deployment practices. However, as software grows
in size and complexity, we evidence scalability problems concerning time and
resources dedicated to testing activities. This report shows that those problems
extend to small to medium-sized open-source projects and finds evidence in a
newly derived dataset. The reconstructed test session resembles reality much closer
and therefore supersedes academic subject programs with respect to fault quality.
Also, this dataset enables studying a more diverse set of projects, than existing test
collections, which are the result of verification efforts on large-scale, homogeneous
software suites. Using the new dataset, we extensively study prior approaches in
the field of history-based prioritization techniques and find that those heuristics
cope well with a dataset originating in continuous integration. The newly pro-
posed set of matrix-based approaches addresses a major shortcoming of existing
heuristics, namely the static prediction, while maintaining or improving, the fault
detection efficiency of the resulting test execution plans. At the same time, the
novel techniques retain the advantage of the negligible computational overhead of
existing heuristics. Without compromising prediction performance, their barriers
to successful adoption and operation are considerably lower than state-of-the-art
machine learning approaches. We lay out how the proposed models can be useful
beyond the purpose of regression test prioritization and how file-to-failure-matrices
can be useful to test maintenance activities.

While the rRTP efforts in this report target shorter feedback cycles within contin-
uous integration, we believe CI systems are only step stones to greater adoption
of test prioritization as a whole. Figure 8.1 shows the perceived immediacy of
feedback on tests. Obviously, continuous testing within development environments
provides the tightest feedback loop. Occasional testing already relies on the devel-
opers’ dedication to testing and because builds are started afresh on c1 systems
they are the most expensive way of obtaining feedback.

—

IDE IDE Cl
(continuously) (occasionally)

Figure 8.1.: Perceived immediacy of regression test results
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While the immediacy of test results declines from development to c1 environments,
we anticipate that the rate of adoption of test prioritization will behave reciprocally.
At first, heavily automated test systems will benefit from test prioritization and
subsequently, prioritization will approach development environments, and influ-
ence developer behavior. This way, we project that regression test prioritization in
continuous, as well as development environments, can significantly contribute to
optimizing developers” workflow by making automated tests first-class citizens.
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The programming language of below listings is Kotlin [26].

Listing A.1: Recently Failed

class RecentlyFailedStrategy(val alpha: Double) : PrioritizationStrategy {
private val histories = mutableMapOf<String, BitSet>()

override fun reorder(p: Params): List<TestResult> {
val priorities = mutableMapOf<String, Double> ()

for (tc in p.testResults) {
val history = historyFor (tc)
priorities[tc.name] = getValue(history, p)

}

return p.testResults.sortedByDescending { priorities[it.name] }

}

override fun acceptFailedRun(p: Params) {
for (tc in p.testResults) {
if (tc.red > 0) {
historyFor (tc).set(p.job.jobNumber)
}
}
}

private fun historyFor(tc: TestResult) =
histories.computeIfAbsent(tc.name) { BitSet() }

private fun getValue(history: BitSet, p: Params): Double {
var prob = 0.0

for (job 1in p.priorJobs) {
prob = alpha * historyAt(history, job) + (1 - alpha) * prob
}

return prob

}

private fun historyAt(history: BitSet, job: Job) =
if (history[job.jobNumber]) 1.0
else 0.0
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Listing A.2: Matrix Data Structure

@Serializable
data class Matrix(private val matrix: Map<Key, Double>)
Map<Key, Double> by matrix {
companion object

}

@Serializable
data class Key(val fileName: String, val testName: String)

Listing A.3: Unit Matrix Construction

class UnitMatrix(
val repository: Repository,
val cache: Cache

) 1

fun get(job: Job): Matrix {
return cache.get(job, ::computeMatrix)

}

private fun computeMatrix(job: Job): Matrix {
val changedFiles = repository.changedFiles(job)
val testResults = repository.testResults(job)
return createUnitMatrix(changedFiles, testResults)

}

private fun createUnitMatrix(changedFiles: List<String>,
testResults: List<TestResult>): Matrix {
val matrix = mutableMapOf<Key, Double>()
for (test in testResults.filter { it.red > 0 }) {
for (file 1in changedFiles) {
matrix.merge(Key(file, test.name),
test.red.toDouble(), Double::plus)
}
}
return if (matrix.isEmpty()) Matrix.empty() else Matrix(matrix)
}
}




A. Source Code

Listing A.4: Reducer: Combining Matrices

internal typealias Reducer = (Matrix, Matrix) -> Matrix
class DevaluationReducer(val alpha: Double) : Reducer {

override fun invoke(left: Matrix, right: Matrix): Matrix {
val m = mutableMapOf<Key, Double> ()
val commonFiles = left.fileNames.intersect(right.fileNames)

for (entry 1in left) {
val fileIsCommon = entry.key.fileName in commonFiles
val factor = if fileIsCommon (1 - alpha) else 1.0
mlentry.key] = factor * entry.value

}

for (entry 1in right) {
val fileIsCommon = entry.key.fileName in commonFiles
val factor = if fileIsCommon alpha else 1.0
m.merge(entry.key, factor * entry.value, Double::plus)

}

return Matrix(m)
}
}
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Listing A.5: Strategy: conditional-prob

class ConditionalProbability(
repository: Repository,
cache: Cache,
val reducer: Reducer
) : PrioritizationStrategy {
private val unitMatrix = UnitMatrix(repository, cache)

override fun reorder(p: Params): List<TestResult> {

val unitMatrices = p.priorJobs.map(unitMatrix::get)

val sumMatrix = unitMatrices.fold(Matrix.empty(), reducer)

val probabilities = probabilities(p.changedFiles,
p.testResults.map { it.name },
sumMatrix)

return p.testResults.sortedByDescending {

probabilities[it.name] }

}

internal fun probabilities(changedFiles: List<String>,
tests: List<String>,
sumMatrix: Matrix

): Map<String, Double> {

val fileCounts = fileCounts(sumMatrix)
return tests.associateWith { tc ->
prob(changedFiles, sumMatrix, fileCounts, tc)
}
}

private fun fileCounts(m: Matrix):
Map<String, Pair<Double, Double>> {
val counts = mutableMapOf<String, Double>()
for (entry in m) {
counts.merge(entry.key.fileName, entry.value, Double::plus)

}

val sum = counts.values.sum()

return counts.mapValues { entry ->
entry.value to (entry.value / sum)

}

}

private fun prob(
changedFiles: List<String>,
m: Matrix,
fileCounts: Map<String, Pair<Double, Double>>,
tc: String
): Double {

return changedFiles.map { file ->

val (fileCount, fileProbability) =
fileCounts[file] ?: Pair(0.0, 0.0)

val count = m[Key(file, tc)] ?: 0.0
fileProbability * (count / fileCount)

}.sum()

}
}




A. Source Code

Listing A.6: Strategy: recently-changed

class RecentlyChanged/(
repository: Repository,
cache: Cache,
val reducer: Reducer,
val alpha: Double

) : PrioritizationStrategy {

private val unitMatrix = UnitMatrix(repository, cache)
private val histories = mutableMapOf<String, BitSet>()

override fun reorder(p: Params): List<TestResult> {
p.changedFiles.forEach {
histories.computeIfAbsent(it) { BitSet() }.set(p.job.jobNumber)
}
val unitMatrices = p.priorJobs.map(unitMatrix::get)
val sumMatrix = unitMatrices.fold(Matrix.empty(), reducer)
val filePriorities = priorities(p.priorJobs + p.job, sumMatrix)

val testPriorities = p.testResults.associateWith { tc ->
sumMatrix.filterKeys { it.testName == tc.name }
.map { filePriorities.getOrDefault(it.key.fileName, 0.0)
* it.value }
.sum()

}

return p.testResults.sortedByDescending { testPriorities[it] }

}

internal fun priorities(priorJobs: List<Job>, m: Matrix):
Map<String, Double> {
return m.fileNames().associateWith { similarity(priorJobs, 1it) }

}

private fun similarity(priorJobs: List<Job>, fileName: String):
Double {
return getValue(histories.computeIfAbsent(fileName) { BitSet() },
priorJobs)

}

private fun getValue(history: BitSet, priorJobs: List<Job>):
Double {
var prob = 0.0

for (job 1in priorJobs) {
prob = alpha * historyAt(history, job) + (1 - alpha) * prob
}

return prob

}

private fun historyAt(history: BitSet, job: Job) =
if (history[job.jobNumber]) 1.0
else 0.0
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Listing A.7: Strategy: file-similarity

class FileFailureDistributionSimilarity(
repository: Repository,
cache: Cache,
val reducer: Reducer

) : PrioritizationStrategy {

private val unitMatrix = UnitMatrix(repository, cache)

override fun reorder(p: Params): List<TestResult> {
val unitMatrices = p.priorJobs.map(unitMatrix::get)
val sumMatrix = unitMatrices.fold(Matrix.empty(), reducer)
val priorities = priorities(p.changedFiles, sumMatrix)
return p.testResults.sortedByDescending { priorities[it.name] }

}

internal fun priorities(
changedFiles: List<String>,
matrix: Matrix
): Map<String, Double> {
val fileToSimilarity = similarity(changedFiles, matrix)

return matrix.testNames().associateWith { tc ->
matrix.filterKeys { it.testName == tc }
.map { entry -> (fileToSimilarity[entry.key.fileName] ?: 0.0)
* entry.value }
.sum()
}
}

private fun similarity(
changedFiles: List<String>,
m: Matrix

): Map<String, Double> = m.fileNames().associateWith { file ->
changedFiles.parallelStream() .mapToDouble { changedFile ->

val a m.testDistribution(changedFile)
val b = m.testDistribution(file)

var dot = 0.0

var normA =

0.0
var normB 0.0

for ((va, vb) 1in a.zip(b)) {
dot += va * vb
normA += va.pow(2.0)
normB += vb.pow(2.0)

}

dot / (sqrt(normA) * sqrt(normB))
}.max() .orElse(0.0)
}
}
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