
Technische Berichte Nr. 149

des Hasso-Plattner-Instituts für
Digital Engineering an der Universität Potsdam

Implementing a Crowd-
Sourced Picture Archive
for Bad Harzburg
Rieke Freund, Jan Philip Rätsch, Franziska Hradilak,
Benedikt Vidic, Oliver Heß, Nils Lißner, Hendrik Wölert,
Jens Lincke, Tom Beckmann, Robert Hirschfeld

Technische Berichte des Hasso-Plattner-Instituts für
Digital Engineering an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Digital Engineering an der Universität Potsdam | 149

Rieke Freund | Jan Philip Rätsch | Franziska Hradilak
Benedikt Vidic | Oliver Heß | Nils Lißner | Hendrik Wölert

Jens Lincke | Tom Beckmann | Robert Hirschfeld

Implementing a Crowd-Sourced
Picture Archive for Bad Harzburg

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.dnb.de/ abrufbar

Universitätsverlag Potsdam 2023
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Digital Engineering an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Digital Engineering
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Druck: docupoint GmbH Magdeburg

ISBN 978-3-86956-545-3

Zugleich online veröffentlicht auf dem Publikationsserver der Universität Potsdam:
https://doi.org/10.25932/publishup-56029

https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-560291

http://dnb.dnb.de/
http://verlag.ub.uni-potsdam.de/
https://doi.org/10.25932/publishup-56029
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-560291

Abstract

Pictures are a medium that helps make the past tangible and preserve memories.
Without context, they are not able to do so. Pictures are brought to life by their
associated stories. However, the older pictures become, the fewer contemporary wit-
nesses can tell these stories. Especially for large, analog picture archives, knowledge
and memories are spread over many people. This creates several challenges: First,
the pictures must be digitized to save them from decaying and make them avail-
able to the public. Since a simple listing of all the pictures is confusing, the pictures
should be structured accessibly. Second, known information that makes the stories
vivid needs to be added to the pictures. Users should get the opportunity to con-
tribute their knowledge and memories. To make this usable for all interested parties,
even for older, less technophile generations, the interface should be intuitive and
error-tolerant. The resulting requirements are not covered in their entirety by any
existing software solution without losing the intuitive interface or the scalability of
the system.

Therefore, we have developed our digital picture archive within the scope of a
bachelor project in cooperation with the Bad Harzburg-Stiftung. For the implemen-
tation of this web application, we use the UI framework React in the frontend, which
communicates via a GraphQL interface with the Content Management System Strapi
in the backend. The use of this system enables our project partner to create an ef-
ficient process from scanning analog pictures to presenting them to visitors in an
organized and annotated way. To customize the solution for both picture delivery
and information contribution for our target group, we designed prototypes and eval-
uated them with people from Bad Harzburg. This helped us gain valuable insights
into our system’s usability and future challenges as well as requirements. Our web
application is already being used daily by our project partner. During the project,
we still came up with numerous ideas for additional features to further support the
exchange of knowledge.

v

Zusammenfassung

Bilder können dabei helfen, die Vergangenheit greifbar zumachen undErinnerungen
zu bewahren, doch alleinstehende Bilder ohne Kontext erreichen das nur schwer. Der
große Wert besteht in den Geschichten, die mit den Bildern verbunden sind. Je älter
die Bilder jedoch werden, desto weniger Zeitzeugen können von diesen Geschichten
berichten. Besonders für große analoge Bildarchive, bei denen sich das Wissen und
die Erinnerungen auf viele Personen verteilen, entstehen dadurch verschiedene Her-
ausforderungen: Zunächst müssen die Bilder digitalisiert werden, um sie vor dem
Zerfall zu schützen und um sie der Öffentlichkeit zugänglich machen zu können.
Da eine einfache Aufreihung aller Bilder unübersichtlich ist, sollten die Bilder in
eine zugängliche Struktur gebracht werden. Des Weiteren müssen zu den Bildern
bekannte Informationen, aus denen ihre Geschichten erfahrbar werden, hinzugefügt
werden. Nutzende sollen die Möglichkeit haben, eigenes Wissen und Erinnerungen
beizutragen. Um dies für alle Interessierten, auch für ältere, evtl. wenig technikaffine
Personen, nutzbar zu machen, sollte die Oberfläche eine intuitive und fehlertoler-
ante Nutzung ermöglichen. Die sich daraus ergebenden Anforderungen werden
von keiner existierenden Softwarelösung im Gesamten abgedeckt, ohne die intuitive
Oberfläche oder die Skalierbarkeit des Systems zu verlieren.

Daher haben wir im Rahmen eines Bachelorprojekts in Zusammenarbeit mit
der Bad Harzburg-Stiftung ein eigenes digitales Bildarchiv entwickelt. Für die Um-
setzung dieser Webapplikation nutzen wir das UI-Framework React im Frontend,
welches über eine GraphQL-Schnittstelle mit dem Content Management System
Strapi im Backend kommuniziert. Die Nutzung dieses Systems ermöglicht unserem
Projektpartner einen effizienten Prozess vom Scannen der analogen Bilder bis zum
geordneten und annotierten Darstellen für Besuchende. Um die Lösung sowohl für
das Bereitstellen der Bilder als auch für das Beitragen von Informationen auf unsere
Zielgruppe zuzuschneiden, haben wir Prototypen entworfen und mit Menschen aus
Bad Harzburg getestet, um ihre Eindrücke auszuwerten. Mit diesen konnten wir
wertvolle Erkenntnisse über die Nutzbarkeit und noch offene Herausforderungen
und Anforderungen gewinnen. Unsere Webanwendung ist bei unserem Projektpart-
ner bereits im täglichen Einsatz. Trotzdem haben wir während des Projekts noch
zahlreiche Ideen für zusätzliche Funktionen erarbeitet, um den Wissensaustausch
weiter zu fördern.

vii

Contents

1 A Crowd-Sourced Picture Archive 1
1.1 The Cultural Heritage Domain . 1
1.2 Crowd-Sourcing in the Cultural Heritage Domain 2
1.3 Related Work . 4
1.4 Our Project Partner: Bad Harzburg-Stiftung 15
1.5 Our Project Prerequisites . 16
1.6 Summary . 25

2 Functional Constraints and Requirements 27
2.1 Initial Project Partner Requirements 27
2.2 Picture Management Applications . 29
2.3 Application Selection . 30
2.4 Concept for a Collaborative Picture Archive 43
2.5 Summary . 48

3 Evaluating Design Decisions regarding Usability 51
3.1 Design and Implementation . 51
3.2 Empirical Evaluation . 59
3.3 Discussion . 69
3.4 Conclusion and Outlook . 71

4 Architecture and Implementation of a Web-Based Frontend 73
4.1 Technical Components . 73
4.2 Background . 73
4.3 Frontend Architecture . 78
4.4 Data Flow . 86
4.5 Summary . 94

5 Strapi as a Customizable Content Management System 95
5.1 Motivation for Using a Content Management System 95
5.2 Introduction to Content Management Systems 95
5.3 Introduction to Plugin Architectures 96
5.4 Strapi as a Content Management System 97
5.5 Customizing Strapi . 102
5.6 Discussion . 106
5.7 Summary . 115

ix

Contents

6 Automatic Data Migration, Testing, and Deployment 117
6.1 Tools and Tasks in Modern Web Development 117
6.2 Data Migration: Importing from WordPress 118
6.3 Data Migration: Evolving the System 124
6.4 Developer Experience . 129
6.5 Integration, Deployment, and Performance 132
6.6 Summary . 141

7 Low Fidelity Prototypes to Explore the Design Space 143
7.1 Introduction . 143
7.2 Concepts . 144
7.3 Methodology . 146
7.4 User Test 1: Map vs. Timeline . 149
7.5 User Test 2: Paper Prototype for a New Feature: Stories 156
7.6 Summary . 162

8 Summary 163

Appendices

A Appendix 167
A.1 Evaluation . 167
A.2 Queries and Filters . 170
A.3 GraphQL and Monitoring . 174
A.4 Questionnaires . 177

x

1 A Crowd-Sourced Picture Archive

In this chapter, we introduce the cultural heritage domain and the concept of “crowd-
sourcing”. Following this, we examine five cultural heritage platforms with different
participation levels and present our partner as well as the prerequisites for this
project. Finally, we give a brief overview of our project’s implementation and the
following chapters.

1.1 The Cultural Heritage Domain

Our project collaborated with a local community foundation to save 50,000 archived
pictures from slow decay and preserve their context to make the archive useful and
valuable as an accessible means to discover one’s cultural heritage.

From today’s perspective, we as living human beings can look back on a history
of mankind that has lasted for several millennia. Even if we were not alive for most
of that time, we can learn a lot about past events, ways of life, intellectual currents,
world views, differences and similarities from today. We owe this knowledge mainly
to the traces that people have left behind, as well as to the people who discover, re-
cover, conserve, investigate, and process them. Various institutions and places retain
these traces. Galleries, libraries, archives, museums, historical societies, educational
institutions, monuments, memorials, squares, parks, etc. work on for the conserva-
tion and distribution of historical knowledge and cultural heritage. Just as diverse
as the places where cultural heritage is preserved and knowledge is passed on are
the means. For this project, we will focus on pictures.

We as a society should conserve the existing photographs as historical sources and
cultural heritage. In 1826 Nicéphore Niépce took the first photograph on a pewter
plate [23]. However, the concept for the camera obscura was developed hundreds of
years earlier. In the following 200 years, photography has made enormous technical
progress. Nowadays, a standard smartphone is enough to take a picture. In 2021,
62.61 million people in Germany were using smartphones [33]. This number has
been growing steadily over the last ten years. Almost anyone can take photos without
film, a darkroom, or expensive camera equipment today. This has also significantly
changed people’s relationship to photos. Hardly anything happens without being
photographed. In the past, when photography was more elaborate and expensive,
fewer photos were taken. Digitalization can help us to conserve our history online,
so our cultural heritage is protected from decay and accessible everywhere. During
pandemic-related lockdowns, most of the locations mentioned above were not ac-
cessible, but thanks to the internet, they no longer have to rely solely on physical
locations to distribute their content. A lot of institutions have been presenting them-

1

1 A Crowd-Sourced Picture Archive

selves online for years on their websites or their social media channels. Many have
been involved in digital participation before the COVID-19 pandemic. Some libraries
or museums, for example, digitize their collection and make it available to everyone
or certain user groups on the internet.

Oftentimes, archives of pictures comewith very little context. Fortunately, for years
back to the early 1900s, we have people still alive who were there. That is why we
consider crowd-sourcing as an approach to save that context. As such, there is a great
value in the picture archive, at least for the region, which we would like to preserve
with our project. In addition, we would like to gather and share the knowledge of
those who lived during the times the photos were taken.

This chapter continues with a definition of the term “crowd-sourcing” and two
models classifying the participation and collaboration level for cultural heritage
platforms. After that, we take a look at five existing platforms to share historical
pictures and knowledge. Then we introduce our project partner, the Bad Harzburg-
Stiftung, before we delineate the prerequisites of the project, such as involved parties
and the legacy system. Finally, we outline some of our work from the last ten months
and give an overview of the further chapters.

1.2 Crowd-Sourcing in the Cultural Heritage Domain

Wehave just presentedwhywe should preserve our cultural heritage and history.We
have also alreadymentioned our project includingmanyphotos that lack information
and crowd-sourcing as a possible way to collect knowledge. Based on thismotivation,
we take a closer look at crowdsourcing in the following.

1.2.1 Definition of Crowd-Sourcing

The term “crowd-sourcing”1 is a composition of the words “crowd” and “outsourc-
ing”. “Crowd” describes “a large number of people gathered together” according to
the Oxford Dictionary. In the case of crowd-sourcing, “gathered together” is mainly
realized online but not because it is limited to online cooperation. “Outsourcing”
means to “obtain (goods or a service) from an outside or foreign supplier, especially
in place of an internal source” [36]. In the context of outsourcing, the first “goods
or a service” that come to mind may be related to industrial production and facto-
ries, but the crowd can bring in financial resources, creative solutions for specified
problems, or completion of concrete tasks.

In 2006 Jeff Howe used the term in the article “The Rise of Crowdsourcing” [26].
He characterizes it as the process of companies using the labor force of individuals
online for various tasks and points out the similarity of decreasing working costs
between this and outsourcing labor to third-world countries.

1There are variant spellings like “crowdsourcing”, but we will refer to “crowd-sourcing” in the
following. In quotations, we preserve the original form.

2

1.2 Crowd-Sourcing in the Cultural Heritage Domain

In the article, Howe refers to the commercial crowd-sourcing platform Amazon
Mechanical Turk2, where so-called Requesters assign Turkers to perform certain tasks
and pay them in return. He strongly focuses on the aspect of outsourcing. This might
be due to a lack of noncommercial, volunteer-driven projects serving the common
good at this time or because of the high socio-economic significance of this process.
Well-known crowd-sourcing projects are OpenStreetMap3 and Wikipedia.4

1.2.2 Models of Crowd-Sourcing and Participation in the Cultural
Heritage Domain

In their paper “Crowdsourcing in the Cultural Heritage Domain: Opportunities
and Challenges”, Oomen and Aroyo distinguish the following six types of crowd-
sourcing initiatives which are depicted in Table 1.1 [47]:

Table 1.1: Types of crowd-sourcing initiatives

Crowd-Sourcing Type Short Definition
Correction and
Transcription Tasks

Inviting users to correct and/or transcribe outputs of
digitization processes

Contextualization Adding contextual knowledge to objects, e.g. by telling
stories or writing articles/wiki pages with contextual
data

Completing Collection Active pursuit of additional objects to be included in a
(web)exhibit or collection

Classification Gathering descriptive metadata related to objects in a
collection (Social tagging is a well-known example.)

Co-Curation Using inspiration/expertise of non-professional
curators to create (web)exhibits

Crowdfunding Collective cooperation of people who pool their
money and other resources together to support efforts
initiated by others

Before we take a look at these specific types of crowd-sourcing initiatives as well
as whether and to what extent they are suitable for our project (see subsection 1.5.4),
we present another possible approach to classifications in the context of participating
in cultural heritage.

In “The Participatory Museum” Simon presents a different concept of public par-
ticipation [54]. She builds on the existing Public Participation in Scientific Research
model containing the following three kinds of projects:

2https://www.mturk.com/ (last accessed: 2022-07-13).
3https://www.openstreetmap.org/ (last accessed: 2022-07-13).
4https://en.wikipedia.org/wiki/Main_Page (last accessed: 2022-07-13).

3

https://www.mturk.com/
https://www.openstreetmap.org/
https://en.wikipedia.org/wiki/Main_Page

1 A Crowd-Sourced Picture Archive

1. Contributory projects: An institution conducting a contributory project asks
its participants for a specific type of content. During the whole project, the
institution takes control of the process.

2. Collaborative projects: A collaborative project is based on a partnership and
cooperation between participants and institutional staff. The institution is still
in control of the project and may design a concept or give ideas.

3. Co-creative projects: Co-creative projects are characterized by the fact that from
the very beginning the participants cooperate with the institution as equal
partners. Both parties can contribute ideas and project ambitions.

Simon extends these with a fourth project type:
4. Hosted projects: In a hosted project the institution provides participants with

capabilities such as space, data, tools, or other means for their project. While
the institution restrains itself, the participants are paramount.

1.3 Related Work

In general, there are endless ways to share photos in the digital world. However, we
would like to share not only the pictures but also knowledge. We need a platform to
share historical photos and exchange background information and views about them.
Thus, we looked at various systems implementing different ways of crowd-sourcing
in the cultural heritage domain and will present a selection of five in ascending
order of their level of participation and user engagement. Just as we can only present
a small subset of many existing systems in this limited scope, we cannot address
every functionality or concept. We do not go into the search functions, because these
considerations would be very extensive due to widely differing habits and practices.

1.3.1 CALIsphere

CALIsphere5 is a project of the University of California Libraries with more than 300
participating cultural heritage organizations, such as libraries, archives, museums,
and historical societies. It is developed and maintained by the California Digital Li-
brary. The goal of the project is to provide a common platform for California’s historic
treasures. Visitors benefit from this because they no longer have to visit each of the
institutions individually. Smaller institutions in particular can benefit from technical
know-how and infrastructure. In addition to about 1.5 million pictures, numerous
other items including videos, texts, and audio files are published on CALIsphere. To
view items, CALIsphere offers three options. Users can browse collections or exhi-
bitions, or search for specific pictures using keywords. Collections (see Figure 1.1)
are organized by the content, format or origin of the objects. Because CALIsphere
unites many different institutions, there are, for example, individual collections from
different photographers. In CALIsphere there are no objects that are not assigned to a

5https://calisphere.org/ (last accessed: 2022-07-13).

4

https://calisphere.org/

1.3 Related Work

Figure 1.1: CALIsphere – Collections

collection. Staff from participating institutions arranges exhibitions (see Figure 1.2)
like their analog equivalents to introduce visitors to specific eras or historical topics
or events.
CALIsphere does not offer functionalities to publish comments immediately or

collaborate with other users, but they provide the possibility to contact the owner of
a piece of cultural heritage and send a message to share an individual story.

1.3.2 Project Apollo Archive on Flickr

The Project Apollo Archive is a Flickr pro-account with 62.9K followers who uploaded
close to 16, 000 pictures since joining the platform in September 2015.6 Flickr calls
itself “almost certainly the best online photo management and sharing application
in the world”. 7 Visitors can take a look at their most popular photos and curated
albums. It is possible to tag uploaded photos. That allows visitors to take a look at
all pictures tagged with a certain keyword from this account or from all pictures on
Flickr. Signed-up users can comment on single pictures or add them to their personal
favorites visible to everyone (see Figure 1.3). We will take a more detailed look at
Flickr and its functionalities in chapter 2.

6https://www.flickr.com/people/projectapolloarchive/ (last accessed: 2022-07-13).
7https://www.flickr.com/about (last accessed: 2022-07-13).

5

https://www.flickr.com/people/projectapolloarchive/
https://www.flickr.com/about

1 A Crowd-Sourced Picture Archive

Figure 1.2: CALIsphere – Exhibitions

Figure 1.3: Project Apollo Archive: View of an exemplary picture with a comment

6

1.3 Related Work

Figure 1.4: Britain from Above – Homepage and Latest activity

Figure 1.5: Britain from Above – Grid

7

1 A Crowd-Sourced Picture Archive

Figure 1.6: Britain from Above – Map

Figure 1.7: Britain from Above – Galleries

8

1.3 Related Work

Figure 1.8: Britain from Above – Groups

9

1 A Crowd-Sourced Picture Archive

1.3.3 Britain from Above

Britain fromAbove’s8 aimwas to digitalize an enormous number of aerial photographs
and localize the shooting position. From 2010 to 2014, about 95, 000 photos from
the Aerofilms Collection were preserved within the project. Britain from Above is
financed by the Heritage Lottery Fund, The Foyle Foundation, and other donors.
Even though the project ended eight years ago, the website is still online and visitors
can view the pictures. When searching or browsing, the pictures can be displayed
in two ways, either in a grid or on a map (see Figure 1.5 and Figure 1.6). Because
the pictures of the Aerofilms Collection are aerial photographs, they show especially
landscape changes, urbanization, new construction, demolition, deindustrialization,
urban development, etc. The map view is very suitable for this, as one can navigate
to a region on the map and then view the developments there. Visitors can also view
selected photos in separate galleries (see Figure 1.7), for instance, “Images we have
been unable to identify” or “On the ground”, showing no aerial photos but photos
taken from the ground. Registered users can get together in groups to share common
interests and background knowledge on the pictures (see Figure 1.8). Further, they
can add photos to their profile. Until today, signed-up users participate actively by
placing pictures with unknown shooting locations on a map by adding a pin (see
Figure 1.4). Britain from Above links to some YouTube videos in the context of the
project on its home page (see Figure 1.4).

1.3.4 Europeana

The primary goal behind Europeana9 was to offer a common platform that combines
the various European historical archives. Europeana is an initiative by the European
Union that is financed by the EU’s Connecting Europe Facility and the EU member
states. They report 30, 288, 545 pictures, 22, 572, 573 texts, 770, 665 sounds, 337, 788
videos, and 8, 421 3D models from more than 4, 000 different institutions located all
over Europe, which they provide online. They do not collaborate with every single
institution but rely on aggregators. Aggregators act as interfaces between Europeana
and the owners of the cultural heritage pieces and work either content-based or
location-based. One of the content-based aggregators is the Photoconsortium10 lo-
cated in Italy with members and partners from across Europe. The International
Consortium for Photographic Heritage accepts photographs taken by private per-
sons or professionals. The aggregator responsible for items from Germany11 is the
German Digital Library.12 Visitors can read blog posts giving deeper insights on
the items or view public galleries, recent items, or collections ordered by themes,

8https://britainfromabove.org.uk (last accessed: 2022-07-13).
9https://www.europeana.eu/en (last accessed: 2022-07-13).

10https://pro.europeana.eu/organisation/photoconsortium and https://www.photoconsortium.net/associatio
n/en (last accessed: 2022-07-12).

11https://pro.europeana.eu/organisation/german-digital-library (last accessed: 2022-07-13).
12https://www.deutsche-digitale-bibliothek.de/content/ueber-uns?lang=en (last accessed: 2022-07-13).

10

https://britainfromabove.org.uk
https://www.europeana.eu/en
https://pro.europeana.eu/organisation/photoconsortium
https://www.photoconsortium.net/association/en
https://www.photoconsortium.net/association/en
https://pro.europeana.eu/organisation/german-digital-library
https://www.deutsche-digitale-bibliothek.de/content/ueber-uns?lang=en

1.3 Related Work

centuries, and organizations. On their home page, they feature the latest blog entries
and galleries suitable for the season or current socio-political topics (see Figure 1.9).
It is possible to create a Europeana account. Signed-up users can save their favorite
items and create public and private galleries. A title and a description can be set for
these galleries. Additionally, Europeana users can submit ideas for blog posts or share
their individual stories accentuated by their exhibits on predefined topics.

Figure 1.9: Europeana – Homepage and Searching for “harz mountains” pictures

1.3.5 Zooniverse

Zooniverse17 describes itself as “the world’s largest and most popular platform for
people-powered research”. The project is a collaboration between institutions from
the United Kingdom and the United States, more precisely the University of Oxford,
Chicago’s Adler Planetarium, and the University of Minnesota – Twin Cities (UMN)
as well as volunteer participants and researchers from all over the world. It is mainly
funded by “grants, as well as institutional support from Oxford, Adler, and UMN”,
but they also accept donations. Zooniverse arose out of the astronomy project Galaxy
Zoo, inviting the public to participate in the classification of galaxies. Nowadays
Galaxy Zoo is one of more than 100 projects from different scholarly disciplines like

13https://www.zooniverse.org/projects/artem-dot-reshetnikov/saint-george-on-a-bike/classify (last accessed:
2020-07-14).

14https://www.zooniverse.org/projects/effeli/node-code-breakers-looking-for-patterns-in-lymph-
nodes/classify (last accessed: 2020-07-14).

15https://www.zooniverse.org/projects/mozerm/snow-spotter/classify (last accessed: 2020-07-14).
16https://www.zooniverse.org/projects/artem-dot-reshetnikov/saint-george-on-a-bike/classify (last accessed:

2020-07-14).
17https://www.zooniverse.org/ (last accessed: 2022-07-13).

11

https://www.zooniverse.org/projects/artem-dot-reshetnikov/saint-george-on-a-bike/classify
https://www.zooniverse.org/projects/effeli/node-code-breakers-looking-for-patterns-in-lymph-nodes/classify
https://www.zooniverse.org/projects/effeli/node-code-breakers-looking-for-patterns-in-lymph-nodes/classify
https://www.zooniverse.org/projects/mozerm/snow-spotter/classify
https://www.zooniverse.org/projects/artem-dot-reshetnikov/saint-george-on-a-bike/classify
https://www.zooniverse.org/

1 A Crowd-Sourced Picture Archive

Figure 1.10: Europeana – View of a single item with associated information

Figure 1.11: Zooniverse – Description: An exemplary description project13

12

1.3 Related Work

Figure 1.12: Zooniverse – Annotation: An exemplary annotation project14

Figure 1.13: Zooniverse – Transcription: An exemplary transcription project15

13

1 A Crowd-Sourced Picture Archive

Figure 1.14: Zooniverse – Classification: An exemplary classification project16

14

1.4 Our Project Partner: Bad Harzburg-Stiftung

arts, biology, history, physics, and social science. These projects can be created by
everyone. They report “682, 077, 802 classifications so far by 2, 487, 137 registered vol-
unteers”. Which tasks the users take on depends on the project in question. There are
projects with transcription tasks (see Figure 1.13), contextualization (see Figure 1.11),
annotation (see Figure 1.12) and classification (see Figure 1.14). What distinguishes
Zooniverse from the previous projects is that its focus lies more on data collection,
classification, and research results, rather than on individual viewing of the pictures.
Still, Zooniverse provides the ability for visitors to access the crowd-sourcing results
or browse or search processed pictures of a project themselves.

1.4 Our Project Partner: Bad Harzburg-Stiftung

Our project partner – the Bad Harzburg-Stiftung18 – is a community foundation
run by volunteers with its main focus on social engagement in Bad Harzburg. The
donations are used, for example, to provide free swimming lessons for local children.
The foundation received an extensive photo collection: about half a million prints
that were part of photojournalist Herbert Ahrens’19 estate. We distinguish prints
and pictures because sometimes there are several prints of the same picture. Mainly
two factors led to the intention of digitalizing the archive: firstly the decay of the
physical pictures and secondly, given the age of the pictures, the dwindling number
of eyewitnesses to the events captured on camera, the people knowing what and
who was photographed and the stories captured in pictures. The volunteer mem-
bers at the Bad Harzburg-Stiftung lack technical expertise, as nobody is a trained
programmer or web developer. In 2020, one of them started the digitalization of the
first pictures, sorting them into a WordPress-based gallery system (more details in
subsection 1.5.2). However, as the number of scanned pictures grew, the complex-
ity of the WordPress system and maintenance of the system moved away from his
primary interest of maintaining and curating pictures and more to fixing issues that
occurred on the technological side. As such, our project was formed to preserve this
treasure trove of pictures and make it accessible to everyone by building a system
that is intuitive to use and allows collaboration. We will present our system in the
course of our report.

18https://bad-harzburg-stiftung.de (last accessed: 2022-07-13).
191910, Ahrens was born in Koblenz, Germany. During the Second World War, he worked for the

Propaganda Company of theWehrmacht. After the end of the war, Ahrens worked in BadHarzburg
and the surrounding area as a press photographer for various local and national media until he
died in 1996 and gathered this accumulation of his press photographs.

15

https://bad-harzburg-stiftung.de

1 A Crowd-Sourced Picture Archive

1.5 Our Project Prerequisites

Now we focus on our project and its prerequisites. First, we introduce the parties
involved and their interaction. Then we examine the legacy system to identify prob-
lems with this first system and thus potential risks or special hurdles for our new
system. Eventually, we return to the types of crowdsourcing initiatives and look at
potential approaches for our project.

1.5.1 Parties Involved

We first list the parties involved, then contextualize them and explain their connec-
tion.

• photographers
• owners of the photo collection
• people scanning the photos
• curators
• administrators
• developers
• visitors

– contemporary witnesses
– locals
– historians, local history researchers

The focus of our project is onmaking historic photos accessible to the public. These
pictures were taken by a photographer who might have recorded further information
on the photos and maybe arranged the prints in a way suitable for their usage. The
photographers do not necessarily interact with our system. In our case, Herbert Ahrens
is not able to do so anymore.

In other cases, the photographer and owner of the pictures can be combined in one
person The owner is responsible for respecting existing photo rights and the rights
of personality. We started our project with the Bad Harzburg-Stiftung being the
only owner. In the meantime, this changed, as different institutions and individuals
confirmed their participation by providing their photo collections. The owners of
the pictures who have decided to cooperate have realized that their pictures are of
interest to the public and our system seems suitable to them. Some are very proud
of their collections, in which they invested a lot of time and passion. Therefore, it is
important to them that pictures from their collection are recognizable as such.

The analog prints from the archive need to be digitized to make them accessible to
people and to protect them from physical decay. For this, people scanning the pictures
are needed. We will examine the scanning and uploading process in more detail in
section 1.5.2.

Since a large, unordered set of pictures can easily become confusing, they need to
be organized somehow. The curators deal with the structure and preparation of the
pictures. They ensure that users are not overwhelmed by this quantity of pictures
by linking the pictures with the information available to them, grouping them with
other pictures, and selecting appealing suggestions for visitors.

16

1.5 Our Project Prerequisites

As well as curators who take care of the platform on the content level are needed,
someone has to ensure the proper functioning of the system on a technical level: the
administrator. While the admin centers on the system in production, maintenance,
troubleshooting for acute problems, etc., new functionalities are implemented by
the developers. These functions can be requests of the partner, developers’ ideas, or
collaboratively designed. In the past ten months, seven bachelor students have been
working part-time on the project. We started with different levels of knowledge and
skills and were able to learn and try out a lot during the project that resulted in a
web application, a new platform for Bad Harzburg’s photos.

Nowwewill focus on our visitors: The motivation for our project was to sustain the
memories and stories behind the pictures. If the memories of contemporary witnesses
are not written down or passed on to the following generations, they are in danger
of being lost. The photos in the archive stem from the second half of the 20th century.
The Bad Harzburg locals live today where many of the historic photos were taken.
On average, the people in Bad Harzburg are older than the German population (see
Figure 1.15). Some of them may also have lived there for a long time and are also
among the contemporarywitnesses or at least knowwhat the places used to look like
and recognize some of the people photographed. Historians or local history researchers
depend on historical sources for their work. Therefore, they often visit archives. Such
a visit can be very costly: long-term registrations, travel costs, entrance fees, or tight
opening hours complicate their activities. Online platforms for resources, such as
some archives already deployed, facilitate their job. Historians from anywhere can
now access the pictures digitally and all they need is an appropriate device and an
internet connection. For their research, they rely on powerful and efficient search
functions.

1.5.2 Legacy System

The project has a legacy platform, where around 7600 pictures have already been
published. This system was based on the NextGEN gallery plugin for WordPress. In
the following, we describe the legacy system and emphasize its problems.

Upload Process In the following, we will look at the legacy process of uploading.
In the first place, the scanning person chooses a folder. There is no particular strategy
for this; they simply take a folder that they consider interesting. The selected pictures
are placed one by one into a special photo scanner.21 With the help of the scanner
software, the scanned pictures are then post-processed if necessary, for example, a
specific picture section was selected. Parallel to the scanning, notes on the pictures,
for instance, remarks by the photographer written on the back of the photo or fur-
ther information about the picture known to the person scanning are recorded in
a Microsoft Office Word document. If a curator would like to create a new gallery
or album with the uploaded pictures, they have to sort them into the hierarchical

20https://www.stadt-bad-harzburg.de/Meine-Stadt/Zahlen-Daten-Fakten/ (last accessed: 2022-07-12).
21Plustek ePhoto Z300.

17

https://www.stadt-bad-harzburg.de/Meine-Stadt/Zahlen-Daten-Fakten/

1 A Crowd-Sourced Picture Archive

Figure 1.15: Demography20[55]

structure and create new preview pictures, for which the text has to be entered man-
ually. After that, the pictures were uploaded with their associated information in the
WordPress administration panel.

UIWalk Through Next, we consider the user interface of the website and how our
visitors can interact with it. Thereby we follow the structure in Figure 1.16, where
we show the navigation from the home page to a single picture.

The home page contains some general introductory information on the top, a
search bar, and below all albums listed (see Figure 1.16a). First, visitors are shown a
short information text about the archive. This is followed by a link for email inquiries
after the archive. Underneath the keyword search function is briefly referenced.

18

1.5 Our Project Prerequisites

(a) Part of the home page with a search bar and the first three albums

(b) Part of an Exemplary Album Page with Subalbums and Placeholders

(c) Part of an Exemplary Gallery Page
with Some Pictures

(d) Detail of an Exemplary Picture Page (see
Figure 1.18) with Buttons Leading to Picture
Information and Comments (marked in red)

Clicking the area shown in green takes us to the next screenshot.

Figure 1.16: UI walk through

Finding pictures via the search function works if users enter the exact keywords, that
are linked to the picture.

Below the search bar, users see the albums created by the curator. In three columns,
the gray, rectangled buttons with white font are displayed. Some albums or galleries
are named after local events (e.g. “Harzburger Musiktage”, a music festival, “Salz-

19

1 A Crowd-Sourced Picture Archive

& Lichterfest”, a town fair, “Galopprennwoche”, a horce racing event), places (e.g.
“Rund um den Burgberg”, the Burgberg area, “Kreuz d. deutschen Ostens”, memo-
rial cross for displaced), theme (e.g. “Sport”) etc. Subalbums often have the same
title as the albums on the highest hierarchical level complemented by a year (e.g.
“Salz- & Lichterfest 1968”). Visitors can navigate through hierarchically organized
galleries. These galleries (see Figure 1.16c) contain 15 to 50 photos on average. When
users decide to look at a picture, they can click on it. The NextGEN gallery plugin
treats galleries and albums very similar, but there is one major difference. Galleries
can contain photos while albums cannot. Our system is designed so that galleries
are only used if needed.

While viewing a single picture, the largest part of the screen is taken up by the
photo (see Figure 1.18). Visitors can navigate to the adjacent pictures with arrow
buttons on the left and right side. On the bottom, there is another way of navigation,
a row showing previews of the pictures in the gallery. Clicking on one of them leads
there. On the left side of this row are three icons, the first starting a dia show, the
second showing or hiding the information, and the third one leading to the comment
section where users can read comments on a picture or leave one themselves. The
information on a photo can be found in form of a title and a description above these
three icons. Left-click is disabled on the pictures to prevent people fromdownloading
the pictures in original quality. The reason for this is that press offices and media
houses should contact the foundation for commercial use. Bad Harzburg residents
and other private individuals can receive the pictures in their original size by mail
on request. On mobile devices the same layout is used.

Figure 1.17: WordPress system: Data model

20

1.5 Our Project Prerequisites

Figure 1.18: Exemplary picture page

Data Model In Figure 1.17, the attributes stored for pictures, galleries, and com-
ments are shown respectively. For the purpose of overview and comprehensibility,
some technical details are simplified. An image can only be in exactly one gallery,
galleries can contain several pictures. A comment can be written only to pictures,
several comments can be written to a picture.

1.5.3 Problems of the Legacy System

If this initial version of the system had worked without any problems, this project
would probably never have been initiated. In our first meeting, our project partner
already described some problems with the WordPress site. Other troubles we iden-
tified working with the old system. Most of the problems can be summarized under
the following three mutually reinforcing factors:

• extensive time expenditure,
• information redundancy,
• lack of a suitable structure.
Following, we take a look at these problems. We begin with the extensive time

expenditure. A single person unlocked comments, uploaded pictures, and added
information. Our project partner did not succeed in attracting more volunteers to
curate the site, of whom there was no shortage in principle, but who were put off
by the WordPress Administration Panel, which seemed complicated, and the fear of
breaking something on the site in it. As a result, the time-consuming upload process
stood out a lot.

The project partner told us that he was frequently called, mailed, or asked about
this in a personal conversation because users had difficulties using the website, for

21

1 A Crowd-Sourced Picture Archive

example, finding further information or the comment field. This takes further time.
This might not be necessary if we could make the platform intuitive for all users.
Especially in the mobile version the comment field indeed was very hidden and
small, so users could easily click next to it.

Despite the time involved, the upload process encouraged workarounds and mis-
takes and made it difficult for our project partner, as curator, to correct errors he
recognized. This resulted in a not insignificant amount of photos that were linked
to either incorrect, unsuitable, or irrelevant information. We summarize this kind of
information as wrongly linked. Due to time constraints, several pictures were often
uploaded with the same keywords, without checking whether they applied to all of
them. For example, in one of the galleries, there are pictures of the two federal roads
in the region. Pictures of both streets have both street names assigned to them. Thus,
people who are not familiar with the streets can mistake pictures of the so-called B2
for the B4 and vice versa. As we saw in section 1.5.2, information on a picture is not
only stored in the related keywords but for example in the description of the photo
as well. That created information redundancy. The search only works with the exact
keywords which are rare and not always correct. That makes it hard to find suitable
results.

Because the project partner gradually took folders off the shelf that seemed in-
teresting to them without a deeper strategy and digitized them, there is a lack of
structure in an intermediate status of 7, 600 pictures. The galleries and albums are
not named uniformly, some after events, others after locations. This naming system
reaches its limits when an event for which there is already an album is held in a place
for which the same applies.

Two other aspects came from the lack of a suitable structure:
The datamodel did not include an attribute for time or date. In the case of historical

photos, the date when the photo was taken is particularly important. This date is
missing from many pictures, but if it is known, it is not clear where to find the
date. Sometimes it is in the title, sometimes in the alt text, and sometimes in the
description.

An incorrect description, inaccurate keywords, or a spelling mistake needed to be
changed for every picture. Much information was saved per picture, but for instance,
descriptions, keywords, and alt text often referred to more than one picture. That
was not represented in the data model. The assignment of the same attributes to
several pictures was not only due to the structure but also to the time-consuming
upload process.

In summary, the upload process, the data structure, and the simplicity of the user
interface should be improved. Better search functionality would be nice to have.

1.5.4 Potential of Crowd-Sourcing Initiatives

In subsection 1.2.2 we introduced different classifications for collaborative projects.
In the following, we will return to the taxonomy of Oomen and Aroyo, the different
types of crowd-sourcing, and investigate which are suitable for our project.

22

1.5 Our Project Prerequisites

Table 1.2: Types of crowd-sourcing initiatives according to Oomen and Aroyo, How
we see their potential and our ideas

Crowd-Sourcing Type Potential Possible Ideas
Correction and
Transcription Tasks

high transcribing handwritten annotations from
the photos; commenting; editing

Contextualization high commenting; photo events; separate
display of especially cryptic pictures;
video or audio recordings

Completing Collection medium uploading functionality for all users
Classification medium allocating photos
Co-Curation high collection creation for all users; creation of

blog posts with exhibits
Crowdfunding low -

Correction and Transcription The digitization of an extensive collection can be
time-consuming and error-prone as we saw in section 1.5.2. Because of that, facilitat-
ing the upload process to reduce mistakes is essential for our project. But, since we
cannot exclude all errors, allowing our users to report and correct false information
related to the pictures is important as well. They could comment or directly edit the
concerned piece of information.

There are also useful applications for transcription in our project: Users could help
to make out the photographer’s handwriting on the back of pictures or the protective
envelopes. This could make the upload process faster and the curator would no
longer have to figure out alone what is meant by some annotations. Another use
case, where transcription could make sense, would be pictures with writing, photos
of menus, street signs, banners, etc.

Contextualization AsHerbert Ahrens was a press photographer, he captured local
history and customs as well as regional and national events. Non-locals can hardly
recognize these traditions and assess their meaning to the area. For example, pictures
of the so-called finch maneuver (“Finkenmannöver” in German) can be found in the
archive. These are traditional singing competitions for chaffinches, which have been
held in the Harz Mountains for more than 500 years and are part of the UNESCO
Intangible Cultural Heritage but are nowadays controversially discussed from the
perspective of animal welfare. Background stories like this could be commented on a
picture. Another interesting approach would be allowing users to record and upload
video or audio, telling the stories themselves. Especially cryptic pictures could be
placed very eye-catching and in connection with a call for further information on the
website. Our project partner told us that they visited certain clubs and senior groups
with the analog photos, who then remembered a lot while discussing together. For
such events, one could build a suitable interface.

That is why contextualizationmay be considered asmost important for our project.

23

1 A Crowd-Sourced Picture Archive

Completing Collection Some users might have personal photos from some of the
captured events in their photo albums or boxes in their attic and be interested in
sharing these photos via our platform. Maybe, these photos show another detail,
give further insights into a situation, or benefit other viewers differently. Another
way for users to complete the collection would be with pictures from today, showing
how historic places look nowadays.

Classification A collection of 500, 000 prints is a real treasure. Nevertheless, there
are so many pictures that it can quickly become confusing and chaotic to navigate
through them. Both the curators benefit from an improved structure because it helps
them to keep track of the entire collection, and visitors, who can take in the known
information about a picture more quickly this way. Therefore, further, structured
information about the pictures is beneficial.

Users could help to classify different motifs in the photos. It is also imaginable that
users set pins on a map of the area allocating the pictures (comparable to Figure 1.6
and the Map prototype in chapter 7). Maybe the same approach of users classifying
pictures could work for years or at least time ranges.

(a) An exemplary gallery (b) An exemplary blog post

Figure 1.19: Europeana22

22https://www.europeana.eu/en/blog/europe-in-space-european-astronauts-and-cosmonauts (last accessed:
2022-07-12).

24

https://web.archive.org/web/20220713175018/https://www.europeana.eu/en/blog/europe-in-space-european-astronauts-and-cosmonauts

1.6 Summary

Co-Curation Co-curation could be implemented by giving users to chance to create
their personal collections andmaybe provide context for them. This would allow our
users to collect photos with a personal meaning. Blog posts (see Figure 1.19b and the
Stories prototype in chapter 7) could also be interesting for anyone whether historian
or contemporary witnesses, who would like to share a detailed and extensive story.
Other users might be interested in content created by other users and discovering
something new.

Crowdfunding As a non-profit organization supported by donations, they do not
see the need for a specific crowdfunding initiative. It would be an imaginable way of
financing new technical equipment such as a scanner in the future. Due to the lack
of relevance for our project, we will not discuss crowdfunding further.

1.6 Summary

In the last months, we implemented our Crowd-Sourced Picture Archive, a crowd-
sourcing platform for Bad Harzburg’s historical photos. Thereby, we focused on two
aspects in parallel: building prototypes and testing them and building a productive
system for our project partner.

At the beginning of this chapter, we pointed out the value and importance of
cultural heritage and being aware of our history. It helps us as a society to grow
as we try to learn from our ancestors’ faults and allows us to better understand
today’s circumstances. So we should protect the rare means of cultural heritage
like our project’s photos. Then we considered crowd-sourcing as a way of gaining
knowledge about the pictures. Next, we looked at five crowd-sourcing projects in
the cultural heritage domain which implement different kinds of participation. We
observed that there are many projects with an active user community that succeed
in presenting their large number of exhibits clearly and well-structured. After that,
we explained the personas involved and our legacy system. We found different ways
of crowd-sourcing which seem to be suitable features for our platform.

In chapter 2, we examine the requirements for our system. This system is a React
web application. The digitalized pictures as well as the other related data are saved
in a PostgreSQL database and organized by the Content Management System Strapi.
Deeper insights into our tech stack, further used software, and technologies can be
found in chapter 4, chapter 5, and chapter 6. There we also explain why we used
React, Strapi, etc. as well as present and discuss our design decisions.

In parallel with the development, we explored the interaction of potential users
with our web application and low-fidelity prototypes. Therefore we visited Bad
Harzburg and had the chance to test with local and elder people. Our approaches,
tests, and results are described and analyzed in chapter 3 and chapter 7.

25

2 Functional Constraints and
Requirements

In chapter 1, we described the problems the Bad Harzburg-Stiftung had with digi-
tizing the “Herbert Ahrens Archiv” and the challenges which arose when making
the archive publicly available. These occurred mainly in the upload process of the
images, their structuring, and the collection of the available picture information.
Chapter 1 also introduced the curator as an essential role. This user group is work-
ing with the archive by digitizing the images and managing their information. In
this chapter, we will describe the initial requirements for a Crowd-Sourced Picture
Archive. These are meant to ensure better preservation of the images and their sto-
ries compared to the old software solution. Therefore we will take a look at existing
picturemanagement and picture sharing solutions and examine their applicability to
the “Herbert Ahrens Archiv”. Based on this, wewill present functional requirements
for a Crowd-Sourced Picture Archive that will hopefully simplify the work of our
project partner.

2.1 Initial Project Partner Requirements

In several meetings with our project partner, we were able to get a better insight into
the domain and work out initial fundamental requirements. These requirements are
divided into three classes. The first one addresses general requirements that must
be met to digitize an archive of our size. The second class takes a look at usability.
The third class deals with picture curation requirements and covers the upload
process which was one of the main problems of the old system as well as curatorial
requirements for image editing and structuring. These requirements are summarized
in the following tables.

General Requirements

Table 2.1: General requirements

Reference Requirement
g.1 Platform needs to be able to handle a large number of pictures
g.2 Cost for Software solution should not be high

27

2 Functional Constraints and Requirements

g.1 As already mentioned in chapter 1, the “Herbert Ahrens Archiv” itself consists
of almost 500,000 images. In the long term, there is an interest in including
other archives from the entire Harz area, which would further increase the
number of photos.

g.2 The archive is currently administered by the non-profit Bad Harzburg-Stiftung.
Therefore, the software solution should only cost around 50€ per month or
150€ once.

Usability Requirements

Table 2.2: Usability requirements

Reference Requirement
u.1 Simple, intuitive user interface for all user groups
u.2 Mobile support
u.3 Support both general discovery and specific inquiry of pictures
u.4 Low entry barrier for contributors and archive access
u.5 Support transcribing image information at conversation pace

u.1 As described in chapter 1, one of the main problems with the old systemwas the
user interfaces for curators and regular users. In a new system, these interfaces
should be simple, intuitive, and clear, thus making it easier to use the system
for all user groups.

u.2 Nowadays, many people use mobile devices, therefore it is important that the
archive is also usable on mobile devices [56].

u.3 With a large number of photos, it is important that the structuring of the photos
remains understandable and intuitive. Furthermore, it should be possible to
discover and structure photos based on different attributes.

u.4 The archive should be freely accessible to everyone and should not require any
login. Since the archive relies on outside information to preserve the stories
behind the pictures, the contribution of information must be made as easy as
possible.

u.5 One use case of the system is the application at events where pictures are shown
to attendees to gather additional information. For this purpose, information
must be entered directly into the system at the pace of the conversation.

Picture Curation Requirements
p.1 The platform should not become a space for hate or misinformation. Therefore,

every contribution by users should be approved by the foundation beforehand.

28

2.2 Picture Management Applications

Table 2.3: Picture curation requirements

Reference Requirement
p.1 Moderation of comments to prevent abuse
p.2 Bulk editing pictures and organizational structure
p.3 Extensible meta model
p.4 Support different curator access levels
p.5 Scanner integration and upload process has to be improved
p.6 Mark unverified information as such

p.2 With the increasing number of pictures, it must be possible to edit multiple
images at the same time to make the curation process easier and faster.

p.3 To make the system adaptable and flexible for future requirements and func-
tionalities, changes to the meta-model should be possible.

p.4 To distribute the work on the archive among multiple curators, different curator
roles need to be supported.

p.5 In the past, the upload process was very time-consuming, not very efficient, and
required the use of several applications see chapter 1 for a detailed analysis.
However, as the photos should be saved as quickly as possible, it is necessary
to simplify and automate this process where possible.

p.6 Some elements of a picture are hard to recognize andmemories of contemporary
witnesses can be incorrect. Thus, some information needs to be marked as
debatable to distinguish it from verified information.

2.2 Picture Management Applications

Based on our requirements described in section 2.1 we analyzed and looked at var-
ious picture management systems. Existing solutions in the field can be compared
and distinguished on different levels, for example, platforms vs. applications, public
vs. private solutions as well as for-free vs. commercial.

The first category of picture management applications considered here is personal
picture archives, which focus mainly on photographers who need to sort and edit
their images. Examples of these kinds of applications are Adobe Lightroom, Mylio,
and digicam. Personal picture archives usually come with a variety of image editing
tools. To organize pictures, they usually work with category tags, albums, people
tags, and location data. These allow users to find specific images from a large number
of images. Some applications come with cloud implementations to store the photos
while others store the photos locally. Photo sharing is mostly supported within the
respective ecosystem but not outside the system on a large scale. Applications such
as Apple Photos and Google Photos also fall into the category of personal picture

29

2 Functional Constraints and Requirements

archives. These applications focus on a broader audience and often come with lim-
ited storage and minimal customization options. They often have less photo editing
functionality, but still allow the management and organization of photos by tags,
people, and geo data.

A different type of picture management system explored here is social media
platforms like Instagram, Flickr, or Facebook. These allow the upload of images
in the form of posts on an existing platform. Some support organizing posts into
albums, while others present posts in a single photo stream. As these are social
media platforms, the focus is on interaction with other users through, for example,
comment sections, direct messages, and likes. In some cases, an account must be
created to access the photos, while other platforms can be used to view posts without
an account. Above all these applications are characterized by the fact that no technical
knowledge is necessary to present pictures and an already existing community is
present.

The last category of picture management systems addressed here is website
builders that feature picture management solutions. These mostly work with plugins
and themes which allow users to create one’s website without extensive technical
knowledge in web development. WordPress is one of the most prominent examples
and comeswith a large community of users and plugin developers. To customize plu-
gins or themes to meet special requirements some software development knowledge
is needed.

2.3 Application Selection

In the following, we are going to look at concrete software solutions. During this
process, we will focus on the picture upload, a picture’s meta information, picture
structuring, search functions, and image sharing. In the context of the requirements
described in section 2.1, we will analyze the software solutions for applicability in
our case. In the field of personal picture management systems, we will examine both
Adobe Lightroom andApple Photos. Among the group of socialmedia platforms,we
will look at Flickr since Flickr focuses mainly on images. WithWordPress being used
in 43% of all known websites it is the most popular website building tool.1 Therefore
we are going to review WordPress in the context of website building applications.
In the last step, we will switch domains and look at the streaming service Netflix in
terms of its content discoverability and content presentation characteristics.
In the analyses, we have considered the usability of the user interfaces to a limited
extent. All analyzed software solutions are established products that have millions
of users and were developed by experts. A detailed analysis of their user interfaces
would go beyond the scope of this work. However, if there are concrete problems
with the usability of any interface in our context, these were addressed.

1https://w3techs.com/technologies/details/cm-wordpress (last accessed: 2022-07-13).

30

https://w3techs.com/technologies/details/cm-wordpress

2.3 Application Selection

2.3.1 Personal Picture Management Systems: Adobe Lightroom CC

General Adobe Lightroom is a cloud-based personal picture archive that comes
with a variety of photo management and photo editing features. The standard Light-
room license costs around 11.89€ a month and features 1 Terabyte of cloud photo
storage with every additional Terabyte costing another 11.89€. According to Adobe,
one terabyte is equivalent to about 200,000 JPEGs. Lightroom can be used across
mobile, desktop, and web devices, the pictures being synced in the cloud.2

Picture Upload Images can be imported into Adobe Lightroom either by navigat-
ing into the corresponding folder and then selecting the photos or via drag and drop.
Lightroom detects duplicates by name and issues a warning to the user before up-
loading them again. During the upload, a dropdownmenu opens where the user can
decide if they want to upload the photos to an existing, a new album, or no album
at all.3

Picture Meta-Information A picture’s metadata in Adobe Lightroom consists of a
variety of attributes. These include title, description, persons, location, rating, and
keyword tags. Ratings and flags are options for the curator to structure the workflow,
for example, indicating that a photo is not fully curated or that it contains unveri-
fied information. Keywords in Adobe Lightroom describe the content of a picture
and allow searching for pictures in the archive. Keywords can be nested and the
curator can define synonyms for a keyword to make the search even more effective.
Keyword sets are self-defined thematic groups of keywords that help speed up the
tagging process. By selecting pictures in the grid view many pictures can be tagged
simultaneously.

Picture Structuring In Lightroom, photos can be displayed based on different at-
tributes. The user can display all photos, recently added photos, photos sorted by
time, or sorted by people. Furthermore, Lightroom has different views for presenting
photos. The view option Photo Grid shows only the thumbnail without any addi-
tional information. Square Grid shows all thumbnails in the same size, along with
a status flag, a rating, and sync status. The detail shows single pictures together
with the associated information. Each album in Lightroom has a title. Pictures can
be added to albums by dragging them into albums. One picture can be included in
more than one album. Folders can contain other folders or albums.4 Lightroom has
a feature that, when enabled, analyzes photos in the cloud and allocates individual

2https://www.adobe.com/de/products/photoshop-lightroom/compare-plans.html (last accessed:
2022-07-13).

3https://helpx.adobe.com/content/help/en/lightroom-cc/using/add-photos.html (last accessed: 2022-07-
13).

4https://helpx.adobe.com/content/help/en/lightroom-cc/using/organize-photos.html (last accessed:
2022-07-13).

31

https://www.adobe.com/de/products/photoshop-lightroom/compare-plans.html
https://helpx.adobe.com/content/help/en/lightroom-cc/using/add-photos.html
https://helpx.adobe.com/content/help/en/lightroom-cc/using/organize-photos.html

2 Functional Constraints and Requirements

faces to group photos based on detected persons. The curator can rename, merge or
remove a photo from a people tag and change the tag‘s cover photo.5

Search Lightroom comeswith a powerful search and filter tool. It allows the user to
search for photos based on every picture attribute and interactively gives suggestions.
While searching, it is possible to specify which picture attribute the user would like
to search. These filter options can be set manually or set by typing “attribute:” “x”
e.g “camera:” “Canon”. Search results can be sorted based on a variety of attributes
such as capture time, import date, or rating.

Picture Sharing Group albums in Lightroom allow the user to share pictures with
other people and let them contribute. Albums can be shared via a link or by adding
people via their email addresses. The user sharing an album can choose, whether
people can only view the pictures, contribute pictures or edit and contribute. Here
editing only means making changes to a photo but not changing its tags or metadata.
The user that is sharing the album can also adjust the web appearance of the album
thus choosing between dark and light themes and different layouts. A shared album
can be viewed without an Adobe account but to comment, like, contribute, or edit
pictures an account is needed. Users viewing an image in a shared albumwill see the
title, description, format, upload date, and location. They can’t see tags or persons.6

2.3.2 Analysis: Adobe Lightroom CC

General With the possibility of expanding the available storage, it would be possi-
ble in Lightroom to manage an archive of our size and beyond (Req. g.1). The cost
for managing 500,000 JPEG images in Lightroom would be 35.67€ (Req. g.2).

Usability The general interface of Lightroom appears to be quite complex initially,
which is due to a large number of features. To simplify this, a lot of icons are used and
a built-in help function explains functionalities andworkflows (Req. u.1). Lightroom
also exists as a mobile app, and shared albums can be viewed on the phone (Req.
u.2). In terms of general discovery, Lightroom supports albums as well as picture
information based filtering of pictures. Folders help to organize albums but can
only contain other folders or albums. Structuring with sub-albums is thereby not
supported. It is not possible to view pictures on a map, based on their location
data. The search and filter functions allow a specific inquiry of pictures. Since all of
this doesn’t apply to shared albums, these features are only available to the person
creating a shared album (Req. u.3). By requiring users to have their own Adobe
account to access a shared album and add comments, Lightroom is not suitable as
an application for sharing an archive publicly (Req. u.4).

5https://helpx.adobe.com/content/help/en/lightroom-cc/using/people-view.html (last accessed: 2022-07-
13).

6https://helpx.adobe.com/content/help/en/lightroom-cc/using/save-share-photos.html (last accessed:
2022-07-13).

32

https://helpx.adobe.com/content/help/en/lightroom-cc/using/people-view.html
https://helpx.adobe.com/content/help/en/lightroom-cc/using/save-share-photos.html

2.3 Application Selection

Picture Curation Comments within a shared album are posted directly but can be
deleted afterward. Drafting comments before publishing is not supported (Req. p.1).
In Lightroom, multiple photos can be selected and then tagged, edited, and added to
albums. This allows bulk operations to be performed rather than editing each image
individually (Req. p.2). The meta-model in Lightroom cannot be extended with new
attributes, thus no additional information about an image or album can be stored
(Req. p.3). Shared albums allow users to edit photos or add new photos. However,
image information or tags cannot be edited. This would be an important feature to
split up curation tasks among multiple curators and provide different curator access
levels (Req. p.4). Uploading pictures in Lightroom works manually. Direct scanner
integration or auto-watched folders are not supported (Req. p.5). Ratings and flags
can be used by users to mark images with unverified information as such. Concrete
information cannot be marked as unverified (Req. p.6).

Conclusion Adobe Lightroom is primarily designed for photographers and photo
editing, many of the available picture editing features are only partly relevant to our
application. Direct scanning of photos into the upload interface is not supported
by Lightroom. Similarly, it is not possible to auto-import pictures from a watched
folder as in the desktop-only version of Lightroom Classic. Shared albums are, as the
name suggests, individual albums.Making an entire archive with several folders and
subfolders accessible, as necessary in our context, is therefore not possible. More-
over, the interface of shared albums cannot be changed beyond the limited options
available. Thus, it would not be possible to adapt the user interface specifically to
our needs.

2.3.3 Personal Picture Management Systems: Apple Photos

General Apple Photos has a lot of similarities to applications like Adobe Light-
room or Mylio. It uses a navigation bar that directs the user to “Library”, “For You”,
“Albums” and “Search”. Figure 2.1 offers a view on its starting page and the navi-
gation bar. Under “Library”, users can view photos and videos sorted by time or
view all of their photos and videos. The “For You” page shows auto-curated picture
collections like “Memories” and shared albums. The “Album” tab shows self-created
and shared albums [2].

Picture Upload Pictures can be uploaded to Apple photos either by navigating
into the corresponding folder and selecting them or via drag and drop.

Picture Meta-Information A picture in Apple Photos has a title, a description,
keywords, a location, persons, information about the camera as well as a favorite tag
to mark favorite pictures and add them to the corresponding album.

Picture Structuring Albums in Apple Photos have a name and contain photos. In
addition, the application creates auto-curated albums, using image meta informa-

33

2 Functional Constraints and Requirements

Figure 2.1: Apple Photos Starting page

tion such as location, date taken and people recognized.7 In the section Memories,
photos are merged into groups that are related in terms of time or location and are
accompanied by music. This is how yearly reviews, memories of individual days, or
compilations of photos featuring recognized individuals, are created.8

Search The Apple Photos search function is simple in the sense that it consists of a
single search bar, but powerful in terms of its underlying functionality. The search
browses all image metadata and suggests additional search terms from various cate-
gories. The results are displayed in different categories, depending on which image
attribute matches the search terms. It is particularly helpful that Apple Photos rec-

7https://www.apple.com/ios/photos/ (last accessed: 2022-07-13).
8https://support.apple.com/guide/iphone/watch-memories-iphd4f70e68f/15.0/ios/15.0 (last accessed:

2022-07-13).

34

https://www.apple.com/ios/photos/
https://support.apple.com/guide/iphone/watch-memories-iphd4f70e68f/15.0/ios/15.0

2.3 Application Selection

ognizes objects in photos with the help of machine learning algorithms and gives
results based on these.9

Picture Sharing Shared albums allow the user to share photos with Apple users,
but also with non-Apple users, via a link. Shared albums support a variety of image
formats as well as special Apple formats like “Live Photos” and can contain up to
5,000 photos.10 Shared albums are not counted in the available iCloud storage of
a user. When creating a shared album, the user can decide whether people who
access the album via Apple Photos should be able to add their photos. Users who are
logged in can comment on pictures and give them a like. People who access a shared
album via a link can only view the images and their titles. They do not see comments,
likes, or image meta-information and cannot add images themselves. Also, there is
no possibility to search for images in a shared album. For this, the user would have
to save the images in their library first.11

2.3.4 Analysis: Apple Photos

General Apple Photos is designed for organizing private photo collections and
sharing selected photos with friends and family. For this purpose, it offers a variety
of helpful features and a simple user interface. Apple Photos is for free and has no
general limitations on the number of pictures (Req. g.2). “Shared albums” are limited
to 5,000 pictures or 1 GB in size which could lead to problems with larger albums.
Additionally, the number of shared albums a user can create is limited, currently 200.
This could also cause problems in a growing archive (Req. g.1).

Usability Mobile support is given with the iOS app and the Apple Photos web
application forAndroid users (Req. u.2). For personal use self-created albums aswell
as auto-curated albums allow a good structuring of images based on different image
information. However, Apple Photos does not support the hierarchical structuring
of albums, which can make large albums complex and chaotic (Req. u.3). The search
function of Apple Photos with its machine learning algorithms entailed makes it
very easy to find photos. A similar implementation could greatly simplify finding
photos in our archive and would be of great use (Req. u.3). As already mentioned,
shared albums are not sufficient for our purpose to make the photos available to the
public. The only collaboration features in a shared album are comments and likes,
which can only be used by Apple users and are not possible via the website view of
a shared album. In addition, these are posted automatically and can only be deleted
afterward by the owner of the album (Req. u.4 p.1).

9https://support.apple.com/guide/iphone/search-in-photos-iph392d77d5f/15.0/ios/15.0 (last accessed:
2022-07-13).

10https://support.apple.com/en-us/HT202299 (last accessed: 2022-07-13).
11https://support.apple.com/guide/iphone/share-photos-with-icloud-shared-albums-iph3d2676c9/15.0/ios/15.

0 (last accessed: 2022-07-13).

35

https://support.apple.com/guide/iphone/search-in-photos-iph392d77d5f/15.0/ios/15.0
https://support.apple.com/en-us/HT202299
https://support.apple.com/guide/iphone/share-photos-with-icloud-shared-albums-iph3d2676c9/15.0/ios/15.0
https://support.apple.com/guide/iphone/share-photos-with-icloud-shared-albums-iph3d2676c9/15.0/ios/15.0

2 Functional Constraints and Requirements

Picture Curation Apple Photos does not support bulk actions except moving mul-
tiple photos from one album to another. (Req. p.2). In Apple Photos, the image meta
information is fixed and cannot be expanded (Req. p.3). The same applies to the
fixed appearance of the website of shared albums, thus it is not possible to customize
or extend it. Pictures and their metadata within a shared album can only be edited by
the owner of the shared album. This makes it impossible to support several curators
with different access levels (Req. p4). Scanning photos in Apple Photos is not directly
supported by the application. Scanning and uploading photos must be done in two
steps (Req. p.5)

Conclusion Apple Photos is not sufficient for digitizing an archive of our size. The
main problems are the limited number of shared albums as the only way to share
images, the missing possibility to structure albums, and the lack of bulk editing and
curation tools. However, the auto-curated albums are a great feature that helps users
with time-consuming curation tasks and the machine learning-assisted search can
improve and provide more specific search results.

2.3.5 Social Media Platforms: Flickr

General Flickr is an online photo-sharing platform and social network. Flickr al-
lows users to create a free account, upload pictures to their profile, and share them
with theworld. Flickr has similar functions to other social networks such as following
people and liking a post (favorites on Flickr) to save them and show appreciation.
Also, each post has a comment section where users can share their impressions, ask
questions or add any information regarding a post. Flickr has a free version that al-
lows uploading a maximum of 1000 pictures, includes ads, and allows commenting
and favoriting pictures. Without an account, a user can view every public photo on
the platform. The pro version costs 7,49€ a month and allows users to upload an
unlimited number of pictures in full resolution, to reveal extra insights and statistics
around their posts.12

Picture Upload Flickr has an upload interface where pictures can be added via
drag and drop or by navigating to the corresponding folder.13 The interface allows
the user to upload and categorizemany pictures at the same time.With the Flickr pro
version also comes the possibility to auto upload pictures from watched folders.14

PictureMeta-Information During the upload process, users can add a description,
tags, and people in the picture and specify privacy, licensing, and safety settings for

12https://www.flickrhelp.com/hc/en-us/articles/4404078815508-Reasons-to-upgrade-to-Flickr-Pro (last
accessed: 2022-07-13).

13https://www.flickrhelp.com/hc/en-us/articles/4404079632660-Upload-Photos-and-Videos-to-Flickr (last
accessed: 2022-07-13).

14https://www.flickrhelp.com/hc/en-us/articles/4404071315860-About-the-Flickr-Uploadr-for-Mac (last
accessed: 2022-07-13).

36

https://www.flickrhelp.com/hc/en-us/articles/4404078815508-Reasons-to-upgrade-to-Flickr-Pro
https://www.flickrhelp.com/hc/en-us/articles/4404079632660-Upload-Photos-and-Videos-to-Flickr
https://www.flickrhelp.com/hc/en-us/articles/4404071315860-About-the-Flickr-Uploadr-for-Mac

2.3 Application Selection

Figure 2.2: Flickr’s Organizr tool

the picture. Also, pictures can be added to albums and groups. After uploading
pictures, more information about location and camera settings can be added. Flickr
allows the user to edit many pictures at the same time via the Organizr interface.15
Figure 2.2 offers an overview of the Organizr tool and editing options. Single pictures
can be edited by clicking on corresponding fields.

Picture Structuring Each account on Flickr has its page. Each page contains a
navigation bar that links to the About page, the Photostream, Albums, Faves, and
Groups. The landing page of an account is the About page. The About page of an
account gives users the possibility to write something about themself and to show
25 of their photos. Also, some statistics are shown e.g. views, most popular photos,
and a testimonial section.16 The photostream shows all photos of the account sorted
by upload date. Albums allow to arrange images thematically into groups and have
their title and description. Users also can choose the order of the images within an
album. Collections can contain albums and other collections and are used to group
albums.17 The Faves section shows all pictures of other users that an account has
liked. Galleries allow the user to share content from other users.18 They are similar

15https://www.flickrhelp.com/hc/en-us/articles/4404064313620-View-and-manage-your-photos-with-the-
Camera-Roll (last accessed: 2022-07-13).

16https://www.flickrhelp.com/hc/en-us/articles/4404070311060-Get-started-with-your-About-page-in-Flickr
(last accessed: 2022-07-13).

17https://www.flickrhelp.com/hc/en-us/articles/4404064213524-Keep-your-Flickr-photos-and-videos-
organized (last accessed: 2022-07-13).

18https://www.flickrhelp.com/hc/en-us/articles/4404058722836-Galleries-Overview (last accessed:
2022-07-13).

37

https://www.flickrhelp.com/hc/en-us/articles/4404064313620-View-and-manage-your-photos-with-the-Camera-Roll
https://www.flickrhelp.com/hc/en-us/articles/4404064313620-View-and-manage-your-photos-with-the-Camera-Roll
https://www.flickrhelp.com/hc/en-us/articles/4404070311060-Get-started-with-your-About-page-in-Flickr
https://www.flickrhelp.com/hc/en-us/articles/4404064213524-Keep-your-Flickr-photos-and-videos-organized
https://www.flickrhelp.com/hc/en-us/articles/4404064213524-Keep-your-Flickr-photos-and-videos-organized
https://www.flickrhelp.com/hc/en-us/articles/4404058722836-Galleries-Overview

2 Functional Constraints and Requirements

to albums in the sense that they have a title, and description and the owner can
choose the order of the content but they only contain pictures of other users. This
is certainly an interesting feature to include external and additional resources in an
archive. Galleries, like single photos, have their comment section. The Group section
shows all the groups that the user is part of. Groups are a way to share ideas and
photos with people that are interested in the same topic and are similar to a forum.

Search The Flickr search bar allows the user to search for photos, people, and
groups. It is possible to search for pictures on the entire platform as well as in indi-
vidual profiles. When searching for pictures the user can resort to various advanced
settings like searching by colors, tags, time period, licensing, safety, and image for-
mat.

Picture Sharing Images uploaded to Flickr are publicly available based on their
privacy settings. Flickr supports four different privacy settings. Private images can
only be seen by the account holder. The Friends option allows only accounts marked
as friends to see the images. The same applies to the Family option. The Public option
allows anyone to see the images on Flickr.

2.3.6 Analysis

General To digitize an archive of our size one would require the premium version
of Flickr. With a price of 7.49€ per month and unlimited posts, Flickr meets both
g.1 and g.2 of our requirements. In the past, Flickr has had repeated funding prob-
lems [37]. So there is a risk of the platform being discontinued. In this case, there
is the possibility to save and download the whole archive including comments to
prevent losing any information.

Usability Flickr can be used both on the web and as a mobile app (Req. u.1). In
terms of discoverability, it is not possible in Flickr to view photos of an account on a
map based on the geo data or in a time-based order. The About page of each account,
featuring 25 self-selected photos and the possibility to view the most popular, most
commented, or most favored pictures, offers a different entry to the archive, besides
the commonly used approach of organizing albums thematically (Req. u.3). The
Flickr search bar allows specific inquiries of pictures and comes with a variety of
display and filter options (Req. u.3). As discussed earlier, the archive relies on users’
information and stories about the pictures. Flickr main collaboration tool is the com-
ment section which also supports responding to comments and posting pictures.
In terms of layout, the comment section is rather hidden under the pictures. As we
have already seen in chapter 1, a similar design decision in the past caused users
not to find the comment section. A different approach to collaboration is Flickr’s
group feature which allows like-minded users to discuss topics and post pictures.
The Gallery feature is also a form of collaboration since it allows users to create their
new albums from other people’s photos. In our context, users could, for example,
make a gallery out of their favorite photos or create a new group of photos to tell a

38

2.3 Application Selection

new story. The problem with these collaboration tools is that the contributor needs
their Flickr account to use them (Req. u.4). It is possible to change individual picture
attributes directly in the picture view of Flickr, such as album affiliation, tags, title,
and description by clicking into the corresponding field. This would make it possible
to present pictures and at the same time incorporate the feedback of an audience
(Req. u.5).

Picture Curation Comments are automatically posted but can be deleted by the
account holder afterward (Req. p.1). Flickr upload interface and bulk editing tools
allow an intuitive and easy maintenance and upload process that fulfills our require-
ments (Req. p.2). Flickr’s underlying data model and layout are fixed, thus it is not
possible to customize the design to our user group or to provide additional infor-
mation such as the photographer (Req. p.3). For example, in Flickr, it would not be
possible to adapt the user interface such that the comment function is more in the
foreground and viewers are more encouraged to contribute. Collaborative work by
several people, who have different authorization levels and thus perform different
tasks, is not supported. An archive on Flickr is associated with one account that
has all access rights thereby division of labor in the curation process is difficult to
implement (Req. p.4). Currently, one can not directly scan and upload pictures to
Flickr but similar behavior can be achieved with watched folders (Req p.5).

2.3.7 Conclusion

Flickr supports a variety of useful features that enable knowledge sharing. Groups
allow users to create small forums on specific topics. Galleries allow users to create
new albums with photos from other users. However, comments are posted automat-
ically and can only be written by registered users. Albums and collections do not
allow hierarchical structuring with sub-albums and Flickr is hardly customizable.
Therefore Flickr is not an applicable solution in our context.

2.3.8 Website Builder: WordPress

General WordPress is an open-source content management systemwritten in PHP
and originally designed for blog publishing. Today, the area of application also in-
cludes online stores, forums, and content galleries. WordPress has a large variety of
built-in features and external plugins which are created by external developers and
companies. Some of them are free, others are fee-based. These plugins implement
different functionalities and make WordPress very variable. WordPress has a variety
of themes that allow the user to define the look of the site without any programming
knowledge. There are themes that come from WordPress directly and others that
come from external developers. Also, themes can be free or fee-based.

WordPress has a built-in picture and gallery feature. Each gallery has a title and
description. The gallery feature allows the curator to upload pictures via drag and
drop or by navigating to the corresponding folder. The number of pictures in a row
and the spacing between each picture within a gallery can be chosen. Galleries have

39

2 Functional Constraints and Requirements

a “link to” option that controls what happens after clicking on a picture. “Attachment
Page” opens a large version of the picture and shows the picture name as well as a
comment section. “Media File” is similar but allows clicking through all pictures in
the gallery in the form of a slide show. Each picture in a gallery has a description and
an alt-text. The alt-text is supposed to be an explanation of the image content, help
visually impaired users, and is displayed if an image doesn’t load. Pictures can be
edited and arranged and an HTML/CSS class can be defined. The gallery works well
for a few photos that are supposed to visually support a blog post or online store, but
the gallery reaches its limits with many photos. The feature does not support albums
or tags. In addition, the built-in search block of WordPress does not search within
galleries but only in individual photos.19 However, to digitize a large archive like
ours and make it accessible, it is important to structure, tag, and search for photos.
The design of the gallery feature is quite simple but the picture information and
comment section are not very visible. For a better implementation of the archive in
WordPress one would either have to write a special plugin or use one of the existing
picture and gallery plugins. In the following, we will take a closer look at the plugin
NextGEN Gallery.

NextGEN Gallery With more than 600,000 active installations NextGEN devel-
oped by Imagely is Wordpress’s most popular gallery plugin.weblinkhttps://word-
press.org/plugins/nextgen-gallery/ NextGEN Pro costs $139 per year and comes
with different styles and different ways of organizing pictures.20 WordPress comes
with six built-in user roles.21 These allow users to access various functionalities such
as creating posts, moderating comments, or creating pages. NextGEN is building
on these roles to restrict access to custom functionalities such as creating albums
and galleries as well as uploading images.22 NextGEN also allows commenting on
pictures and lets the admin decide whether comments should be drafted or directly
posted [42].

Picture Upload Pictures can be uploaded to NextGEN via drag and drop or by
selecting a picture or entire folder from the user’s computer.

Picture Meta-Information Pictures have an ID, thumbnail, filename, title, descrip-
tion, tags, and the possibility to set a price for potential e-commerce.

Picture Structuring Albums in NextGEN can contain other albums or galleries.23
An Album has a title, description, preview picture, and the option to link to a page
when clicking on the album. Galleries store pictures similar to albums, they have
their title, description, a thumbnail, and with the pro version the option to add a

19https://wordpress.org/support/article/the-wordpress-gallery (last accessed: 2022-07-13).
20https://www.imagely.com/pricing/ (last accessed: 2022-07-13).
21https://wordpress.org/support/article/roles-and-capabilities/ (last accessed: 2022-07-13).
22https://www.imagely.com/docs/roles/ (last accessed: 2022-07-13).
23https://www.imagely.com/docs/albums-vs-galleries/ (last accessed: 2022-07-13).

40

https://wordpress.org/support/article/the-wordpress-gallery
https://www.imagely.com/pricing/
https://wordpress.org/support/article/roles-and-capabilities/
https://www.imagely.com/docs/roles/
https://www.imagely.com/docs/albums-vs-galleries/

2.3 Application Selection

Figure 2.3: NextGENs tool for structuring albums and galleries [27]

price for an entire gallery. Also, the order of images within the gallery can be set
by the user.24 Via drag-and-drop, the user can add/remove galleries and albums
to/from an album and sort them [27]. Figure 2.3 offers a view of NextGEN’s tool
for structuring albums and managing a hierarchical album structure. To manage the
imageswithin a galleryNextGEN supports a variety of functions. Bulk actions can be
applied to all or individual pictures within a gallery.25 Some interesting bulk actions
are the possibility to watermark pictures, resize images, create new thumbnails for
the pictures, import metadata from the images, or edit, delete, and overwrite tags.

Search NextGEN comes with its own search function that allows the user to search
in tags, descriptions, and alt-text. Additionally, a boolean search is supported as well
as different ways of ordering the search results. A practical search feature is that tags
associated with a search term can be displayed and made clickable. This gives the
user further search restrictions that lead to more precise results and thereby speeds
up the search process.26

Picture Sharing Images uploaded and published in NextGEN are publicly acces-
sible via the associated WordPress website.

2.3.9 Analysis

General The built-in picture and gallery features of WordPress are not sufficient
for our requirements. It lacks important elements like albums, tags, and search func-
tionality to organize the data on a thematic level as well as the presentation of image

24https://www.imagely.com/docs/basic-thumbnail/ (last accessed: 2022-07-13).
25https://www.imagely.com/docs/manage-galleries/ (last accessed: 2022-07-13).
26https://www.imagely.com/docs/search-feature/ (last accessed: 2022-07-13).

41

https://www.imagely.com/docs/basic-thumbnail/
https://www.imagely.com/docs/manage-galleries/
https://www.imagely.com/docs/search-feature/

2 Functional Constraints and Requirements

information to make an archive of our size accessible and to present information
about the images properly. Photo and gallery plugins from WordPress implement
many of our requirements but since they are intended to address a large group of
people, they lack more specific requirements. The picture gallery plugin NextGEN
costs $139 per year and has no limitations on the number of pictures uploaded (Req.
g.1, g.2).

Usability Problems arise when users want to customize plugins or built-in features
for their specific needs. For example, Wordpress’s curator interface, where images
are uploaded and edited, is also the admin interface. This interface is complex and
contains many functionalities that people working with the content of the archive
do not need and should not have access to (Req. u.1). To achieve such customization
of a plugin the user would have to either write a custom support plugin, create or
use custom hooks or override callbacks.27 Changing plugin functionality can be a
difficult task that is quite prone to errors. The same problem applies to the possible
approach of extending the metamodel (Req. p.3). NextGEN galleries are customized
to also support mobile display. However, we saw in chapter 1 that the mobile version
had some issueswith the visibility of the image information and the comment section
(Req. u2). Similar to the previously considered software solutions, NextGEN uses
galleries to structure images. With the help of albums, hierarchical structures can be
created. However, since albums themselves can only contain galleries, this structure
is only conditionally usable for our use case. To achieve deep hierarchies, albums
need to be nested. This can get confusing but there is no built-in functionality to
better structure huge numbers of pictures (Req. u.3). The existing search function
works well and is easy to add to a page. This comes with many handy settings to
better customize the search to the user’s application (Req. u.3). WordPress sites are
freely accessible via the internet and comments can be posted without prior login
(Req. u.4). Picture information cannot be edited directly on the site. To show and
edit the images during a conversation, the shown image would have to be edited
parallel in the WordPress admin interface which would be a complex process (Req.
u.5).

Picture Curation NextGEN’s commenting feature meets our requirements (Req.
p.1). However, additional possibilities for contribution like self-curated galleries are
missing which limits the options of implementing the concept of a collaborative
archive. NextGEN’s interface for editing albums allows curators to change the orga-
nizational structure of albums and galleries quickly (Req. p.2). For photos, NextGEN
supports several bulk actions that allow, among other things, to edit photo meta in-
formation and move photos from one gallery to another (Req. p.2). With the help of
the user roles, it is possible to distribute the work on the archive to different persons
and to determine which access they get (Req. p.4). NextGEN does not support direct

27https://developer.wordpress.org/ (last accessed: 2022-07-13).

42

https://developer.wordpress.org/

2.4 Concept for a Collaborative Picture Archive

scanner integration, for this, an additional support plugin would have to be written
(Req. p.5).

Conclusion NextGEN is remarkable for its low implementation effort. It allows the
users to set up a digital photo archive in the form of a website without the need for
detailed technical knowledge. The plugin supports many settings and functions to
adapt to different domains. The bulk actions allow the user to keep control even with
an increasing number of images. For our use case, however, the lack of customizabil-
ity outside of the supported settings is problematic as some of our requirements are
not supported.

2.3.10 Different Domain: Netflix

Netflix is an American streaming service that works via subscriptions. The Netflix
Web page uses a navigation bar that links to the homepage, series, movies, the “New
& Hot” category, a personal list, and a search. In the context of content discoverabil-
ity, the homepage that also works as Netflix’s landing page is particularly interesting
to us. The “Home” page looks different for each user and is intended to present the
content of most interest to each user. Netflix has over 17,000 titles worldwide and
therefore has a similar problem to ours. How do you show the user the right titles
that interest them and make them stay on the page? The homepage consists of vari-
ous thematically grouped films and series which are arranged in rows. This creates
a two-dimensional structure. Horizontally there are titles within one category. On
the vertical level, there are different categories. This makes it possible to present and
navigate a large part of the content intuitively. The content of these categories can
be created based on metadata such as genre or actors involved in the movies. For
example, categories are latest releases, trending movies as well as continue watching.
However, behavioral information is also used. For this, Netflix uses collaborative
filtering algorithms that make suggestions for new titles based on the behavior of
similar users. It is important that the films displayed in the different categories corre-
spond to the user’s taste but also include diverse titles to also suggest titles to users
that they might like but are different from previous titles. Netflix uses a ranking
system that ranks both the categories and the titles within. To ensure diversity, the
categories are not ranked in isolation, but the two rows above are also included in
the ranking. To test this automated home page generation, A/B testing, as well as
measured data, was used. For example, the scrolling behavior of the user can be mea-
sured and analyzed to test the utilization of the home page and the recommendations
on it [1].

2.4 Concept for a Collaborative Picture Archive

In section 2.3, we demonstrated that none of the applications we considered met our
requirements in their totality. However, we gained valuable insights into how differ-

43

2 Functional Constraints and Requirements

ent applications solve similar problems and requirements. We have also described
interesting features that could be used in our application.

In the following, we will present what an application that meets those require-
ments could look like. The basic approach is to use a content management system
and build a web application on top of it (chapter 4 and chapter 5 for more detail).
This modular approach allows a flexible development of a system that fully suits the
established requirements. First, we will discuss aspects concerning interface design,
picture uploading, picture editing, picture structuring, and collaboration functional-
ities. Then, we will describe the different user roles interacting with our system and
present a suggestion for an underlying data model for the system.

2.4.1 Interface Design Choices

To make our application easy to navigate, a prominent navigation bar that leads to
different functions like a search would be useful. This could look and work similarly
to the featured navigation bar of Apple Photos, which stands out for its simplicity and
comprehensibility. All of the applications considered allow viewing photos in full
screen as well as browsing through photos in the form of a slide show. Both features
enrich the user experience and thus are also desirable for our system. To make all
available image information easily accessible, these should be displayed directly
in the picture view. The same applies to the comment function. To understand the
different functions more intuitively, icons and help functions that explain the use
can help.

2.4.2 Picture Uploading

To simplify and speed up the process of uploading new images, it must be possible
for curators to scan the images directly into our application and in the next step
enter the attached metadata. For this, integration into our system of the scanning
software as well as picture editing software for cropping and minor changes must
be supported. At the same time, we want to support the classic variant of uploading
via drag and drop to upload already existing scans.

2.4.3 Picture Editing

In terms of picture editing and curation, Flickr’s approach works best as it supports
both bulk editing of pictures and single picture editing (see subsection 2.3.5). Taking
inspiration from Flickr, we aim to minimize the steps required to edit picture infor-
mation by making it possible to edit the information of a single picture in the picture
view itself. For this task, the curator should be able to change and add new picture
information such as description, time of recording, keywords, people, and location
tags directly by clicking into the corresponding fields. This will make the curation
process of individual image information simple and intuitive. By implementing a
similar interface for viewing and editing the images, the transition from a regular
user to a curator is made easy. Thus, the concept of a collaborative picture archive

44

2.4 Concept for a Collaborative Picture Archive

is implemented on the user interface level. With an archive of our size, it may well
happen that a large number of images contain incorrect information, need to be
re-sorted, or have to be re-curated. In this case, it must be possible to edit several
pictures at the same time. An interface similar to Flickr’s “Uploadr” interface would
cover this use case. Here, multiple photos can be selected and bulk operations can
be performed on them, e.g. adding new tags, changing existing information, or re-
sorting the images into another collection. It is important for these operations that
the curators do not have to access the database or the content management system
directly to fulfill the requirement u.1 from section 2.1. To best distribute the curation
process among different people, it must be possible to give multiple people access
to the curator tools. To ensure aspects of data security and safety, not every person
should be able to perform all of the tasks. Therefore different access levels and user
roles similar to WordPress(subsection 2.3.8) should be supported. What these user
roles could look like is discussed in subsection 2.4.6.

2.4.4 Picture Structuring

We have seen that the typical structuring of a large image set can be done with
the help of thematic albums. All of the software solutions considered following
this approach as their main method of structuring. In addition, they support the
filtering of images based on other metadata such as person tags, geographic data, or
temporal classification. Since the archive in its analog state is currently also organized
in thematically sorted folders, a hierarchical album structure, where albums can
contain both photos and sub-albums, could be a suited structure for our archive.
As the pictures were mostly made in a geographically very narrow area, it could
be interesting to show the pictures sorted geographically. For example, on a map
or grouped by location. The same applies to a chronological classification, as the
photos show the history of the Harz region throughout the 20th century. Many
of the images contain people, which is why a good classification of them can be
particularly interesting. Identifying people in each photo and manually tagging
people is a time-consuming and error-prone process. Adobe Lightroom and Apple
photos are examples of using automated people recognition to easily perform such
grouping. ​​Netflix is a great example of how a personalized homepage can help
users to access titles from a large amount of content, based on their behavior. In our
context, such a feature could suggest to users albums they have started browsing,
new albums that have been added to the archive as well as new picture collections
based on their behavior and interests. To support the specific inquiry of pictures a
search functionality is going to be needed. Our metadata selection should support
this use case and form the basis for search parameters. With Apple Photos we have
seen a good example of how machine learning algorithms can improve the quality
of search results by enriching the meta information with automatically recognized
image contents.

45

2 Functional Constraints and Requirements

2.4.5 Collaboration

As described in chapter 1, the motivation of the project is to preserve the images and
their stories and make them accessible to the public. For this, our project partner
depends on the knowledge of contemporary witnesses and local residents. That
is why users need to be able to contribute this information. All of the applications
considered in section 2.3 use commentary functions for this purpose. These allow for
the simple and familiar contribution of information. Therefore, a comment function
would also be useful in our application. Flickr is an example of other collaboration
possibilities. Features such as likes, self-compiled albums, and groups could also
encourage collaboration.

2.4.6 User Roles

Photographer The Photographer does not interact with our system directly. How-
ever, he or she took the photos and left some information that might be of interest to
the archive in the pictures folder.

Curator Curators manage and work with the archive. They take the pictures out of
their protective covers, scan them and upload them to the platform. After that, they
provide all the information they received about the motive, context, location, per-
sons, or time. When new information concerning a picture becomes apparent, they
update this information. The curator also develops and maintains the organizational
structure of the pictures.

Browse User A Browse User visits the digital archive without a specific idea or
interest regarding the pictures. This type of user browses through the archive from
one topic to another.

Search User Search Users search for certain pictures or topics they are interested
in.

Contributer AContributor has the right to add information to pictures but can not
upload new pictures.

Commentator Commentators add information to a picture in the archive by writ-
ing a comment.

Moderator A Moderator looks over every written comment, checks the informa-
tion, and prevents abuse.

Admin Admins maintain login credentials and access rights for curators, contribu-
tors, and moderators. Admins are also able to access the data model and the content
management system.

46

2.4 Concept for a Collaborative Picture Archive

Figure 2.4: Domain model of the archive

2.4.7 Data Model

Figure 2.4 offers a view of the Domain Model and shows the described user groups.
In section 2.3 we looked at different software solutions and their digital represen-
tation of an image. Most of them associate a picture with a title, a description, tags,
persons, locations, and the camera that was used to take the photo. As we have
already discussed in chapter 1, in the old system a title was stored for each image.
During our analysis, we realized that a title attribute is not necessary. The titles con-
tained mostly redundant data and the descriptions are not long enough to require
a summary in form of a title. In the old system, the folder structure was expanded
step by step without a concrete plan for the entire archive. This made the structure
confusing and difficult to understand for new curators. Our first idea was to convert
albums into category tags. These would have had a name, a description just like

47

2 Functional Constraints and Requirements

Figure 2.5: Picture data model

albums, and an additional priority attribute. Images would have had several cate-
gory tags and category tags would have been related to each other. With the priority
attribute, it would have still been possible to keep the information on the hierarchical
structure of albums. However, together with the project partner, we decided that
we do need a clear hierarchical structuring in the form of albums since this gives
especially Browse Users a good overview and gateway to our archive. That is why
we came back to the initial idea of pictures belonging to collections and collections
holding subcollections. Figure 2.5 offers a view of the final data model.

The data that was stored in the old system as keywords, is divided into loca-
tion, keyword, person, and time range tags. This way specific search queries can be
supported and the information can be presented in a better, more structured way.
Location tags have coordinates in addition to the name to support the display of
pictures on a map. Time range tags have a start and end date as attributes to support
both accurate and inaccurate time stamps. In addition, we have added an archive
tag that supports the hosting of other archives besides the Herbert Ahrens archive
on our platform. Location, person, time range, and category tags have an additional
“is verified” attribute on their picture to fulfill our requirement p.6 from section 2.1.
This design choice will be discussed in more detail in chapter 5.

2.5 Summary

In this chapter, we have elaborated that none of the considered applications in the
field of picture management and picture sharing fully meet our requirements. The
problem lies in combining image management tools, image sharing tools, and col-
laborative knowledge sharing features. Based on our initial requirements and the

48

2.5 Summary

insights we obtained during the examination of existing applications, we presented
a concept for a potential software solution. We described functionally how picture
upload, picture editing, picture structuring, collaboration tools, and UI choices could
be implemented in such a system.We also presented the various user roles and a data
model for such a system. To improve the upload process, scanner and picture editing
software need to be integrated into the application. Bulk operations for picture edit-
ing as well as an easily usable interface, for changing a single picture’s details, are
desirable. Contributing information should be made as easy as possible. Therefore
a comment function and the possibility for users to create their albums could be
implemented. To divide curation tasks among several people, different access levels
should be supported, based on the roles described in subsection 2.4.6.

49

3 Evaluating Design Decisions regarding
Usability

One important part of an application’s lifecycle is usability testing. According to
Levi and Conrad [34], “usability testing is the process by which human-computer
interaction characteristics of a system are measured and weaknesses are identified
for correction”. Usability testing is therefore crucial to check whether the product or
application is ready to be used and enable improvement. This is especially important
for our project because of its intended public availability and usability for everyone.
The goal of our application is to preserve and exchange knowledge. This includes the
necessity of a visitor interfacewhere the pictures and their information can be viewed
and comments can be added and an interface for the curators to manage pictures
and their information. For both, we have to fulfill certain requirements, especially
regarding usability. We display the requirements of interest for this chapter in the
following. To get a full list of the requirements of our application see chapter 2. The
visitor interface has to be usable by everyone and be intuitive (u.1), especially the
comment section. Browse and search functionalities have to be included (u.3) and
mobile support has to be provided(u.2). The curator interface also has to be easy to
use and both interfaces must be integrated into each other (u.1). The scanner has to
be integrated into an easy workflow(p.5) and the moderation of comments has to
be possible (p.1). We used two different approaches to evaluate these requirements.
Qualitative evaluationwas essential to verify themore specific requirement (u.3) and
to discover what usability hindrances exist (u.1). Whereas quantitative evaluation
was applicable for u.1 to get feedback on the general usability.

We will start with the first design prototypes followed by the description of the
first implemented application design V0 and of the curator interface design from
version V2. Thereafter we explain our testing process with heuristics, pilot testing,
user testing, and the curator interview. V0 was adjusted to V1 with insights from
the heuristics and pilot testing. V1 was then used in the user testing and further
developed to V2 containing the curator interface we described earlier. Lastly, we will
discuss how our goals were met and draw an outlook on what still could be tested,
adjusted, and implemented.

3.1 Design and Implementation

This section introduces important design aspects for our prototypes, client feedback,
and design details of V0, followed by an introduction to the curator interface V2
design.

51

3 Evaluating Design Decisions regarding Usability

Figure 3.1: Prototype 1 with time range slider. Now only pictures with time range
tags between 1960 and 1980 are displayed.

3.1.1 Prototypes

The most central features of a picture archive are displaying and accessing pictures.
Therefore, we started with the picture information that we need to display together
with the picture. In the legacy system, a picture can contain a description text and
tags that are labels assigned to a picture by the curator and can contain information
about the time (time range tags) and further keywords (keyword tags).

The pictures always had category tags that represent the picture’s album. In our
prototypes, we especially focused on how pictures could be accessed and structured
by those tags. Prototype 1 focuses on the search design. The other two prototypes
were based on the requirement to build the application for both Browse Users and
Search Users (chapter 2,chapter 1). Prototype 2 forms a combined design, whereas
Prototype 3 presents two separate views. Our general structuring concept was to first
display all pictures and then use tag selections to narrow them down to find wanted
pictures. Furthermore, the search design included a restrictive search concept where
only pictures fitting all search parameters are displayed.

Prototype 1 (Figure 3.1) contains a search bar that can be used to look up pictures
via the category tags. The search parameters are displayed below the search bar
and are clickable. Another interesting idea was to provide a time range slider below
the search bar. The idea was to support the search for pictures even when the exact
date is not known. The prototype did not focus on Browse Users, yet they can scroll
through all of the displayed pictures.

Prototype 2 (Figure 3.2) was exploring another idea to create a compact, reduced
interface. Prototype 2’s search concept consists of three drop-downmenus where the
user can choose from category tags, keyword tags, and time range tags. In the first
two drop-downs, multi-selection is possible and the concept of a restrictive search
applies. Only the pictures that have all of the selected tags are displayed. The pictures

52

3.1 Design and Implementation

Figure 3.2: Prototype 2 with tag selection drop-down menus. With “Gestüt 1966-
1998” selected only pictures associated with this tag are displayed.

below can be again used to browse, but in this design, a Browse User can also look
through all of the available selection categories to get inspired.

After creating the first prototypes, we wanted to explore a design that includes
functionality for the Search User and the Browse User (chapter 2). To also get a first
understanding of mobile design Prototype 3 was realized with a mockup for the
mobile view. We focused on the two main views: the browse view and the search
view. Both views are accessible via a bottom bar (Figure 3.3).

The Browse(“Stöbern”) view contains the albums seen in the old product as click-
able tiles with a picture, from each respective album taken, as an illustrative back-
ground image. Thereby, we wanted to give more visual input for the browsing pro-
cess and to help decide which tile to click (Figure 3.3).

The design for the search view contained a search bar on topwith horizontal sliders
below. The horizontal sliders contain clickable categories that are created from the
tags assigned to the pictures (Figure 3.3). We conceived a general suggestion slider
and three sliders for places, persons, and decades are created. The suggestion slider
contains a random selection of tags when no search term is entered. When a user
starts to write a search term in the search bar, the tags displayed in the suggestion
slider change dynamically. Tags that fit the search term are shown.

Those horizontal sliders were discussed since various studies and research found
them to be a hindrance, especially for elder people [25]. Another possibility would
have been to create a hinged container per tag type. A hinged container has two
modes. It can hide most of its content and only display a few tags and when clicked
it opens to display more tags taking also more space. The problem is that the limited
space, especially on a small mobile display, would not allow seeing all tags selection
containers at once and making the navigation with opening and closing of the con-
tainers confusing. Our compromise was to add buttons on the right and left side to
give users another navigation opportunity than scrolling horizontally.

53

3 Evaluating Design Decisions regarding Usability

When a picture is clicked, the picture view opens. Here the description and other
picture information such as the time and the comment section are accessible (Fig-
ure 3.3).

Figure 3.3: Prototype 3 – Browse View, Search View, and Picture Viewwith Comment
section

An idea regarding the display, search and order of pictures via place tags was to
use a map (Figure 3.4). Here pins are showing to which places pictures exist. This
approach was not included in our first implementation before testing due to time
constraints. Yet in another user test (see chapter 7) we experimented with this idea
of a geographical order.

User Feedback We presented the prototypes described in section 2.1 to our cus-
tomer to receive feedback. Here we learned that a search as in Prototype 1 or Proto-
type 3 is important, yet according to our customer as displayed in Prototype 1 the
slider is inaccessible for older age groups (Figure 3.1). And even if the drop-down
menus in Prototype 2 allow browsing through the tags, it can be cumbersome to
use the drop-down menus with a big number of selection options and it is easy to
forget to unselect an unwanted tag (Figure 3.2). The mobile design in Prototype 3
was received positively, especially the two views for browsing and searching.

We discussed whether the comment section in the picture view should be form-
like or one input field. The Prototype 3 design held extra input fields for places,

54

3.1 Design and Implementation

Figure 3.4: Map prototype

people, and other information. In the end, one extra input field for the name of
the commentator was concluded to be very important to present ownership of the
comment. The map idea was regarded as very interesting, especially for users from
Bad Harzburg.

3.1.2 Design Details Visitor View V0

Based on the feedback on our prototypes, we started to implement V0. In this section,
we display a selection of design details of V0 that we then tested for usability. Our
focus in this chapter and the usability testing is set on the searching and commenting
yet we also describe the browse view shortly. The search view (Figure 3.5) contains
a search bar and two horizontal scrollable containers with clickable tiles. When
clicking one of the latter, views with pictures connected to the selected tile keyword
are displayed. Inside this view, one can search via the search bar.

Search Bar The search bar is presented with a filler text “search for keywords”
(“Stichworte suchen”). One has to press the “Enter” key to start a search with the
search term. When a search is started, a view with the result pictures or with no
results is displayed. The search bar stays at its position.

Search logic As already stated in the description of the prototype design, we de-
cided on a restricting search. When entering search terms, the result pictures are
those that match each of the terms. When a search is started the matching pictures

55

3 Evaluating Design Decisions regarding Usability

Figure 3.5: Search view in V0

or no result is displayed and one can search again inside this view adding more re-
stricting terms. We call this a nested search. When a user wants to start a completely
new search they can go backward via the “back” (“Zurück”) button until they are
on the start search view again or they can click on the “search” (“Suche”) button in
the Bottom Bar. The only difference to the design of the bottom bar from Prototype
3 (Figure 3.3) is that the button “Menu” is exchanged with “Login”.

Horizontal Containers As in our mobile design prototype, two horizontally
scrolling sliders are placed below the search bar (Figure 3.5). The user can navi-
gate through the keywords using buttons on the right-hand and left-hand sides. One
slider displays suggestions that change dynamically with the search term the user
writes into the search bar. Each time the search term is altered, the suggestions fitting
to the search terms are reloaded and only tags that contain the search term or “No
suggestions found for this search query…” are displayed. The other slider contains
decades from the 50s to the 90s and an earlier decade tile is presented allowing users
to use the chronological order. The original design also included person and place
sliders but was not implemented at this point due to time constraints.

Commenting The visibility of the comment fieldwas a very important requirement
for our customer. The archive is meant to be a way to save and create knowledge
and depends on input from users via a comment section. Yet, on the old website, the
comment function was rarely used due to very bad visibility and usability. There-
fore, we decided to put the comment section in the same side view as the picture
info and give them a more present position that is not only reached via clicking a
small icon (Figure 3.6). Following our client’s statement about the accountability for
comments, we put a name input field on the top of our comment input (Figure 3.6).

We decided on a single field for the input since a form would take too much, po-
tentially unused, space. Especially with the picture information and already existing

56

3.1 Design and Implementation

Figure 3.6: Picture information and Comment section

comments also visible in the picture-info view. Even more so as in the mobile view
space is scarce. Since the existing picture information is extremely important for
every user and also for the content of potential comments, they are at the top of the
view.

Browsing Browsing is another use case that has to be supported by our applica-
tion. As already described in the mobile view mockup, we constructed one view
to display albums as tiles with their text and a picture belonging to the album as a
background picture. Each album can contain several sub-albums. This structure is
like the structure on the old website and also shows the album description text.

3.1.3 Design Details Curator View V2

Our focus for the usability testing was on the regular user interface. Yet we also
wanted to receive feedback on our curator interface. Therefore we held an interview
three weeks after introducing the curator interface to him. Before displaying our
insights into this we will depict the most important design aspects.

Curator Interface One important design goal for the curator interface was to in-
tegrate it into the public website and to unify the views. A curator can now simply
log in from all views. Every view that is available freely accessible also exists when
logged in only with curating options. Furthermore, some views like the new upload
view are only accessible when logged in.

In both search and browse view pictures can be deleted by the curator. In the
browse view, the upload feature is now available. Figure 3.7 shows the public view
of the collection “Gestüt 1966 -1988” and a view with the logged-in state with the
new upload feature.

57

3 Evaluating Design Decisions regarding Usability

Figure 3.7: Browse album view V2, album view curator V2

Upload and Scan
One of the most important aspects of curating is the uploading process. It should

be possible to load a set of pictures on the website or even better allow the curator to
directly scan the pictures into the web archive. We created a upload interface acces-
sible from collections and via a new upload view. The curator can now directly scan
and upload pictures in one application. They can also group pictures by scanning
and uploading them together. From here the picture information can be maintained.
We implemented the scan functionality only for the Plustek Z3000 used by our client.

Figure 3.8: Picture view. Visitor interface and curator interface

Picture Information and Editing
The picture view with editing functionality opens whenever the logged-in curator

clicks on a picture either found in the system or just uploaded. This allows a consis-
tent workflow of scanning and entering the knowledge to the picture keeping both
functionalities close in one application. Figure 3.8 shows the picture view in the cu-
rator version with log-in. Each tag type contains a text input field with a suggestion
drop-down presenting existing tags that fit the input (Figure 3.9). Person, place, and
keyword tags can be created directly inside the picture editing view, too (Figure 3.9).

58

3.2 Empirical Evaluation

Figure 3.9: Tag selection, comment in curator view

Below the picture details, there is the comment section that contains the unrevised
comments that are yet to be published. The curator can now choose to accept or de-
cline(Figure 3.9). They can also edit comments (e.g. misspellings), both published
and not published (Figure 3.6). A comment can furthermore be deleted after be-
ing accepted. Those functionalities were designed and implemented following our
client’s needs and requirements of a comment section that can be moderated.

3.2 Empirical Evaluation

In this section, we present the testing process, methods, and findings. We start with
the testing of V0 with Heuristics and Pilot Testing, followed by the changes we
introduced in V1 and the user testing with Bad Harzburg citizens. The evaluation of
V1 testing contains two aspects: qualitative testing and quantitative testing. In this
process, we focused on evaluating the usability of commenting and searching with
first-time users. Therefore we designed tasks that included searching for pictures
with given information and adding comments. We take a look at the curator interface
interview and finally discuss limitations.

When testing for usability, we first have to define what usability means. We use the
definition from Nielsen [29]. Usability is “a quality attribute that assesses how easy
user interfaces are to use. The word “usability” also refers to methods for improv-
ing ease-of-use during the design process” and is further composed of learnability,
Efficiency, Memorability, Errors, and Satisfaction. We focused on learnability, Errors,
and Satisfaction in our tests. They tell how intuitive and easy a first-time user can
complete basic tasks, how often errors are made and how good a user can recover
from them, and finally how pleased the users are [29]. Efficiency and Memorability
are both not referring to the first intuitive use of the design and thus not applicable
for this test that is conducted with first-time users.

59

3 Evaluating Design Decisions regarding Usability

3.2.1 Heuristics

Starting our User Testing, we wanted firstly to receive an own impression of our user
interface. To get an established approach, we chose Jakob Nielsen’s 10 general prin-
ciples for interaction design.1 It is one of the most popular and recognized methods
in heuristic evaluation. The ten heuristics should be checked by experts against the
system. Thereby, it is recommended to let multiple people conduct this evaluation
and compare and discuss the results. Therefore, two of us checked the ten guidelines
against our system separately. Then we compared and collected our findings.

Figure 3.10: Empty search

Insights The first heuristic is about the “visibility of system status”. When e.g.
pictures are loading a status information text (“Lädt…”) is displayed. In other cases,
our application breached this heuristic. When a search is started that does not have
result pictures, an empty black screen is shown (Figure 3.10). Further information
about why there is nothing to be seen on the screen is missing. Also, the search bar
is still displayed. And this is potentially harmful to the usability since following
our restrictive search logic, from the first no-result search term onwards any other
search term will result again in a no-result search. A user could enter search terms
infinitely with the same black screen as an outcome. Following the 5th heuristic
“Error prevention” the possibility of an infinite empty search should be prevented
by e.g., making another search in an empty search impossible.

In the status quo, the search terms were only visible in the address bar, completely
detached from the search bar and the focus of a user. Both problems can also be

1https://www.nngroup.com/articles/usability-testing-101/ (last accessed: 2022-07-13).

60

https://www.nngroup.com/articles/usability-testing-101/

3.2 Empirical Evaluation

accounted for by the 9th heuristic “Help users recognize, diagnose, and recover from
errors”. With no information about what was entered and why the empty screen
is shown our system can leave the user confused. The not visible search terms are
also problematic following the 6th heuristic “Recognition rather than recall”. Users
should not have to “remember information from one part of the interface to another”
so they should not have to remember what search terms they entered before.

Another hindrance was the inconsistencies caused by the design of the search
view. The suggestions (“Vorschläge”) just below the search bar connote having the
same meaning as search terms entered into the search bar. Sometimes when there
are no fitting suggestions for the search term when starting the search with “Enter”
there are result pictures displayed. The other way around it is also possible to receive
no results when searching via the search bar but there are pictures displayed when
you click on one suggestion. Also, the same search term in the search bar and the
suggestions can yield different results.

After this first evaluation, we decided on a set of adjustments we could implement
in a short time, before creating the tasks for our user testing. When no search result
was produced, we removed the search bar and added the information text “There is
no image matching this request” (“Es gibt kein Bild, das dieser Anfrage entspricht”).
Also, an information icon with explanatory text on how the search is working was
added. The wording in the search bar was changed to “search in image description”
(“in Bildbeschreibung suchen”) to give a better understanding of what our search
does.

3.2.2 User Testing

While performing the user test, one participant and two team members were seated
together. One team member was operating as moderator, the other as recording
clerk. The moderator was giving instructions and the recording person was noting
the workflow of the participant, their verbalized thoughts, and their answers to
the evaluation questions subsection A.1.4. Our participants could choose between
a laptop and a tablet as test devices to make them perform the test on the one they
felt more comfortable with. To receive insights into the participants’ relation to Bad
Harzburg, their age group, and the use of technical devices, the participants filled
out a questionnaire at the end of a testing session subsection A.1.2. To create repre-
sentative test tasks we oriented ourselves on our domain and user analysis.

3.2.3 Pilot testing

Before testing in Bad Harzburg we conducted pilot tests, with three participants in
their early 20s from our peer group, to validate our test tasks and to see if our website
was ready to be tested. We learned that we had to make adjustments to our website
before we could start the real test. To get a better feeling of whether our tasks would
also work for participants from Bad Harzburg we conducted another pilot test with
one participant in Bad Harzburg.

61

3 Evaluating Design Decisions regarding Usability

Findings Concurring with our self-evaluation the search was the biggest source
of inconsistency and confusion. Our changes made before the pilot testing were not
enough to fix the problem. Most of the time participants would not use the search
bar as intended and only use the suggestions. Very interestingly the participants
started searching multiple terms that all could fit onto the searched picture in one
entry. The problem was that our search took the whole search entry as one search
word and queried for it in the same sequence in the description texts. Those search
entries always led to empty searches. This behavior was irritating yet they managed
to change their strategy and enter only single terms. It also led to inconsistency as two
terms term1 and term2 exist so that a searchwith “term1 term2” yields no results, yet
when entering the first term1 and then after submitting the search entering “term2”
there are pictures displayed.

Adjustments (V1) Based on Findings fromour first evaluation stepsweprioritized
necessary changes to our website in tasks of which we present three.

We made it possible to search with multiple terms by using AND joins between
each separate word from a search entry. Now one gets the same search results when
entering “term1 term2” into the search bar as entering “term1” and “term2” succes-
sively. And this inconsistency is fixed.

To improve the search bar “suggestions” usability we adjusted the design com-
bined with a change in the search logic. Therefore we changed the name of the “sug-
gestions” into “Stichworte” (“Keywords”) and added a “Suche absenden” (“Submit
search”)button into the search bar. Furthermore, we changed the search functional-
ity so that not only description texts would be scanned but keyword tags, time range
tags, place tags, and person tags too. Thus we wanted to test whether the perceived
inconsistency could be solved (Figure 3.11).

Figure 3.11: V1 search view

Addressing our findings, and also emerging from explicit participant wishes, we
made the search terms visible in the form of Breadcrumbs shown below the search
bar as was already included in our Prototype 1 (Figure 3.12).

62

3.2 Empirical Evaluation

Figure 3.12: V1 search bar and breadcrumb bar

3.2.4 Qualitative User Testing with Think Aloud

Our first approach to usability testing was qualitative user testing. Therefore, we
chose the think-aloud technique with seven tasks subsection A.1.1. In a thinking-
aloud test, a participant is given a representative task to solve. While doing so the
participant should “think aloud” in other words put their thoughts, ideas, and prob-
lems into words. Thinking aloud is an easy-to-use and cheap testing method. Fur-
thermore, even with small sample sizes, we can get valuable insights and according
to Nielsen, the qualitative approach is more robust against methodological errors
than “statistical” studies [44].

Walkthrough At the beginning of each test session, the moderator explains the
project’s purpose. Each task begins with a motivation(see subsection A.1.1) that
the moderator reads out. The protocol clerk notes the user’s actions, and whether
the user was able to finish the task within the time frame of 10 minutes. After each
task, the moderator asks a set of evaluation questions inspired by “User Interview
Example Questions” from the Yale University website.2 In the end, the participant
fills out the SUS questionnaire and then gives overall feedback to the system with a
set of questions subsection A.1.2.

Study Population The seven participants (P1–P7) from Bad Harzburg were all
organized by our client from his acquaintances and friends or his acquaintance’s
staff.We testedwith 4women and 3men. As can be easily seen, our study population
from Bad Harzburg is unbalanced regarding age group representation. Our main
group are 60–70 years old people with 5 participants, 20–30 and 40–50 only have
one representative and 50–60, younger than 20 and older than 70 representatives are
missing in our study. We have thereby a mismatch between our measuring method
and the BadHarzburger population, yet BadHarzburg has a strong tendency toward
an aging society as can be seen in chapter 1. Our study focuses on participants aged
over 60 and corresponds thereby with the general direction of our user population.

Insights Firstly, most of the participants were highly interested in the application
anddid express their liking of the overall look anddesign. Especially the combination

2https://usability.yale.edu/understanding-your-user/user-interviews/user-interview-example-questions (last
accessed: 2022-07-13).

63

https://usability.yale.edu/understanding-your-user/user-interviews/user-interview-example-questions

3 Evaluating Design Decisions regarding Usability

of the search bar with the horizontal tag selection below was well received and said
to be very useful since it gives flexibility and inspiration on what to look for.

Search
We could confirm the positive impact of our adjustments to the search view and

the perceived inconsistencies. When formerly participants would not start a search
since they didn’t understand they had to use the enter button, now the participants
understood that they had to use the “Suche starten” (“Submit search”) button or use
“Enter”. This could also be impacted by the former “Vorschläge” (“suggestions”)
now being renamed “Stichworte” (“keywords“). Searching not only in description
texts but also in keyword tags combined with the understanding of the users that
the “Stichworte” is not equal to searching via the search bar was successful. Before
testing in Bad Harzburg we did not know that our restrictive search logic would
be different from the users’ expected behavior. They did not understand that each
term narrows the result down. This led to participants entering almost the right
terms but one term that did not match any photo and so they received an empty
search result. Only one participant got close to understanding the search concept and
concluded on their own that one has to enter fewer search terms and then possibly
add more (P5). Another problem was that sometimes participants did not notice
misspelling words and therefore did not get any search results. The nested search
was sometimes problematic. When entering a search term and then searching in
those search results some users were confused why they did not get pictures for
even simple and common terms like “Pferd” (“horse”). We learned thereby that
the breadcrumbs were not visible enough. Yet after some time, most participants
understoodwhere this problem came from and tried their search again from the start
search view. A problem our users could overcome was connected to the breadcrumb
bar and search bar design. Many users clicked into the non-clickable breadcrumb
bar that is below the search bar until they understood that the search bar is above.
We think that this problem is caused by the similarity and closeness of the two bars
(Figure 3.12).

Comment Section
Almost all of our participants were using the comment section with ease. P2 stated

that even “a blind man could do that [using the comment section]” (“Das kriegt ein
Blinder hin”). Some participants did not find the send button and tried to send the
message via “Enter”. Therefore the comment send button has to be revised.

Interestingly our participants actively and confidently used the horizontal tag bars.
Contrary to our concern those horizontal bars are usable but it must be said that
some participants found the horizontal design to be a bit cumbersome and slow to
use. Some users wished for a vertical design or faster navigation through the tags.

3.2.5 Quantitative

Even though qualitative testing is our main focus for usability testing, we also chose
to add quantitative testing methods. While performing the tasks, the recording clerk

64

3.2 Empirical Evaluation

was tracking the time and of course success or outcome of each task. And as an
approach to measure usability, we used the System Usability Scale (SUS) – a stan-
dardized questionnaire that we handed out at the end of each testing session.

System Usability Scale The SUS is still one of the most used methods to quantify
perceived usability, even though it has already been published by John Brooke in
1996 [8]. By surveying over ten papers, Sauro and Lewis found that a variety of stud-
ies have “provided evidence of the validity and sensitivity of the SUS.“ Furthermore,
Bangor et al. [5] and Lewis & Sauro [53] consistently found “the SUS to have reliabil-
ities at or just over 0.90” and that, as such, this value “exceeds the typical criterion of
0.70 for measurements of sentiments” [35]. It is not specifically made for the evalua-
tion of websites or digital systems but can be applied to technology independently.
It is built of ten questions with five Likert-style chapter 7 responses, from strongly
disagree (1) to strongly agree (5). The questions are formulated alternating in a
positive and negative tone. From the value of the answers, the so-called SUS Score
can then be calculated per participant. The SUS scale is a percentile interpretation
that ranges from 0 to 100 with 100 being the best possible score.

We used the German translation of the SUS created by a crowdsourcing project
initiated by Wolfgang Reinhardt [51]. Concerning the sample size, the information
about what size is necessary to conduct a SUS evaluation is scarce in the literature.
In general, the SUS is said to be “robust even for small sample sizes” [49]. Since our
sample size was only seven, this was a beneficial factor for our use case.

We choose the SUS for being fast and easy, established, and applicable to small
sample sizes, but also finally since the SUS allows us to receive a numeric value
that gives a measure of the perceived usability of our application. This value allows
comparison. We can compare our application to a large number of evaluation results
for various applications. And we are enabled to easily compare our application to
future versions and testing.We applied the SUS to support our qualitative evaluation
or to reveal a mismatch since the SUS score is independent of the qualitative testing.

SUS EvaluationMethods Originally, a SUS score was “used primarily in one-time,
isolated tests to determine a single usability […] score for a given product or service”
[5]. Here, the single SUS score was intended to be seen as a percentile value. Decades
of use and research with the SUS allowed the creation of further evaluation methods
based on collected data. For example, an empirical new percentile evaluation based
on SUS study data was created. The average SUS value was found to be 68 [9]. To
choose evaluation methods, we investigated various proposals that exist due to the
long-time existence and wide use of the SUS. In the following, we describe three
methods we have chosen. We focus on mappings that use grade scales or adjective
scales. The adjective scale [6] was created to present an empirically created scale.
While conducting SUS evaluations, an eleventh extra question was added to the SUS
to evaluate the user-friendliness of the tested product since according to Bangor
et al. user-friendliness “is a widely known synonym for the concept of usability”
[6]. In contrast, a relative approach to grading was proposed by Sauro and Lewis
[53] with data from 241 studies to evolve a curved grading scale. As summarized in

65

3 Evaluating Design Decisions regarding Usability

their meta paper [35] they created their scale according to common curved grading
scales where a SUS score of 68 forms the center of the grade “C” range (equal to a
SUS score from 62.7 to 71.0). Both the highest and lowest 15 percentile points are
representing the A and F ranges, respectively. A cumulative percentile curve allows
visualizing the comparison to other studies’ SUS values. Therefore, we use an open-
source analysis tool provided by the Mixality Research Group that visualizes data
from SUS studies.3 For the cumulative percentile curve, they used data from Sauro
of over 446 SUS studies [53]. An evaluation per question is not recommended by
Brooke since “scores for individual items are not meaningful on their own” [8]. And
this caution is confirmed by the factor analysis of Bangor et al [6]. We selected the
evaluation methods to give a better understanding of the SUS results to rank and
classify our application’s score.

Figure 3.13: SUS results with grade scale and adjective scale mapping.

Insights With our studymean of 62,5 called the SUS score we get the results shown
in Figure 3.13. Even though our study’s mean is below the average we receive an
adjective mapping “OK” interpretable as an acceptable score. The grade mapping
and percentile curve (Figure 3.14) give a more clear insight. Our study’s mean cor-
responds to a D on the Grade scale displaying that our SUS score is one grade step
below the average C. The cumulative percentile curve visualizes that our SUS score
is only at the 33,156th percentile. This hints toward significant usability problems

While the participants answered the SUS we asked them to explain their choices.
In particular, the search and its confusing logic were stated as a reason to give a

3https://sus.mixality.de/ (last accessed: 2022-07-13).

66

https://sus.mixality.de/

3.2 Empirical Evaluation

Figure 3.14: SUS percentile curve

worse rating. One participant even stated “I would rate much higher if not for the
search. That was very confusing. There should have been pictures” (“Ich würde es
höher bewerten wenn das mit der Suche nicht wäre. Weil da hätte es ja dann Bilder
geben müssen”). Thereby the SUS result supports the qualitative findings.

3.2.6 Curator V2

Our focus for the test was on the visitor interface usability. To also receive feedback
on our curator interface we held an informal interview three weeks after introducing
the curator interface (V2) to our client and frequent use by him. He was the only
curator and therefore, his insights were especially valuable.

Insights The feedbackwas overall very positive. He stated, that the difference from
the old uploading process is a “quantum leap” (“Es ist ein Quantensprung”). The
former publishing process took various application switches, often led to errors and
thus made him repeat work steps often. Our new interface reduces the necessary
process steps drastically and the context switches between different applications
to zero. This makes his work very “fluent”. Meaning that it is considerably faster,
easier, and safer since he does not have to work with different information sources
but directly saves the information to the pictures in the system. Now he also sees
explicitly when information is missing. A further idea would be to have a bulk view
where the curator could mark pictures as “with unsure information” to later have a
better overview of where he still has work to do.

He is convinced that other people are also enabled to work as moderators or
curators with our interface. This is a very important aspect since he wants to recruit
many new people to help him with his workload. Also according to our client, our
website is highly interesting for other photo archives. For further features, he wishes
for a bulk curating tool, that allows him to add information, e.g. to pictures from
the same album and thus with the same info text, to multiple photos at once. The

67

3 Evaluating Design Decisions regarding Usability

search bar is also available in the curator interface and is an important regularly used
tool for his work. He has no problems using it. What he thinks to be missing is a
“start a new search” button above the search bar that makes the already existing
shortcut in the bottom bar more visible. He gained this insight from feedback from
his acquaintances. As an outlook, we want to also add other archives to our system.
Our client said, that again accountability is of utmost importance for the archive
owners and that we have to find a way to make their names or archives’ names
visible and attached to the pictures.

3.2.7 Limitations

Our study design and also conduction held some limitations. Our study popula-
tion is following a tendency in the Bad Harzburg population yet, it would have
been interesting to also include participants from the age group 70 and older. Those
contemporary witnesses can tell stories about times even longer ago and it is also
important to make the application usable for them. Also, it would have been interest-
ing to have more participants from younger user groups to avoid misrepresentation.
Most of the participants were living in Bad Harzburg for more than 30 years, some
also having been born there. Our participant group represented the main and most
expected user group – retired locals from Bad Harzburg. This user group is likely to
be able to contribute information to the pictures. Yet, the user group that is younger
and or has no direct and long connection to Bad Harzburg and its history was not
represented in this user test. Another aspect is the selection process. Most of the par-
ticipants are directly acquainted with our customer and thus come from a relatively
closed socio-demographic group.

For further testing with the SUS, the translation proposed by Gao et al. [21] might
be more suitable since this translation was empirically tested.

In an early stage of our product, we targeted a mobile-first strategy caused by
our client’s statement about mobile use in older age groups. We later focused on a
unified mobile and desktop view, since our customer relativized the primary use of
mobile devices by elder people, and we had the requirement to build our website not
exclusively for elder people. We developed the application primarily focusing on the
desktop view, adjusting the mobile view afterwards if necessary. Every participant
uses mobile phones daily(subsection A.1.2) but we did not test our application in
the small mobile format. When we started our testing the small mobile version was
not usable. Due to time constraints, we first focused on making the version for larger
screens such as PCs or tablets usable with new alterations. After testing V1 we fixed
the mobile view. We also had a relatively small participant group size in contrast to
at least three possible device groups (desktop, largemobile, small mobile). Allowing
participants to choose between a laptop and a tablet also reduced variance between
test runs.

68

3.3 Discussion

3.3 Discussion

Based on our insights from our user studies and the interview with our client in the
following, we discuss whether our requirements were met. Our first requirement
(u.1) is good usability, so the focus of our evaluation was set on usability. We, there-
fore, take a look at the qualitative evaluation regarding the usability definition and
the SUS evaluation.

The learnability is built on the ease of use and intuitiveness of basic tasks. There-
fore, we tested with first-time users. A task almost every participant fulfilled easily
was commenting. All of the participants had no problem finding and writing in the
comment section. The only problem participants had was understanding how to
send the comment. The comment section, therefore, presents a great improvement to
the legacy application, yet further adjustments still have to improve the learnability.
Our requirements of the comment section (u.1) are therefore not completely fulfilled.
We assume the design with horizontal sliders to be intuitive to use since no partici-
pant had problems using them. Yet, not all participants were satisfied with them. P4
especially wished for a revised design.

The most revised designs on our application were connected to the search. We
achieved an improvement when adjusting the search bar design and the suggestion
slider before testing in Bad Harzburg, allowing participants to easily and intuitively
understand how to start a search. Yet, the main usability problem was still unsolved.
Our users are used to popular search engines like Google and Co. to enter many
search terms that could fit a searched media (picture or article or other content).
In these sentence-like entries not all terms have to necessarily fit the wanted search
result but the best matching result, with most terms (possibly in the right order and
so on) matching will be displayed. With lesser matching results displayed farther
below or on other pages. Thus, they expected the search to almost always yield a
result. Especially when they knew, or thought to know, that the archive must contain
pictures for a topic. This happened for example with the search “Walpurgis goldene
Maske”. Walpurgis is a very popular and major event in the Harz. Thus a search in
a press photo archive from the area containing the term “Walpurgis” has to result in
pictures being displayed.

To address this problem we discussed two possible directions. One would be to
try to get closer to what our users would expect and try to get closer to Google. And
following Jakob’s Law [14], thiswould be the best solution. Our search conceptworks
contrary to the mental model of most users. According to Jakob Nielsen, the mental
model represents howwe expect a system towork and is founded on experience. And
since the Google search logic is so omnipresent it is not recommended to introduce a
new concept. Following Jon Yablonski what we found out in our user testing was to
be expected to create a usability issue. Yet due to our limited time and the great effort,
we would have to put into this implementation – the challenge already starts with
the question of how the Google search even works – we chose the second option: The
clarification of our search concept via more explicit messages. When a user enters
an invalid search there should be an information text explaining that there are no
pictures that match all of these terms.

69

3 Evaluating Design Decisions regarding Usability

Figure 3.15: Search with V1 with empty result

One idea is to display how many pictures are matched to a search term displayed
as a breadcrumb. This way users could see which search term they have to remove
to receive search results. All in all for future work on this project (with enough time
on their hands) we highly recommend redesigning the search logic.

Error When making the search bar and empty-search design clear and searching
for a no-result search impossible we reduced errors that happened this way and
gave more user responses to the actual system status. When for example no result
pictures are found this is communicated to the user. On the other hand, again the
search functionality and the breadcrumb design are error sources. Participants did
not understand the restrictive search and were thereby confused about what they
had to do to receive result pictures. Also, the breadcrumb design and concept of
a restrictive search were not intuitive. Therefore, some participants did not notice
that they were still searching with old search terms or that the misspelling of search
terms was the problem.

Satisfaction Even though the search problem could have left the participants un-
satisfied with our website, almost all participants were pleased by the design and
expressed much interest. The horizontal sliders were easy to use yet reduced satis-
faction. The combination of the search and browse views and the color design was
especially appreciated. On the other hand, the SUS evaluation hints toward usability
problems that are also connected to the satisfaction of the participants. The partici-
pants might have wanted to be polite and not state their dissatisfaction more openly.
It is also possible that we influenced the participants too much in the opposite direc-
tion and they answered the SUSmore negatively than theywould have normally. The
SUS supports our qualitative findings otherwise. Especially the search logic poses
usability problems. Therefore, the Grade D and the percentile evaluation match our
general feedback. Whereas the received “OK” is closer to the general feedback from
the qualitative evaluation.

Our test design did not contain small mobile devices. Only the usability for the
desktop and bigger mobile versions were tested. Even though we could not perceive
any difference in the usability of both versions the small mobile version still has to
be tested to be able to conclude whether u.2 is met.

Our dual design with browse view and search view was created to fulfill the
needs of the Browse User and the Search User u.3. Through our usability testing,
we found that the search still needs improvement, but the general concept of both
views was received positively. Specific testing regarding the browse usability should
be performed.

70

3.4 Conclusion and Outlook

Curator Interface
From the interview with our client, we can overall conclude, that the curator inter-

face satisfies his expectations and needs.We take a closer look at the usability and the
other requirements. With the direct integration of the scanner into our application,
the workflow and ease of use were drastically improved fulfilling p.5. We did not
test the current curator interface version with a first-time user, yet our client states
it to be easy to use and also believes, that new curators can understand the inter-
face fast. Using the scanner will require an introduction for new users. Yet we can
assume a general good “Learnability”. By reducing context switches and removing
the extra applications from the picture scanning process it did not only get faster
but reduced error sources. Formerly picture information easily got lost when saving
it detached from the pictures. Now our client can also specifically see which infor-
mation a picture does have and does not have. Thereby faulty picture annotations
can be more easily discovered and recovered from. The moderating of comments
p.1 is already actively in use and approved by our customer. The curator interface
usability is very good according to our client and both curator and visitor interfaces
are well integrated, meeting the requirement u.1.

3.4 Conclusion and Outlook

This chapter introduced design aspects and the process of validating and adjusting.
We conducted usability testing with heuristics and the think-aloud method. While
testing we collected qualitative feedback. A quantitative evaluation regarding the
perceived usability was conducted with the SUS. We received important insights
into usability problems, most importantly the search concept. We focused on the
visitor interface yet we also displayed important design elements from the curator
interface and the feedback. In the following, we will summarize important aspects
of this chapter.

Usability and Search Even when our participants were overall satisfied with the
visitor interface we still found major usability problems. Until testing with locals,
we did not realize how substantial the search logic would be. We could see how
important respecting common known concepts to connect to the users’ mind map
is. Due to time constraints, we then went the resource-efficient way of explaining
our search concept more explicitly. Yet it would be interesting to explore ways to get
closer to the familiar search concepts. Further enhancements such as the new search
button would also be interesting to implement and test with participants that are
acclimated to the application to get more insights about the learnability. Testing on
the participant’s device is also an idea to create a more natural testing environment.

Comment section In our user test, we wanted to know whether the participants
were able to write a comment on their own. Gladly all of our participants found the
comment form with ease and were able to write a comment, yet the comment send
button needs revision. All in all, we created a great improvement compared to the

71

3 Evaluating Design Decisions regarding Usability

old website. We did not test if different designs could motivate the participant to
write comments, yet this could be interesting for future tests.

Curator From our client’s feedback, we can conclude that our curator view presents
a great improvement on the former functionality. Especially the direct integration of
the scan process into our website creates immense ease of use. Together with the new
possibility to add the picture information directly attached to it makes the whole
process more efficient and also less error-prone. Themost important future task from
our client is bulk editing.

72

4 Architecture and Implementation of a
Web-Based Frontend

In this chapter, we will examine the implementation of a crowd-sourced picture
archive as a website. The main focus is on the frontend, starting with a detailed
explanation of the architecture. To give a better understanding of the behavior of
our system we then take a look at the data flow throughout the application. Further
explanation regarding the backend follows in the subsequent chapter.

4.1 Technical Components

As we will discuss implementation details in this chapter, we first have to take a
look at the general technical components we use. An overview of the main elements
can be seen in Figure 4.1. In our backend we use a Content Management System
(CMS), Strapi1, to administer our data saved in a PostgreSQL2 database. To access the
database Strapi uses the Knex Query Builder.3 The frontend is developed using the
JavaScript library React4 and the client-server communication relies on GraphQL5

with Apollo6 as a supporting tool. Asmentioned this chapter focuses on the frontend
and the communication with the backend. Therefore, the server-side components
will not get discussed here but in chapter 5.

4.2 Background

To understand the architecture and implementation decisions, we need to know
about the used technical components. Therefore, we begin with an explanation of
why we chose React and GraphQL and what their main concepts are.

1https://strapi.io/ (last accessed: 2022-07-13).
2https://www.postgresql.org/ (last accessed: 2022-07-13).
3http://knexjs.org/ (last accessed: 2022-07-13).
4https://reactjs.org/ (last accessed: 2022-07-13).
5https://graphql.org/ (last accessed: 2022-07-13).
6https://www.apollographql.com/ (last accessed: 2022-07-13).

73

https://strapi.io/
https://www.postgresql.org/
http://knexjs.org/
https://reactjs.org/
https://graphql.org/
https://www.apollographql.com/

4 Architecture and Implementation of a Web-Based Frontend

Figure 4.1: Themain technical components we used to implement the picture archive

4.2.1 React

When choosing a UI framework, in the beginning, we mainly based our decision
on experience in the team. As the majority of us have never built a web application
before, we decided to use React because two teammembers alreadyworkedwith it in
the past and could support the others in their learning process. Developing in React
builds upon a few main characteristics that are less known from other frameworks,
libraries, or programming languages.

JSX/TSX JSX(/TSX)7 is a syntax extension to JavaScript(/TypeScript) which is
recommended to use for development in React. It simplifies the combination of
markup elements and logic and produces React elements that can get rendered to
the DOM. JSX allows embedding any JavaScript expression by using curly braces.
Moreover, JSX expressions can be treated like regular JavaScript objects and can be
assigned to variables, returned from functions, and more. An example of JSX-Syntax
can be seen in Listing 4.1.

Listing 4.1: Using JSX allows combining markup elements and JavaScript expres-
sions

1 <div className='comment-container'>
2 {comments?.map(comment => (
3 <p>{comment.text}</p>
4))}
5 </div>

7https://facebook.github.io/jsx/ (last accessed: 2022-07-13).

74

https://facebook.github.io/jsx/

4.2 Background

Composition Composition is the core development pattern of React. The idea is
to split the user interface (UI) into components that are independent and reusable
elements. Contrary to the approach of separating concerns, each component com-
bines functionality and markup. It receives an arbitrary input object called props
and can have state. The UI element to be rendered by the component can consist of
other components and plain HTML elements. The communication between different
components is limited to the top-down direction because the props are read-only
and the state of a component can not be accessed from other components, including
the parent component.

Function Components and Hooks Function components are simply JavaScript
functions that receive the props as arguments and return the elements that should
appear in the UI. Listing 4.2 shows a basic example of a Function component. To
use functionality like state or executing code on lifecycle events like initialization or
unmounting, React introduced hooks8 which provide a way to use these features in
Function components. Similar results to Function components combined with hooks
could have been achieved using Class components. These have slightly different syn-
tax and already support state and lifecycle functionality. The main advantage of the
hook system is that it is possible to write custom hooks that themselves can use other
hooks. This allows extracting and sharing even stateful logic between different com-
ponentswhich prevents code duplication or complicatedworkarounds. Furthermore,
there are a few minor disadvantages of class components like the necessity to write
more code to implement a class and problems with React internal optimizations9.
Therefore, we decided to only use Function components in our application.

Listing 4.2: Simple Function component. The comments that get received as props
get returned as elements to be rendered in the DOM

1 const CommentContainer = (comments: Comment[]) => {
2 [...]
3 return (
4 <div className='comment-container'>
5 {comments?.map(comment => (
6 <p>{comment.text}</p>
7))}
8 </div>
9);

10 };

Contexts Sometimes we encountered use cases for which we wanted to share state
or functionality between large component trees or maybe even the entire application.
An important example is the authentication status. A lot of features involving curator

8https://reactjs.org/docs/hooks-intro.html (last accessed: 2022-07-13).
9https://reactjs.org/docs/hooks-intro.html#motivation (last accessed: 2022-07-13).

75

https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html#motivation

4 Architecture and Implementation of a Web-Based Frontend

tasks should only be available after logging in. Various components in different parts
of the application depend on their behavior on the authentication status. To avoid
having to pass the same data in many branches through multiple layers of props,
there are Contexts. Contexts allow sharing values for a whole tree of components. To
make the data available there are Context-Providers which are components that can
be wrapped around other components and get the values to be shared as props (see
Listing 4.3). Every child component in this part of the component tree, no matter
how deeply nested, can access this shared data by calling the useContext-hook (see
Listing 4.4).

Listing 4.3: A Context Provider that receives the data to be shared

1 <AuthContext.Provider value={{ role, username, email, login, logout }}>
2 {children}
3 </AuthContext.Provider>

Listing 4.4: Every child component can access this data by calling useContext()

1 const { role } = useContext(AuthContext);

4.2.2 GraphQL

The React application needs to be able to fetch and edit data. As the frontend and
backend are separated, the frontend can not directly access the database. Therefore,
it has to call a backend API. Our CMS in the backend, Strapi, offers the two APIs
REST [20] and GraphQL. In general, REST is the far more popular architectural style.
Even though the team experience with REST was larger, we still chose to use the
GraphQL API. This was mainly due to limits of the REST API in Strapi v3 further
explained in subsection 5.6.5. While it is solvable through backend customizations,
it was not possible to decide from the client side which relations to populate and
which fields to select when sending a GET request. For example, we want to fetch the
thumbnail URLs of a lot of pictures. Without being able to control which relations
to populate and which fields to select, we would request large amounts of data per
picture while the majority is unused. We have a lot of different fetches and with new
features and requirements, we regularly have to add queries and adapt which fields
are needed. Defining every field selection and population backend-side would mean
that for each of these changes we would always have to adapt the frontend and the
backend which is something we want to avoid. It is important to note that this is
an issue that got resolved with the new version of Strapi. However, at the time we
made the decision, it was not foreseeable when the new version would get released.
Therefore, we decided to use the second API that is provided by Strapi, GraphQL.

76

4.2 Background

GraphQL is unlike REST, not a collection of concepts but a query language for APIs
and a server-side runtime for fulfilling those queries.

Query Language To interact with the API, a client has to build GraphQL opera-
tions that get sent to the server. A GraphQL operation is a string that defines which
action should be performed and what data should be returned. It allows a specific
and deeply nested population of relations and field selection. Each definition of a
GraphQL operation consists of the following elements which can also be seen in Fig-
ure 4.2. The operation type defines what kind of operation is performed. There are
twomainly used operation types: query andmutation. Queries are used to read data,
and mutations to create, update and delete it. The operation name is an optional
identifier that is comparable to a function name. Fields are used to specify which
data we want to be included in the response. These fields can refer to scalar values
or more complex objects. The latter requires nested fields as a sub-selection. Further,
it is possible to select related objects which allow fetching data from a lot of different
database tables in a single request. Each field, even deeply nested ones, can accept
arguments. Which arguments can be passed is defined on the server side. Popular
use cases are filtering, pagination or sorting. For these arguments, it is possible to
use variables whose types have to get declared in the variable definitions.

Figure 4.2: An exemplary GraphQL operation definition

77

4 Architecture and Implementation of a Web-Based Frontend

Server-Side Runtime GraphQL operations are usually sent via HTTP as POST
requests to one central endpoint in the backend where they get delegated to a corre-
sponding resolver. Resolvers are functions that back a field and are responsible for
returning a result for that field. They usually call other resolvers or access a database.
The backend systemwe use, Strapi, automatically generates resolvers for create, read,
update and delete operations based on our models (see subsection 5.4.8). It is also
possible to define further resolvers which then can be accessed as a field in opera-
tions. Which resolvers exist and therefore which fields can be called in operations
get described in a schema which is provided by the server and can get requested by
the client.

Apollo There are two Apollo services used in our system. The Apollo Server is
used by Strapi as a runtime to provide the GraphQL API. The Apollo Client is a
JavaScript library that we decided to include in our frontend as a helper for sending
queries and mutations. It simplifies building requests and tracking loading, error,
and network status, but most importantly we use the Apollo Client for local caching.
As GraphQL operations all get sent as POST requests to the same endpoint, the URL
can not be used as an identifier and therefore we can not make use of default HTTP
caching. Therefore, we decided to use an external tool and chose the Apollo Client
because the cache is highly customizable and there is extensive documentation.10

4.3 Frontend Architecture

This section gives an introduction to the frontend structure of our system. After
explaining a few general guidelines we will take a look at the components of our
React application, starting with a high-level overview. Further, we will examine the
structure of one exemplary part of our application in more detail.

4.3.1 Design Guidelines

Before talking about the specific components, we first take a look at the main ideas
that we followed when implementing the picture archive as a React application.
These are general rules or patterns that we used to keep consistency and simplify
our structure. Some of these are common in React applications while others are
specific to our architecture.

Top-Down Data Flow Emerging naturally from the concept of read-only props,
the data flow in React applications is usually unidirectional from parent to child
components. We do not use external libraries like Redux11 to circumvent this. In
our architecture usually, components higher up in the component hierarchy fetch

10https://www.apollographql.com/docs/react/ (last accessed: 2022-07-13).
11https://redux.js.org/ (last accessed: 2022-07-13).

78

https://www.apollographql.com/docs/react/
https://redux.js.org/

4.3 Frontend Architecture

information and pass them, sometimes partially, down to other components that
further evaluate and display them.

Views In our architecture, Views are components that fill the entire screen except
for the top and bottom bar. There is always exactly one active View that gets switched
depending on the route. Each major use case is implemented as a different View. We
have implemented seven Views that get explained in section 4.3.2.

Providers To spread data and functionality that is needed in various parts of the ap-
plication we use components that we call Providers. Providers are wrapped around
the entire application and utilize the useContext-hook introduced in section 4.2.1.
Each object or function that is spread using the Context-Provider is therefore acces-
sible in every component in the entire application. Currently, we use four different
providers in our system (see section 4.3.2).

Unified UI To achieve a low entry barrier for contributors (see chapter 2), the
interfaces for displaying and editing information should be as similar as possible.
Therefore, we use for both use cases only one component that changes its behavior de-
pending on the authentication status instead of using entirely different components
or interfaces. Exceptions are curating features that are complex enough to require
their own Views, like for example changing the collection hierarchy.

4.3.2 Component Overview

At the current state, our application contains almost 60 components.Wewill first take
a look at the components that are at a high level in the component tree, including our
Providers and Views. To give a better understanding of how Views are composed,
we will then examine one View in more detail before discussing an exception from
our design guidelines.

Figure 4.3: Composition of app

79

4 Architecture and Implementation of a Web-Based Frontend

Overall Structure A high-level overview of our components can be seen in Fig-
ure 4.3. The uppermost component is the App which is composed of multiple
Providers, the TopBar and NavigationBar, and a View. In the following, we will
take a closer look at these elements. As mentioned, four important Providers wrap
the entire application. The AlertProvider enables components to send temporary
alerts to the userwhich can be successmessages,warnings, errors, or just information.
The AuthProvider grants access to login and logout functionality and the current
authentication status. The authentication status is mostly retrieved to conditionally
render components or alter their behavior based on the user’s permissions. In the
current state, our system supports two different authorization statuses, public, and
curator. The DialogProvider allows displaying dialogs. Contrary to the alerts, di-
alogs require user action like a confirmation or entering input. When using a dialog
a component can either define custom content or fall back to a preset. The Apollo-
Provider is a component that we did notwrite ourselves but follows the same concept
as our Providers12. It uses the useContext-hook to provide access to the Apollo Client
(see section 4.2.2) to send queries and mutations. These Providers wrap the TopBar
and NavigationBar which include links to different routes. Between these two bars,
there is a switch that renders a View depending on the route. In our application,
there are currently seven different Views. There are three main Views available to an
unauthorized user.

Figure 4.4: BrowseView

The BrowseView (see Figure 4.4) is the View rendered by default and displays
pictures grouped in hierarchical collections. We will take a closer look at this View
in section 4.3.2.

The PictureView (see Figure 4.5) displays a picture in full size and offers the
possibility to write comments. Moreover, information related to the picture gets
rendered in a hideable sidebar and is editable for authorized users.

12https://github.com/apollographql/apollo-client/blob/5a4b0ae202e46cf9368dd7b2fd1f0c3738f1810c/src/rea
ct/context/ApolloProvider.tsx (last accessed: 2022-07-13).

80

https://github.com/apollographql/apollo-client/blob/5a4b0ae202e46cf9368dd7b2fd1f0c3738f1810c/src/react/context/ApolloProvider.tsx
https://github.com/apollographql/apollo-client/blob/5a4b0ae202e46cf9368dd7b2fd1f0c3738f1810c/src/react/context/ApolloProvider.tsx

4.3 Frontend Architecture

Figure 4.5: PictureView

Figure 4.6: SearchView

The SearchView (see Figure 4.6) allows users to search for pictures that match spe-
cific information. Keywords entered in the SearchBar get passed on to the backend
where they get converted to an actual search query. In subsection 5.6.4 we will dis-
cuss why we implemented this behavior. Moreover, four Views only provide curator
functionality and are not visible to an unauthorized user.

The UnverifiedCommentsView (see Figure 4.7) provides an overview of which com-
ments still have to be moderated. The component fetches all comments that have not
been published yet, groups them by picture, and displays them in a table. When a
user clicks on a row it opens a PictureView with the corresponding picture where
the comments can get moderated.

The CollectionsEditView (see Figure 4.8) is an interface to revise the collection
structure that is displayed in the BrowseView. The collection tree gets displayed in
columns. Clicking on a collection adds a column to the right which includes its child
collections. For each collection, buttons invoke mutations to rename, delete, add and
merge collections. Furthermore, relations between different collections can be edited,
deleted, and added.

The TagTableView (see Figure 4.9) is used to edit the actual tags, contrary to the
picture-tag relations that get edited in the PictureView. The component fetches all

81

4 Architecture and Implementation of a Web-Based Frontend

Figure 4.7: UnverifiedCommentsView

Figure 4.8: CollectionsEditView

tags of a certain type and displays them in a table. Each row provides functionality
to rename the tag, add or remove a synonym, and delete the tag. Moreover, a user
can select two tags and merge them.

The UploadsView (see Figure 4.10) can be used to upload pictures and edit their
information before they appear in the BrowseView. The component fetches all pic-
tures, that do not belong to any collection, and displays them in a grid below the
upload interface.

BrowseView As most Views are relatively complex, they are composed of a lot of
different components. In the following, we will take a look at the structure of our
default View, the BrowseView (see Figure 4.11), to illustrate exemplarily how our
Views work in detail. The BrowseView shows pictures grouped in collections. The
component is stateless and consists of two major parts, the collection information,
and a picture overview. When rendered, the BrowseView fetches and displays the
collection attributes consisting of a title, an optional description, and the child col-
lections. Which collection is fetched is determined by the URL path. Clicking on
one of the child collections adds the name of this collection to the path and reren-
ders the BrowseView which now displays a different collection. Based on the loaded
collection, the BrowseView builds a query filter for fetching pictures and passes it
on to the PictureScrollGrid. The PictureScrollGrid is our main component to

82

4.3 Frontend Architecture

Figure 4.9: TagTableView

Figure 4.10: UploadsView

display an overview of multiple pictures and is also used in other Views like the
SearchView. In order to make the component reusable in different contexts, the com-
ponent receives a query filter as a prop and then fetches pictures from the backend
using this filter. To reduce the network load this fetch is limited to 100 pictures and
only if the user has scrolled to the bottom the next bulk of 100 pictures is fetched.
The received pictures get passed to the PictureGrid, the component responsible for
displaying the pictures. For authorized users, the PictureScrollGrid also includes
a PictureUploadArea that allows uploading files or directly using the scanner (see
subsection 6.3.2) to add pictures to the archive. Depending on where the Picture-
ScrollGrid is used, the uploaded pictures immediately receive information from the
context. For example, pictures uploaded in the BrowseView get the currently selected
collection assigned which allows a curator to upload pictures directly into a certain
collection. The PictureGrid renders each picture as a PicturePreview which dis-
plays a thumbnail and opens the picture in full size as a PictureView when clicked.
The PictureView gets rendered as a child component of the PictureGrid which is
an exception from our design guideline of only rendering one View at once. This is
due to specific requirements which get discussed in the following section.

PictureView as a Child Component of PictureGrid The PictureView is used in
two different contexts. A PictureView gets rendered when the /picture route is

83

4 Architecture and Implementation of a Web-Based Frontend

Figure 4.11: Composition of BrowseView

called or when a user clicks on a picture displayed in a PictureGrid. These scenarios
differ, as the latter involves additional requirements. After accessing a PictureView by
clicking a picture in a PictureGrid, the user oftenwants to close the full-sized picture
and return to the grid to the exact position where it was left to continue browsing.
Our usual behavior of switching Views – replacing the components – would not
be practical here, especially when the user already scrolled far to the bottom and
possibly triggered further fetches of more pictures. There arise problems with saving
and restoring the previous state of the grid which at least result in a delay for the user.
Therefore, we deviate here from our principle of only rendering one View at once
and allow the PictureView to be rendered inside of other Views. When a picture in
the PictureGrid gets clicked, the state of the component changes and a PictureView
gets rendered as a child component (see Listing 4.5 and Listing 4.6). This results
in the PictureView being open and usable as usual, while in the background, there
still is the PictureGrid rendered, but not visible. When the PictureView is closed
the PictureGrid is immediately available as it does not have to be rendered again.
This enables smooth transitions and even the possibility of animations.

Listing 4.5: Each picture in the PictureGrid gets rendered as a PicturePreview.When
the PicturePreview gets clicked, the associated id gets selected as the “focusedPic-
ture”.

1 <PicturePreview
2 picture={picture}
3 onClick={() => setFocusedPicture(picture.id)}
4 adornments={pictureAdornments}
5 />

84

4.3 Frontend Architecture

Listing 4.6: The PictureGrid includes a PictureView that only gets rendered, when
there is a focusedPicture

1 {focusedPicture &&
2 <PictureView
3 initialPictureId={focusedPicture}
4 siblingIds={pictures.map(p => p.id)}
5 onBack={() => {
6 setFocusedPicture(undefined);
7 }}
8 />
9 }

Another requirement emerging when using a PictureView in the context of mul-
tiple pictures is to allow the user to switch to the next or previous pictures without
having to return to the PictureGrid in between. Therefore, the PictureView receives
an optional array siblingIds as props which includes the ids of pictures from the
context. In the PictureView there are navigation buttons to switch to the next or pre-
vious picture. When clicked, the PictureView gets rerendered with another picture
id (see Listing 4.7). This is a change to our original implementation where each pic-
ture in the PictureGrid belonged to a different PictureView. That the PictureGrid
now only includes a single PictureView does not represent the intuitive assumption
that each picture maps to a separate element, but it has the advantage of reducing
the coupling between PictureGrid and PictureView. The PictureGrid now does not
have to manage multiple PictureViews that can be open, closed, or in transitioning
states and the logic for switching the picture can be entirely encapsulated in the
PictureView.

Listing 4.7: When a user navigates to an adjacent picture, the PictureView changes
its selected id

1 const navigatePicture = (target: PictureNavigationTarget) => {
2 const targetId =
3 target === PictureNavigationTarget.NEXT
4 ? getNextPictureId(pictureId, siblingIds)
5 : getPreviousPictureId(pictureId, siblingIds);
6 if (targetId) {
7 setPictureId(targetId);
8 }
9 };

Directory Structure To give a brief introduction to our directory structure we will
take a look at the most important folders in the src directory (see Figure 4.12).
components contains our React components and their related CSS files mainly

grouped by Views. Each View has a separate folder including all components the

85

4 Architecture and Implementation of a Web-Based Frontend

Figure 4.12: SRC directory

View is composed of. Components that are used in multiple Views like the Picture-
Grid are in a common folder.

graphql includes the query and mutation definitions and the autogenerated query
hooks.
helpers contains general helper functions that are used in various components.

More specific helper functions that belong to certain components are placed in helper
folders next to the component.

hooks includes our custom React hooks.

4.4 Data Flow

4.4.1 Fetching Picture Information

The previous sections introduced which technical elements exist in our application.
Now we examine the interaction of these elements by looking at an exemplary data
flow throughout the entire application. As it is our application’s most common and
basic use case, we will do that using the example of a user wanting to see a picture
and associated information.

Routing When a user accesses our website, the App component gets rendered. The
App includes a switch that renders a View depending on the called route and our
path definitions in routes.tsx. For this example, we assume that the user called
the /picture/22 route. As it can be seen in Listing 4.8 this renders the PictureView
which receives the id from the URL as a prop.

86

4.4 Data Flow

Listing 4.8: Definition of the picture route

1 {
2 path: '/picture/:id',
3 render: ({ match }: RouteConfigComponentProps<{ id: '' }>) => {
4 return <PictureView initialPictureId={match.params.id} />
5 }
6 }

GraphQL Query Building The PictureView needs to access the data related to
the picture with this id which we implemented by fetching the information through
the GraphQL API provided by the backend. Therefore, the PictureView calls a hook,
useGetPictureInfoQuery, with the picture id. This hook sends a GraphQL query to
the API. The query that is sent (getPictureInfo) is defined in a separate file, oper-
ation.graphql, which contains all definitions of GraphQL queries and mutations.
Based on this file we generated hooks (see section 6.4.1) like for example useGetPic-
tureInfoQuery. This hook already includes the query definition for getPictureInfo,
receives variables and other query options like cache behavior as props, and passes
this information to the Apollo Client.

Client-Server Communication At first, the Apollo Client checks whether the re-
quested information can already be found in the local cache. If that is the case, there
is no request sent to the server and it continues with section 4.4.1. When the infor-
mation is not in the cache, the Apollo Client builds an HTTP POST-request with the
/graphql endpoint of the backend as the target (see Figure 4.13). In the body, there
is a JSON with three fields: query, variables, and operationName. The query field
contains the query definition, variables the values of the non-constant arguments,
and operationName the name of the operation to be executed. The latter is mainly
useful for caching and could also be used when the operation definition contains
multiple queries.

Backend Handling The Apollo Server receives the HTTP request and delegates
the query to the corresponding resolver. The uppermost field called in getPictureInfo
is picture. Therefore, the query initially gets handled by the picture-resolver which
calls other resolvers and uses the Query Engine API (see subsection 5.4.6) to access
the database using Knex as an SQL query builder. These generated SQL queries get
executed on the PostgreSQL database. There are different possibilities to customize
this behavior, like adapting or adding resolvers, using lifecycles, or customizing the
SQL query building. We do not use these for this query but for other operations.
How these customization options work and where we used them gets discussed in
section 5.5.2. The results get formatted in the resolvers to fit the format defined in the
GraphQL query. In the end, the picture-resolver returns a JSONwith either an error

87

4 Architecture and Implementation of a Web-Based Frontend

Figure 4.13: A GraphQL query gets built in the React app and sent to the backend
using the Apollo Client.

or a data field, depending on whether the operation was successful. This JSON gets
sent back by the Apollo Server as the body of an HTTP response (see Figure 4.14).

Data Propagation in the React Application Once the HTTP response arrives in
the frontend the called hook, useGetPictureInfoQuery, updates the variables data,
loading, and error in the PictureView. Updating the variables means that the Pic-
tureView, to stay reactive, did not await the result from the fetch. It already received
values immediately after calling the hook: data and error have been undefined and
loading has been true. When these values get updated it triggers a rerender of the UI
elements that depend on the variables. Before the data can get passed down to other
components it gets reformatted using the useSimplifiedResponseData-hook. Due to
the unified-response format introduced in Strapi v4 (see subsection 5.4.7) and our
workaround to implement a verified flag (see subsection 5.6.1) the data arriving in
the frontend is in a format that is not practical to use. Further information regarding
the different formats and the implementation of the simplify hook is given in sec-
tion 6.4.1. The reformatted picture information gets passed top-down as props to the
child components. It gets split and passed on to different components which each
display some information to the user. For example, the information about the time
range in which the picture was taken gets passed on through the PictureSidebar to
the PictureInfo component. The PictureInfo contains multiple PictureInfoFields
which each format and display a part of the information related to a picture. In the
case of the time range, it is the DateRangeSelectionField that receives the dates, con-
verts them to a string, and wraps them in a div (see Figure 4.15). React renders these

88

4.4 Data Flow

Figure 4.14: The backend handles the request, fetches the necessary information
from the database and sends them back to the frontend.

elements combined with the associated CSS styling and the results get displayed in
the browser to the user.

4.4.2 Editing Picture Information

In the previous section, we have seen an example of fetching information. Many of
our use cases also involve editing data which in general does not differ much from
just fetching. In the following, we will take a look at the key differences. Therefore,
we will examine the exemplary data flow of changing the time range associated with
a picture. An authorized user visits the link to a picture. The picture information gets
fetched as previously explained and the page gets rendered. The user clicks on the
date which opens a time range picker. When the picker gets closed and the selected
time range differs from the previously saved range, the DateRangeSelectionField
updates its local state to immediately display the changed information to the user
without having to wait for the response of the actual change happening in the back-
end. To forward the change to the backend, the component calls a function that it
received as part of the props. This function is used to pass the information to the
parent component PictureInfo. Here we deviate from our usual top-down data flow
to manage changes to the picture information in one central component. When any

89

4 Architecture and Implementation of a Web-Based Frontend

Figure 4.15: The received data gets simplified and propagated to the respective
components. The information about the time range get passed through to the
DateRangeSelectionField that formats and displays it.

field gets edited in a PictureInfoField like in this example the time range, the infor-
mation gets passed up to the PictureInfo component which formats the changed
information and calls the useUpdatePictureMutation-hook (see Figure 4.16). The
hook is used to communicate the update with the backend and works analogously
to the getPictureInfoQuery-hook. It is generated on the base of the mutation defini-
tion in operation.graphql and passes the information to the Apollo Client. The main
difference is that the operation type is now a mutation and not a query and that the
information with which the hook gets called not only includes the id of the picture
but also the data to be changed. Moreover, we selected fewer fields that should be
included in the response. The reasons for this will be explained later in this section.

The GraphQL-mutation is sent to the backend as an HTTP message in the same
format as previously described for the query. The handling in the backend also
works analogously. The Apollo Server delegates the mutation to the corresponding
resolver of the uppermost field, updatePicture. This resolver calls other resolvers
and uses the Query Engine API to access the database. For this specific mutation,

90

4.4 Data Flow

we did use some of the customization options. We introduced a lifecycle hook that
triggers before every update of a picture entity and has the purpose of preventing
the duplication of tags and removing unused ones (see section 5.5.2).

Figure 4.16: Changing the time range immediately updates the displayed informa-
tion and then sends the changed data to the backend as a GraphQL mutation.

After executing this lifecycle function the picture update function of the Query En-
gine13 builds two SQL queries again using Knex and executes them on the database.
The first query performs the actual update. The second one fetches the updated in-
formation from the database and returns them to the resolver that called the picture
update function. Which data is fetched and returned is specified with the fields in
the mutation definition. Although this could be used to immediately return the up-
dated picture information, we specified in the definition, that the mutation should
not return the picture information. Instead, the response arriving in the frontend
triggers a refetch of the getPictureInfo query (see Figure 4.17).

We implemented this behavior to maintain a single source of truth for the picture
information. As explained in subsection 4.4.1, the data displayed in the PictureInfo
component is based on the data from the getPictureInfo fetch in the PictureView.
Additionally using data from a different query source, like the response of the up-
date mutation could lead to conflicts, especially with the cache. For example, there

13https://github.com/strapi/strapi/blob/8d642957729fd35606e47a3df171852b41d437f1/packages/core/datab
ase/lib/entity-manager.js (last accessed: 2022-07-13).

91

https://github.com/strapi/strapi/blob/8d642957729fd35606e47a3df171852b41d437f1/packages/core/database/lib/entity-manager.js
https://github.com/strapi/strapi/blob/8d642957729fd35606e47a3df171852b41d437f1/packages/core/database/lib/entity-manager.js

4 Architecture and Implementation of a Web-Based Frontend

Figure 4.17: The sent mutation updates the information in the database and triggers
a refetch of the getPictureInfo query.

are scenarios where closing and reopening a picture would display outdated infor-
mation. Even though problems like this could be resolved by adjusting the behavior
of the cache, we wanted to avoid a possible source of errors and chose the more
stable option of refetching. The refetch works exactly like the usual fetch described
in subsection 4.4.1. It is important to note that this was only an example of editing
data. We use a large variety of updates that have different behavior, originating in
differences in the expected behavior from the user perspective. While the coarse
structure remains the same there are often deviations in the details. For instance,
when editing a time range associated with a picture, the data sent to the API includes
the actual time stamps to be saved. When editing for example the person tags asso-
ciated with a picture, we first query all person tags. A curator now can select entries
from this list of tags and the update mutation sent to the backend only includes the
ids of the selected tags. Moreover, we use other mutations that rely more on custom
backend handling. For example, we implemented merging two tags by writing a
custom GraphQL resolver (see section 5.5.2) to avoid sending unnecessary many
HTTP messages.

4.4.3 Discussion: Layers of Indirection

Aspreviously described our system includes several layers of indirectionwhichmake
even a simple use case as displaying information to a picture a relatively complex
process. In general, adding complexity is a drawback that arises the question of
whether each of these layers is necessary.

92

4.4 Data Flow

React We chose to use the library React instead of writing plain HTML and
JavaScript. As most of us had not used React before, we needed additional time
to familiarize ourselves with the library. Besides learning the syntax and basic ideas,
now and then we also had to refactor code parts to adapt them to React-specific
development patterns which we had not been aware of as we did not know them
from other languages or frameworks. Still, we evaluate using React as advantageous
or even almost a necessity. The component structure introduced by React improves
the structure and readability of our code and also simplifies code reusability. Compo-
nents like the PictureScrollGrid are an often reoccurring combination of functionality
and markup which would have been a lot harder to combine into a single reusable
element in plain HTML and JavaScript. The reusability of components is also not
limited to components we wrote ourselves. Being able to use components such as
the MUI-Autocomplete 14 saved us a lot of time and unnecessary work. Moreover,
we profit from the performance advantages that React provides using the virtual
DOM.15 Especially when editing information, often only a small part of our UI has
to get rerendered instead of the entire DOM.

Client-Server Communication The client-server communication is the part where
we have unusually many indirections. Based on a definitions file we autogenerate
hooks that are used to send GraphQL queries with the Apollo Client. Incoming data
gets parsed with the useSimplifiedResponseData-hook before it can get used in the
frontend. Besides validating the GraphQL operation definitions against the current
schema, the autogeneration provides types that are always consistent with the back-
end. As we use TypeScript this originally provided a lot of value, especially because
the drawbacks in the usual development process are limited to having to execute a
command after changing any operation definitions (see section 6.4.1). Ourmain uses
of the Apollo Client are caching and unified error handling for all GraphQL-errors
reaching the frontend. Using a caching tool is hardly avoidable and besides some spe-
cial cases where we need a specific cache configuration, a developer does not have to
be aware, that we use the Apollo Client at all. The useSimplifiedResponseData-hook
(see section 6.4.1) is more debatable as it neither adds nor reduces complexity but
moves it. The frontend can use a simpler and more intuitive format but it introduces
a difference between the formats used in the React components and the operation
definitions. Moreover, autogenerated types can not be used anymore, as they base
on the non-simplified format from the schema. We decided to use the hook because
we value the increase in the readability of large parts of the frontend code more than
the drawbacks of having a less understandable operation.graphql file and having to
manually adapt types when changing the schema.

Removing a single one of these layers of indirections would be difficult. But the
overall complexity could be reduced by using REST instead of GraphQL. Initially,
the understandability improves because REST is more widely known than GraphQL.
Also, REST is supported by HTTP caching which removes the necessity for an exter-

14https://mui.com/material-ui/api/autocomplete/ (last accessed: 2022-07-13).
15https://reactjs.org/docs/faq-internals.html (last accessed: 2022-07-13).

93

https://mui.com/material-ui/api/autocomplete/
https://reactjs.org/docs/faq-internals.html

4 Architecture and Implementation of a Web-Based Frontend

nal tool. The useSimplifiedResponseData-hook would have to remain as the cause
originates in Strapi-specific behavior but it would become less confusing as there
are no operation definitions and therefore fewer points of contact for the developer
with the non-simplified format. In hindsight REST most likely would have been the
better choice. Originally we based our decision on a problem with the REST-API that
got resolved in Strapi v4 and now changing all of our API calls would require a lot
of work. Whether this change would be worth the time is debatable because most
of the GraphQL-specific indirections do increase the overall complexity but not the
effort in the usual development workflow. Assuming a developer is familiar with
both, adding a GraphQL query does not require more work than adding a request
addressing the REST API.

Strapi as a CMS Instead of using Strapi, it would have also been possible to use
another CMS or just the database with no CMS at all. The advantages and problems
of using Strapi get extensively discussed in chapter 5.

4.5 Summary

In this chapter, we had a look at the frontend from a technical perspective. We ex-
amined the component structure of our React application which is centered around
interchangeable Views that each implement a major feature. Further, we discussed
the largest deviation from our usual structure and design guidelines, the Picture-
View which needs special handling to enable smooth transitions between looking
at a picture gallery and a full-sized picture. Moreover, we found that the data flow
throughout the application includes relatively many layers of indirection, especially
regarding client-server communication. While each of the different layers is neces-
sary and can not just be removed, many of the reasons can be traced back to using
GraphQL and Strapi. Future work might include changing the client-server commu-
nication from GraphQL to REST. Whether this time-intensive refactoring would be
worthwhile is discussable because it would reduce the overall complexity but also
would not decrease the effort in the usual development workflow.

94

5 Strapi as a Customizable Content
Management System

In this chapter, we will discuss the usage of Content Management Systems for devel-
oping a crowd-sourced picture archive and the experiences we made with Strapi, an
open-source representative of such systems.

5.1 Motivation for Using a Content Management System

To develop a crowd-sourced picture archive, we needed a system to store and man-
age the pictures and associated contextual information. Furthermore, we wanted
to provide the end users of our application with a simple possibility for browsing
through the available pictures and quickly sharing their knowledge and experiences
regarding the historical context of the respective pictures.

The following sections aim to provide an overview of how Content Management
Systems (CMS) can help to implement such a system, and how we used and cus-
tomized Strapi, a representative of such management systems, to fulfill our project’s
requirements. Furthermore, the chapter includes a discussion of the most relevant
technical challenges we faced with this approach throughout the project. Towards
the end, the chapter then concludes on why we recommend to keep using Strapi and
possible aspects that remain for future work on the implemented system.

5.2 Introduction to Content Management Systems

As storing and organizing different types of content, in combination with making
it available on websites, is a common use case these days, there are several systems
designed exactly for that purpose, called Content Management Systems. With mini-
mal technical work needed, a CMS helps create and manage websites and website
content [48]. Additionally, it offers many features that would otherwise need to be
manually implemented when just setting up a database. It provides an abstraction
from the data storage, which keeps users of such a CMS from the need to interact
with databases directly with query languages like SQL. Along with that, other key
features mentioned in an article by Oracle [48] are:

• A CMS enables the easy and collaborative management of the content of a
desired website “via a single authoring and publishing environment”.

• Particularly, it offers freedom regarding the model of the content, also provid-
ing a simple way for managing digital assets like files, images, or videos.

95

5 Strapi as a Customizable Content Management System

• Additionally, Content Management Systems encapsulate the authorization
layer of software applications through fine-granular control over users, roles,
and permissions, providing a secure and reliable way for content management
by multiple users.

• A CMS also simplifies the process of building and publishing websites with a
focus on the actual content of the respective site, e.g., marketing or e-commerce
websites.

Considering the requirements of our projectmentioned in chapter 2 and section 5.1,
especially the digital asset management and collaborative editing possibilities were
key factors that influenced our decision to use a Content Management System for
the project.

5.2.1 Monolithic vs. Headless Content Management Systems

There are two main types of Content Management Systems: traditional CMS, which
are often called “monolithic”, and more modern, “headless” ones. Following con-
siderations are based on the blog articles [57, 13, 16].

Traditional systems likeWordPress1 are often called “monolithic” because they are
nearly full-stack environments providing not only the data storage and user interface
for editing the content, but also a representational interface for the content that is
accessed by the end users. However, this limits the possibilities for the display of the
content on the desired website, making it on the one hand easy to quickly build and
deploy a website with the help of predefined frontend templates, but on the other
hand hard to only pick the features of this monolithic architecture that one wants
for the application that the content is designated.

Headless Content Management Systems in comparison, are designed to be “API
first”, completely separating “the backend (creation and storage) from the frontend
(design and deployment)” [13]. There are well-specified application programming
interfaces (APIs) for creating and managing the content, enabling the development
of own, flexible user interfaces on top of these “backend-only” systems.

As already described in chapter 4, in the context of our project we wanted to
develop our own frontend application, which made a headless CMS an obvious
choice.

5.3 Introduction to Plugin Architectures

In the context of software development, the term “plugin” might not be that new.
Nevertheless, we want to give a bit of background on the architectural design behind
the usage of plugins. The following considerations are based on a blog article on that
topic by Omar Elgabry [17].

1https://wordpress.org/ (last accessed: 2022-07-13).

96

https://wordpress.org/

5.4 Strapi as a Content Management System

The nature of this architecture lies in having a core system, which implements the
basic business logic of the desired application, and, to extend the core application,
plugins which are independent software components that come with additional
features. In consequence of the fact that the plugins are separated from the core or
other plugins, individual ones can be modified, added, or removed as desired. In
most cases, this is possible without having to deal with resulting changes to the core
or other plugins. A key point of this architecture lies in the communication between
the core and the individual plugins. When implementing, developers must consider
two main aspects:

1. The core needs to know which plugins are currently registered to it.
2. The interfaces between the core and the plugins must be well-defined in terms

of the extension points the core provides.
Regarding the advantages of using this architectural design, Omar Elgabry also

states, that “depending on how the pattern is implemented, each plugin can be
deployed, tested, and scaled separately” [17], which emphasizes the independence
of such plugins. However, also resulting from this is that it can be difficult to test
the entire system because the behavior of multiple plugins in combination remains
mostly untested. At the same time, the core itself can also be seen as a bottleneck
as changes to parts of it, like the interfaces that plugins can access, might entirely
break developed plugins. Further disadvantages can be that plugging in too many
modules might impact the performance of the entire application and the typical
consideration of which software to trust as plugins from external developers might
come with security issues and additional attack vectors [18].

5.4 Strapi as a Content Management System

To fulfill the need for a flexible, headless Content Management System at the be-
ginning of our project, we followed the suggestion of our project advisors to look
into Strapi, short for “Bootstrap your API”. It is a leading representative of a head-
less Content Management System. It is open-source and built on top of Node.js, a
browserless JavaScript application runtime. Apart from the free, open-source variant,
that we used for the project, there is an enterprise edition as well.2

Strapi also comes with a command-line interface (CLI) [58, “CLI”] that can be
used for various use cases regarding the following core components. For reference,
all considerations below are related to the 4.2.0 version of Strapi.

5.4.1 The Administration Panel

Although not designed for end users, there is a React-based user interface provided
by Strapi, called the Administration or Admin Panel. Figure 5.1 offers a view on its
starting page.

2https://market.strapi.io/plugins/strapi-plugin-transformer (last accessed: 2022-07-13).

97

https://market.strapi.io/plugins/strapi-plugin-transformer

5 Strapi as a Customizable Content Management System

The Admin Panel can be used for managing the content and settings of the system.
And yet, using it is completely optional. It accesses the API of the independent
backend just like any other external frontend application. It can also be deployed on
a different server than the backend, further emphasizing the headlessness of Strapi.

Figure 5.1: Starting page of the Administration Panel

5.4.2 The Media Library

As mentioned in section 5.2, a centralized hub for managing digital assets is one of
the key features that come with Content Management Systems. Strapi offers such
a hub with the Media Library3 acting as a place to store image, video, and audio
files as well as regular documents. It is also capable of creating and storing different
formats of such media files. For example, for each uploaded image, several versions
in different resolutions are generated.

5.4.3 Defining the Content Models

Just like for every CMS, the definition of the content models plays an important role
in the Strapi system. It is mostly done inside a special view of the Admin Panel, the
Content-type Builder. There is a detailed user guide [58, “Content-type Builder”] for
this featurewritten by the Strapi team,which helped us onmany occasions. However,
we want to point out some key points about the different kinds of content types here

3https://strapi.io/features/media-library (last accessed: 2022-07-13).

98

https://strapi.io/features/media-library

5.4 Strapi as a Content Management System

as well. For that, Table 5.1 shows a basic comparison between the three kinds of
content types: Collection Types, Single Types, and Components.

Table 5.1: Comparison between collection types, single types, and components

Definition by
Strapi

Example use case
in our system

API
endpoints?

Collection types “Collection types
are content types
that can manage
several entries.” [58,
“Content-
type Builder”]

Storing tag
information, e.g.,
the different person
tags.

yes

Single types “Single types are
content types that
can only manage
one entry.” [58,
“Content-
type Builder”]

Managing the
browse root
collection, which is
the default
collection that gets
displayed in the
browse view of our
frontend application
described in
section 4.3.2.

yes

Components “Components are a
data structure that
can be used in
multiple collection
types and single
types.” [58,
“Content-
type Builder”]

Storing the
synonyms of a
certain tag, e.g.,
aliases of a person.

no

For Single and Collection types there is also the “Draft & Publish” feature [58,
“Saving & Publishing content”] for entities that should not be directly visible to
non-authenticated users.

Regarding the various field types, which are used to model the attributes of a con-
tent type, we want to focus on the most important one for our project: the relational
field. It enables establishing a connection to another content type. One-to-one, one-
to-many, and also many-to-many relations are possible. This field type makes up the
foundation of our content model, as we want to relate various types of information
to the pictures type, the main content type of our system.

Based on the configurations Strapi generates a static schema file for each content
type representing the model of the respective type. These JSON files can also be

99

5 Strapi as a Customizable Content Management System

adapted manually or even generated completely without the Admin Panel in the
first place with the Strapi CLI.

Strapi then maps the models of these content types to relational tables on the
database layer described in subsection 5.4.4. Therefore, the database schema is
created automatically. Subsequent starting processes each trigger the detection of
schema differences and synchronizations if needed.

But these schema migrations can not be fully automated. In most cases, changes to
the schema files result in data loss. For example, that applies to the renaming or type
changes of fields as in both cases it is getting translated down to a combination of
removing the old column and adding a new one on the database layer. Type changes
can even lead to system failures when the new type of field is not compatible with
the data that is present in the associated database column. For example, this occurs if
one tries to change a string field with present data into a number field. So to prevent
the loss of data, custom migration code needs to be written and new fields first need
to be filled with data before old fields can safely be deleted. As far as we discovered
there is an interface for programmatic migration files but at the current point, it
is not well documented. A possible entry point into this topic might be the Strapi
migrations plugin [15]. Instead, we implemented some custom migration scripts via
our custom plugin, more on that in chapter 6.

5.4.4 Connection to Relational Databases and the Knex Query Builder

Regarding the data storage of one’s system, Strapi is capable of connecting to the
following relational databases: MySQL, MariaDB, SQLite, and PostgreSQL [58, “In-
stalling from CLI”]. For our project, we decided to use a PostgreSQL database.

Internally, Strapi makes use of the Knex Query Builder, which provides a pro-
grammatic interface to interact with databases in the Node.js environment. It offers
a simple and abstract way of building SQL statements by calling predefined meth-
ods, thereby also taking care of using prepared statements to prevent SQL injection
attacks [24]. Responses of statements are automatically mapped to JavaScript ob-
jects as a part of the object-relational mapping (ORM), on which Strapi’s internal
interfaces are based on.

5.4.5 Using the Users & Permissions Plugin as an Authorization &
Authentication Layer

With the Users, & Permissions plugin (U & P) [58, “Users, Roles & Permissions”]
Strapi provides an abstracted, but at the same time fine-granular control over reg-
istered users, associated roles and permissions. For example, each role can have
different permissions for accessing or modifying entities of a certain content type.
Configurations can easily be made in the Admin Panel or through the REST or
GraphQL APIs, which get described in subsection 5.4.7 and subsection 5.4.8. Con-
cerning the calls to these APIs, the authentication is managed by JSON Web Tokens
(JWT). In the context of our project, the plugin encapsulates all our authorization

100

5.4 Strapi as a Content Management System

and security logic and in consequence, we could use it out of the box without having
to take any further actions.

5.4.6 Further Internal APIs: The Entity Service and the Query Engine

Apart from the REST and the GraphQL APIs that get introduced in the next two
sections, Strapi also populates internal interfaces for developers. The most important
of these are the following three:

• The already introduced Knex Query Builder, usable for directly interacting
with the database.

• The Query Engine API [58, “Query Engine API”] acts as an abstraction for
interactingwith the database and is already following the CRUD (Create, Read,
Update, Delete) pattern.

• The Entity Service API [58, “Entity Service API”] makes use of the Query
Engine API and further enhances it with the capability of handling aspects like
the complex data structure of Components.

5.4.7 Accessing the Content Through the REST API

Strapi’s REST API is based on an HTTP Server that itself is based on Koa, a backend
JavaScript framework for that purpose [58, “Back-end customization”]. For each
content type, endpoints for default CRUD operations are generated by Strapi [58,
“REST API”]. These endpoints follow the pattern of separating route configurations,
controller, and service logic, whereby only the service deals with the business logic
and calls the mentioned Entity Service and Query Engine APIs.

Responses follow the shape of the “Unified Response Format” [58, “REST API”],
which applies to both the REST and the GraphQLAPI. A response is always an object
consisting of a data and an additional meta or error key. The actual entity objects
returned from the backend are put into the data key. Besides the id, the configured
attributes of entities are encapsulated into the attributes key. The encapsulation
into data and attributes keys is recursive and also applies to nested entities related
to the originally requested entity. So for example, a response object for requesting a
content type with a relational field looks like shown in Listing 5.1.

Listing 5.1: The “Unified Response Format”

1 {
2 ”data”: {
3 ”id”: 1,
4 ”attributes”: {
5 ”title”: ”Entity A”,
6 ”relatedEntity”: {
7 ”data”: {
8 ”id”: 2,
9 ”attributes”: {

10 ”title”: ”Entity B”
11 }
12 }
13 }

101

5 Strapi as a Customizable Content Management System

14 }
15 },
16 ”meta”: {}
17 }

5.4.8 Accessing the Content Through the GraphQL API

As already mentioned in subsection 4.2.2, Strapi also provides a GraphQL API [58,
“GraphQL API”]. Internally, Strapi starts an Apollo Server instance4, which is a
popular runtime capable of parsing GraphQL requests. By default, these are coming
in as POST requests to the /graphql endpoint, which is provided by the Apollo
Server instance.

With the “Shadow CRUD” feature enabled, Strapi automatically generates re-
solvers in analogy to the CRUD operations of a typical REST API and adds these to
the GraphQL schema. When called, the registered resolvers make use of the men-
tioned Entity Service and Query Engine APIs directly as well. In consequence, the
introduced pattern of separated route configurations, controllers, and services on,
which the REST API is based, does not apply here.

5.4.9 Internationalization

Storing content in different languages to make the application available for interna-
tional users is possible in Strapi as well. The handling for that is encapsulated in
the Internationalization (i18n) plugin [58, “Internationalization (i18n)”]. For our
project we decided to completely disable this plugin because our domain is a German
picture archive.

5.5 Customizing Strapi

The Content-type Builder already offers much room for customization regarding the
content of our system. Yet, there are also lots of possibilities for modifications and
extensions of the behavior of the system. Note that the following considerations are
not covering all of these and reflect more what we made use of in our project.

5.5.1 Frontend

It is possible to extend the Administration Panel introduced in subsection 5.4.1 by
creating your own React components. For example, custom menu entries can be
developed or new sections to existing views can be added. We did not dig deeper

4https://www.graphql-code-generator.com/docs/getting-started (last accessed: 2022-07-13).

102

https://www.graphql-code-generator.com/docs/getting-started

5.5 Customizing Strapi

into this field, as we decided to build our frontend application and thereby hide the
Admin Panel from our project partner and end users.

5.5.2 Backend

Even more, customizations can be made on the backend side, which again points
out that Strapi is a headless CMS. In all the following cases, calls to Strapi’s internal
interfaces like the Query Engine as well as the Knex Query Builder are possible.
These, therefore, build the foundation of creating custom code that gets integrated
into the existing system.

Modifying and Extending the REST API As seen in subsection 5.4.7, the REST
API is implemented based on the pattern of routes, controllers, and underlying
services. All of these mentioned can either be extended with new custom logic or
modified to configure the REST interfaces that are generated for each content type.

Just to mention a few examples, it is possible to:
• disable certain routes and their associated actions or make them public to

bypass the authentication system,
• overwrite existing logic of action to add information to its results or execute

side effects,
• register completely new routes and associated actions for special use cases.

In the context of our project, these extension possibilities remained mostly unused
as the frontend application, introduced in chapter 4, only uses the GraphQL API.

Modifying and Extending the GraphQL API Strapi provides the possibility to
register custom GraphQL extensions that can extend the schema partly generated
by Strapi’s “Shadow CRUD” feature. These extensions get defined using GraphQL
Nexus5, a library that acts as a programmatic abstraction for interactions with the
schema.

Regarding the actual resolving process, it is firstly possible tomodify the generated
resolvers for queries and mutations just like for the REST API by e.g., disabling
certain actions or bypassing the authentication system. Furthermore, completely
new queries and mutations can be registered. For these custom resolvers, there is the
advantage of full control over the types of the arguments and the return type. Not
to forget the complete control over the resolving process itself, e.g., which internal
Strapi interfaces are called. Custom resolvers can also be registered to the U & P
plugin to manage the authorization needed. In the context of our project, we used
that possibility to register a few custom mutations for merging two tag entities to
make it possible to reduce redundancy that may be present in the system.

Another customization option is using middleware. Such middleware explicitly
leaves the existing resolver logic in its place and just adds custom logic around it, for

5https://nexusjs.org/ (last accessed: 2022-07-13).

103

https://nexusjs.org/

5 Strapi as a Customizable Content Management System

example for logging time-related information regarding a certain resolve process or
dynamically resolving information that is not available in the first place.

To point out an example, we implemented a middleware for resolving the thumb-
nail field of our collection content type. For context, collections can be in a parent-
child-relation to each other. Not every collection also directly has pictures related to
it. A collection can also only act as a parent to group multiple collections. So when
information about a certain parent collection is queried, a representative picture
needs to be chosen for it. As we do not want to modify any existing query resolving
regarding collections apart from that one field, that is the perfect use case for query
middleware. The implemented middleware follows a recursive approach traversing
the hierarchy of child collections until at least one picture is found. At that point, one
picture is chosen to be the representative of the originally requested parent collection,
so in consequence, the URL of this picture is put into the thumbnail field of that
collection.

Extending theModel Layer: Lifecycle Hooks On themodel layer, there are oppor-
tunities for behavioral customizations as well. This can be achieved with the concept
of lifecycle hooks, which the Strapi Developer Docs explain in the following way:
“Lifecycle hooks are functions that get triggered when Strapi queries are called. They
have triggered automatically when managing content through the Administration
panel or when developing custom code using queries” [58, “Models”]. Additionally,
in consequence of the fact that the model layer lies beneath the top level interfaces,
both the REST and the GraphQL API trigger registered lifecycles. These hooks are
each scoped for a certain content type and can be registered to run right before or
after calls to the internal Query Engine regarding the respective content type are
made. For example, for the update call, a beforeUpdate and a afterUpdate lifecycle
are registrable.

During our project, we developed a custom beforeUpdate lifecycle for the picture
type. For context, when updating a picture we also want to manage its associated
tags. The main reason for that is to keep the data that is present in the system clean
andmanageable. New tag entities should not be created when there are already ones
that reflect the new content. Furthermore, outdated tag entities should be cleaned up
if they are not referenced anymore. Moreover, from the perspective of the frontend,
this cleaning process should not be apparent, just like such lifecycle functions do not
need to be called explicitly.

In retrospect, we realized that it could also be done as a custom mutation resolver
of the GraphQL API and that this might be an even better solution. The mutation
resolver marks a more separated API endpoint just for our use case, e.g., the Admin
Panel would not trigger this code in contrast to the lifecycle. Additionally, we do
not know which other parts of Strapi could trigger the lifecycle without us noticing,
whereby the custom mutation would only be called in our frontend application.
Secondly, as mentioned in subsection 5.4.8, in that way we have more control over
arguments and return types. Furthermore, it could result in a better understanding
of what is going on when the API call is made, as the lifecycle is still a beforeUpdate
and the actual update of the respective picture is not even made yet at that point. On

104

5.5 Customizing Strapi

the other hand, custom handling is closely related to the update of a picture, which
the defined lifecycle is exactly scoped for. Moving that code to the point where we
register our GraphQL extension could be seen as another indirection and therefore
increase the complexity.

5.5.3 Plugins

Strapi strongly promotes the Plugin Architecture described in section 5.3. Plugins
can thereby access and modify essential frontend and backend functionalities and
also define their content types. From a technical perspective, Strapi plugins are in-
dependent node packages that can be installed with the help of any node package
manager. Installed plugins can each be enabled and disabled, as well as provided
with special configuration details inside a global config file.

Using Plugins Developed by Strapi or the Community Some aspects of Strapi
described earlier are encapsulated into their plugins developed by the Strapi team.
For example, as mentioned the U & P plugin deals with the authorization layer or
the GraphQL plugin introduces the support of the GraphQL API. Partly, these come
with the default installation process (e.g., U & P or i18n) [58, “Plugins”], others can
be found in the Strapi Marketplace (see Figure 5.2) just like plugins developed by
the community.

Figure 5.2: Strapi Marketplace6

105

5 Strapi as a Customizable Content Management System

Extending Existing Plugins There is also the possibility to modify an existing
plugin, either by extending its content types or its interface e.g., by configuring new
endpoints.

Developing Own Plugins Developing completely new plugins is possible as well.
The basic directory and file structure for new plugins can be generated with the
Strapi CLI. Just like external plugins, locally developed plugins can use the entry
points of both frontend and backend functionalities and create their content types
as well. We made use of this feature to develop a custom bulk-import functionality
which gets discussed in detail later in chapter 6. Additionally, plugins are publishable
to the Marketplace to support other developers who may face similar use cases.

5.6 Discussion

Despite the various possibilities for customizations and modifications, we faced
some technical challenges while using Strapi throughout the project. The following
sections discuss some of the more relevant ones of these.

5.6.1 Lack of Attributes on Relations

Consider the following scenario partly described in chapter 2: when tag information
is added to a picture, the involved curator in some cases is uncertain whether that
information is accurate in terms of the historical context of the picture. For that use
case, wewanted to implement a verified flag for all our tag types that can be related
to the picture type. In particular, that concerns the following of our content types: the
keyword tags, the location tags, the person tags, and the time-range tag of a picture.

The meaning of this verified flag is only apparent regarding a picture-tag com-
bination. For example, just because a person is identified in a certain picture and the
person tag is thenmarked as verified in that case, there is no reasonwhy that should
also apply to a different picture that might depict the same person. Similarly, the typ-
ical example of a percentage-of-time attribute on an employee-project-relationship
in a company [12] is modeled using a relationship attribute. We, therefore, derive
that it makes sense to also model the verified flag as a relationship attribute.

Unfortunately, the Strapi Content-type Builder does not allow configuring such
attributes on relationships between content types.

5.6.2 Possible Solutions

To mitigate this problem, we came up with various solutions. We want to focus on
some of the more promising solutions and evaluate the pro and contra arguments
of each one.

6https://docs.strapi.io/assets/img/marketplace-v4.27b6c5ad.png (last accessed: 2022-07-13).

106

https://docs.strapi.io/assets/img/marketplace-v4.27b6c5ad.png

5.6 Discussion

1. JSON Field on the Picture Type The main point of this approach is the manage-
ment of a JSON field on the picture type which tracks the verified flag of all tags
that are associated with a certain picture. For the convenience of the frontend, it also
includes an on-demand parsing of this JSON format to booleans that are directly put
inside the respective tags and vice-versa in the lifecycles of the picture type. Here
are considerations of the pro and contra arguments for this approach:

Pro
• The information stored in the JSON can consist of much more than the veri-

fied boolean. Instead, any possible relationship attribute can be managed here.
Additionally, these attributes can have any type that is representable in a JSON,
e.g., non-boolean (Example: a very abstracted key-value store is possible).

Contra
• Consistency issues: If a tag loses its relation to certain pictures or is even

deleted, the JSON fields on all prior related pictures will need to be updated to
keep them synchronized with the actual state of the system. That would result
in changes to the update and delete lifecycle of every tag that can have this
verified flag.

• Strapi’s JSON fields are not filterable at the moment. One could technically
use string filters (like contains) but in a JSON there is no guarantee that the
properties are always in the same order, which would be needed for the string
filtering. So this approach can not support the future use case of querying e.g.,
all time-range tags that are somewhere in an unverified relation.

• It might be the case that collections should be taggable in the future as well.
That would result in configuring the collection type with its JSON field and
parsing logic in the same way which would overall result in a high amount of
duplicated code.

2. Repeatable Component as a Key-Value Store on the Picture Type As seen in
subsection 5.4.3, Strapi provides a Component data structure usable in other content
types. This approach consists of managing such a Component on the picture type
in a repeatable manner. Each instance of a Component on a specific picture thereby
extends an existing relationship between this picture and a specific tag with the
verified information or other potential relationship attributes. Here are pro and
contra aspects for this idea:

Pro
• Components are (like the JSON field) flexible and suitable for any kind of

key-value store with different types (e.g., non-boolean). So other relationship
attributes can be managed as well.

Contra
• This approach results in similar consistency issues to those described in sec-

tion 5.6.2.

107

5 Strapi as a Customizable Content Management System

• At the current point, there is no filtering on Components possible in the
GraphQL API, which makes this approach not feasible when considering e.g.,
the use case of querying all time-range tags that are somewhere in an unverified
relation.

3. Additional Custom Join Types Here, a new Collection type join_picture_{tag
type} is created with configured many-to-many relations to the picture type and the
used tag type. This join type then contains a verified boolean field. That is also a
solution suggested by some members of the Strapi community.7 Here are the pro
and contra arguments:

Pro
• It recreates the internal representation of attributes on relationships on the

database layer. Thereby, there is the freedom of which and how many rela-
tionship attributes can be described by that and which other types apart from
booleans are usable.

Contra
• Internally, Strapi creates three different join tables per picture tag type combina-

tion with this approach (join_pictures_join_picture_{tag type}, join_pic-
ture_{tag type}, join_join_picture_{tag type}_{tag type}s). But there is
only the need for a single join table to make attributes on relationships work.

• There is a need to manually implement a garbage collection for these join types.
If an entity of these types loses one or even both of its join partners (a picture
and/or tag type entity), it will become completely meaningless. However, as
it is not possible to set relational fields as required in the Strapi Content-type
Builder, the now unreferenced join entity will not be deleted by Strapi itself
(as it is just a regular content type entity from their perspective).

4. Duplicating the Prior Picture Tag Type Relation Fields With a Verified Prefix
This solution deals with the duplication of the prior relation fields between pictures
and the individual tag types with a verified prefix and changing the semantics of
the prior relations to unverified. In consequence, the picture type then has a {tag
type} and a verified_{tag type} field for each mentioned tag type. Here are the
pro and contra arguments for this approach:

Pro
• This approach comes with no consistency issues as there is no place where

outdated information is tracked when a tag gets deleted or loses a relational
partner.

• From both a picture and also from the respective tag type, one can directly get
the information whether their relation is verified or not. Unlike the first two

7Strapi GitHub Issue: Doc request: Adding properties to a relationship https://github.com/strapi/strapi
/issues/1156 (last accessed: 2022-07-09).

108

https://github.com/strapi/strapi/issues/1156
https://github.com/strapi/strapi/issues/1156

5.6 Discussion

solutions mentioned in subsection 5.6.2, one does not need to make a lookup
on a special field that just exists on one of both involved entities.

Contra
• It is only a solution for a single, boolean-typed relationship attribute.
• The frontend is not completely kept away from that implementation detail,

when querying information, both relation fields need to be specified (GraphQL
API).

5. Manual Implementation of Attributes on Relations Manually implementing
that feature might be possible as a custom plugin, although there are complex as-
pects. It would require dealing with Strapi core functionalities and interfering with
their internal join logic. How the core could be extended that way is not well docu-
mented. In conclusion, it is hard to estimate the research and implementation, and
maintenance effort that is required for this approach.

5.6.3 Evaluating the Chosen Solution

Based on these considerations, we decided to implement the fourth approach, which
deals with the duplication of the prior tag type relation fields to the picture type with
a verified prefix. In comparison to the other solutions, it is the one that resulted
in the fewest code changes as there is no custom garbage collection needed for any
kind of outdated information. Yet, we decided to make the following two changes:

1. Asmentioned, the frontendwhich uses the GraphQLAPI now needs to specify
both relation fields when information about the tags of a picture is queried.

2. For convenience reasons we also thought about hiding that duplicated relation
fields detail to at least the frontend parts that are associatedwith the view logic.
More on this can be found in chapter 6.

Additionally, at this point, we decided for this approach, the verified flag was
the only relationship attribute there was a requirement for. Hence, we evaluated the
disadvantage of the chosen solution, which is only suitable for a single, boolean-
typed relationship attribute, as not that significant in comparison to the number of
code changes that we evaded.

In retrospect, that argument does not hold anymore. Towards the end of the project,
our project partner proposed the idea of arranging e.g., all person tags that are
related to a given picture in a specific order. This not only describes a non-boolean
relationship attribute, as it can have any natural number of possible values but also
the combination with the previous verified semantics is hard to reflect with this
duplicated relation fields approach. We did not implement that idea during our
project, so taking further actions remains for future work.

109

5 Strapi as a Customizable Content Management System

5.6.4 Too Generic Query Building Resulting in Rather Cost-Intensive
Queries

We wanted to support a search query for the pictures content type that looks for
matches of multiple search terms in all the different tag types related to the pictures
type. In particular, one should be able to type in multiple search terms and shown
results should have a match in at least one of the different tag types for each of these
terms. Except for the time-range tags, a match thereby should be equivalent to the
term contained in a case-insensitive manner. Hence, being tolerant of typos was not
necessary. Additionally, the query should be part of the GraphQL API.

First Implementation The first implementation consisted of building a complex
filters object for the built-in pictures GraphQL query, which is generated by Strapi
likementioned in subsection 5.4.8. For example,when “Harz” and “1954”were typed
in, the resulting filters object looked as shown in Listing 5.2 (for the complete object
see Listing A.1 in the appendix).

Now considering, as all our tag types are configured to be in relation to the picture
type, there is a join-table for each picture tag type relation generated by Strapi. So
filtering pictures by attributes of these tag types results in the need for multiple joins
of relational tables. Strapi internally builds these necessary joins in a too generic
manner. As the filters object shown contains entries for all individual tag types for
each search term, Strapi’s current implementation instructs the Knex Query Builder
to join all necessary tables (tag tables and associated join tables) together for each
search term. So when searching e.g., two terms, the resulting query contains joins
for all necessary tags and associated join tables twice. There is no check whether
the tables need to be joined to the existing table aggregate or not. In the appendix,
Listing A.2 shows a SQL query that was generated by the Knex Query Builder in
that way. It reflects the scenario of the two search terms “Harz” and “1954”.

Listing 5.2: Basic structure of the filters object for the search scenario

1 {
2 ”and”: [
3 // Begin of search term ”Harz” (a not time-related term)
4 {
5 ”or”: [
6 // For each tag with textual information there is a filter for the
7 // regular relation and the verified relation field. The search term
8 // should match case-insensitively in the textual attribute.
9 {

10 ”TAG_WITH_TEXTUAL_INFO”: {
11 ”TEXTUAL_ATTRIBUTE”: {”containsi”: ”Harz”}
12 }
13 },
14 {
15 ”VERIFIED_TAG_WITH_TEXTUAL_INFO”: {
16 ”TEXTUAL_ATTRIBUTE”: {
17 ”containsi”: ”Harz”
18 }
19 }
20 },

110

5.6 Discussion

21 [...]
22]
23 },
24 // Begin of search term ”1954” (a time-related term)
25 {
26 ”or”: [
27 // Time-related terms are firstly treated as regular textual terms.
28 {
29 ”TAG_WITH_TEXTUAL_INFO”: {
30 ”TEXTUAL_ATTRIBUTE”: {”containsi”: ”1954”}
31 }
32 },
33 {
34 ”VERIFIED_TAG_WITH_TEXTUAL_INFO”: {
35 ”TEXTUAL_ATTRIBUTE”: {”containsi”: ”1954”}
36 }
37 },
38 [...]
39 // For the time-related tags we also parse the time-related term into
40 // suitable start/end timestamps before.
41 {
42 ”time_range_tag”: {
43 ”start”: {”gte”: ”1954-01-01T00:00:00.000Z”},
44 ”end”: {”lte”: ”1954-12-31T23:59:59.000Z”}
45 }
46 },
47 {
48 ”verified_time_range_tag”: {
49 ”start”: {”gte”: ”1954-01-01T00:00:00.000Z”},
50 ”end”: { ”lte”: ”1954-12-31T23:59:59.000Z”}
51 }
52 }
53]
54 }
55]
56 }

As a consequence of these unneeded joins, the table aggregate is growing with
each search term and as joining is the most expensive operation for a relational
database [38] that aspect slows down the response time of our system dramatically.

Table 5.2 offers a measurement of the response time of a complete GraphQL API
request with this implementation for selected search scenarios. Note that apart from
“1954” all search terms appear rather often in the database.

All scenarios were tested on a PostgreSQL database with the following entity
counts for the different content types.

• Pictures: 9350
• Collections: 211
• Descriptions: 2916
• Keyword tags: 798
• Location tags: 186
• Person tags: 294
• Time-range tags: 1428
Already waiting ~379 seconds or ~6 minutes in a scenario with just three search

terms is unacceptable for a productive version of our system.

111

5 Strapi as a Customizable Content Management System

Table 5.2: Measurement of the response time for selected search scenarios based on
the first implementation

Number of
search terms

Search terms Response time in ms

2 “Harz”, “1954” 6822
3 “Harzburg”, “Harz”, “1954” 379473
4 “Bad“, “Harzburg”, “Harz”,

“1954”
N/A (canceled after
nearly three hours
without a response)

Developing an Optimized Solution To solve this performance issue we decided
to register a custom GraphQL Query, which acts as an endpoint for the introduced
search scenario. When resolving, we manually compose a SQL statement with the
Knex Query Builder, created like the model of the actual queries built by Strapi itself.
At the join part, however, we make some optimizations to only join the needed tables
together once. In the appendix, Listing A.3 shows a SQL query that was generated by
the Knex Query Builder for that optimized implementation as well. It again reflects
the scenario of the two search terms “Harz” and “1954”. Now considering the same
test scenarios as before, Table 5.3 shows the measured response times with this
version of the implementation.

Table 5.3: Measurement of the response time for selected search scenarios based on
the optimized implementation

Number of
search terms

Search terms Response time in ms

2 “Harz”, “1954” 2195
3 “Harzburg”, “Harz”, “1954” 2563
4 “Bad“, “Harzburg”, “Harz”,

“1954”
2870

It is clear that by optimizing the expensive join part of the query, we improved the
performance drastically. But at the same time, this solution is highly coupled to the
current state of our content types and the use of a PostgreSQL database as a data
store.

Nevertheless, we think this approach satisfied our needs andwas therefore solving
the issue we encountered with the first implementation for the described search
scenario.

Other Approaches to Searching in Combination with Strapi Making it possible
to browse and search through the content of one’s system can be seen as an essential

112

5.6 Discussion

feature modern content-based systems should provide. In this section, two external
search engines get introduced that Strapi is capable of connecting to.

Connection to an Elasticsearch Instance
Elasticsearch (ES)8 is an often used, distributed search engine that supports light-

weighted queries over large data sets. Along with that, it provides features like
typo-tolerance and the support of synonyms.

Applied to our scenario, the approach to use it together with Strapi would look as
follows.

• Set up an Elasticsearch instance to also run on our server along with the Strapi
instance.

• Synchronize the Elasticsearch instance with the Strapi database state with the
Strapi Elastic plugin.9 With set configurations the plugin enables Strapi to
connect to the Elasticsearch instance and every time changes are made to the
content type entities in Strapi, the plugin keeps the ES instance synchronized
with these.

• Make the search request to the ES instance over its REST API10 instead of the
Strapi API to quickly retrieve matching pictures.

This approach was not tested by us, but it can definitively be seen as a possibility
to easily scale up the search engine for even larger data sets. The big drawback
regarding our project is the payment model which currently requires a payment of
$95 a month for the standard plan.11

Connection to a Meilisearch Instance
Meilisearch12 is an open-source alternative to Elasticsearch. It runs as a separate

server instance and offers features like typo-tolerance and the support of synonyms
as well.

The approach to using Meilisearch in combination with Strapi is similar to the one
for Elasticsearch, there is also a Strapi plugin13 on the Marketplace to manage the
connection and the synchronization. But besides the REST API, one can also make
use of a JavaScript integration to make calls to a pre-configured client directly in the
code of a frontend application.

It was not tested by us either. However, as it has that big advantage over Elastic-
search of being open-source and free to use, we would choose Meilisearch to scale
up our search solution if we proceeded with the project. So that remains for future
work.

8https://www.elastic.co/elasticsearch/ (last accessed: 2022-07-13).
9https://github.com/cillaeslopes/strapi-elastic (last accessed: 2022-07-13).

10https://www.elastic.co/guide/en/elasticsearch/reference/current/search.html (last accessed: 2022-07-13).
11https://www.elastic.co/pricing/ (last accessed: 2022-07-13).
12https://github.com/meilisearch/meilisearch-js (last accessed: 2022-07-13).
13https://github.com/meilisearch/strapi-plugin-meilisearch (last accessed: 2022-07-13).

113

https://www.elastic.co/elasticsearch/
https://github.com/cillaeslopes/strapi-elastic
https://www.elastic.co/guide/en/elasticsearch/reference/current/search.html
https://www.elastic.co/pricing/
https://github.com/meilisearch/meilisearch-js
https://github.com/meilisearch/strapi-plugin-meilisearch

5 Strapi as a Customizable Content Management System

5.6.5 Migrating Between Major Versions

When we started our project in October 2021, we began using the Strapi version 3.6.8.
At that point, the Strapi developers already shifted their focus away from the 3.x.x
versions, as they were working intensively on the next major version, the v4.

While developing our first prototypes (see chapter 3) we quickly found a signif-
icant issue with the API provided by the v3. We experimented with the possible
filters one could set when querying entities of a content type and noticed that es-
pecially the and operator for combining multiple filters was not working properly.
Other users also stated they had issues with that.14 The Strapi developers then often
mentioned they would rewrite their complete API and proposed that this should
therefore be fixed with the v4.15 In combination with the announcement of a limited
maintenance phase of the v3 just for security reasons16, we decided to migrate as
soon as possible.

Unfortunately, the official migration guides were not released until the Mid of
March 2022.17 As this marks a gap of three months in comparison to the first official
release of the v4, which took place on November 30, 2021 [7], we started our migra-
tion approach which is described in detail later in chapter 6. Along with the new
directory structure regarding plugins, which made it necessary to partly rewrite and
adapt our mentioned bulk-import plugin, the main point during the migration was
the introduction of the “Unified Response Format” that the REST and the GraphQL
API are based on (see subsection 5.4.7). The recursive use of the data and attributes
key in the response objects did not exist in v3 and the introduction sparked a lot of
discussion in the community [40]. It was also a pain point, which we solved with
some special handling in our frontend application. More on that can also be found
in chapter 6.

5.6.6 Alternative Systems

There are many alternative headless Content Management Systems in the compet-
itive market. Two popular of these are Kontent18, which even promotes itself with
wordings like “Strapi Alternative - Not satisfied with Strapi?” (see Figure 5.3), and
Prismic.19

Both provide a REST and a GraphQL API for accessing and modifying the stored
content. However, they are not open-source projects and offer only limited, free
plans20,21 and seem to also not have a solution for defining custom relationship

14https://github.com/strapi/strapi/issues/10419 (last accessed: 2022-07-13).
15https://github.com/strapi/strapi/issues/9748 (last accessed: 2022-07-13).
16https://github.com/strapi/strapi/issues/11726 (last accessed: 2022-07-13).
17https://github.com/strapi/documentation/pull/790 (last accessed: 2022-07-13).
18https://kontent.ai/ (last accessed: 2022-07-13).
19https://prismic.io/ (last accessed: 2022-07-13).
20https://prismic.io/pricing (last accessed: 2022-07-13).
21https://kontent.ai/pricing/ (last accessed: 2022-07-13).

114

https://github.com/strapi/strapi/issues/10419
https://github.com/strapi/strapi/issues/9748
https://github.com/strapi/strapi/issues/11726
https://github.com/strapi/documentation/pull/790
https://kontent.ai/
https://prismic.io/
https://prismic.io/pricing
https://kontent.ai/pricing/

5.7 Summary

Figure 5.3: Kontent promoting itself as an alternative to Strapi

attributes22,.23 Furthermore, they lack transparency on how their connections to
the underlying data stores are working, so it is questionable how the performance
regarding the described search scenario would have looked like if we had chosen
one of these systems.

5.7 Summary

Throughout this chapter, we discussed the usage of Content Management Systems
and the experiences we made with Strapi, an open-source representative of such
systems while developing a crowd-sourced picture archive.

In summary, one could argue that Strapi follows the “80–20 Principle” [50]. Many
use cases for developing a content-basedAPIwith the help of a ContentManagement
System are covered by the default interfaces of Strapimaking it easy to quickly deploy
a collaborative content system. However, there are certain advanced use cases that
Strapi is not capable of by default. In cases like these discussed, custom code needs
to be developed and other general customizations made. Strapi is aware of that
fact and provides developers with easy entry points into their APIs and services to
develop custom code and solutions efficiently. Strapi’s community is continuously
growing, encouraging the culture of open-source software. In combination with our
considerations regarding alternative Content Management Systems, we recommend
keeping Strapi as the CMS of choice to support the picture archive.

Regarding our project, certain aspects remain for future work as well. If additional
relationship attributes are to be supported, choosing an alternative solution for sup-
porting such attributes in the first place will be necessary. Additionally, depending
on how the number of digitized pictures is growing in the future, setting up an
external search engine might also be one of the most important improvements to the
system.

22https://kontent.ai/learn/reference/management-api-v2/#section/Linked-items-type-element (last accessed:
2022-07-13).

23https://prismic.io/docs/core-concepts/link-content-relationship (last accessed: 2022-07-13).

115

https://kontent.ai/learn/reference/management-api-v2/#section/Linked-items-type-element
https://prismic.io/docs/core-concepts/link-content-relationship

6 Automatic Data Migration, Testing, and
Deployment

In this chapter, we will highlight how various tools and automation were used to
aid the development process. We will provide an overview of three topics of impor-
tance during all stages of our project: Data migration, Developer Experience, and
deployment.

6.1 Tools and Tasks in Modern Web Development

Developing and deploying a web application such as our crowd-sourced picture
archive was a complex process for our developers. Furthermore, the growing num-
ber of components and tools available when developing the application combined
with agile practices demanded a flexible approach when choosing the software com-
ponents used to support said process. As seen in chapter 5, tools such as Strapi can
help quickly set up a stable system and keep it up-to-date. However, there is no defi-
nite tool-based solution for developing maintainable software and providing each
developer with the appropriate instruments needed to do so. Considerations had to
be made during development on what to use and when. That is why it is crucial to
illuminate the topics of data management, Developer Experience, and Continuous
Integration and Deployment, as they have become integral parts of tackling the task
of producing larger software systems [46].

The following chapter aims to provide an overview of these broader topics in the
context of the development process of our software.Wewant to focus on highlighting
the tools used and the types of considerations our team had tomake.We also address
a few crucial points concerning data migration since our goal was to replace a system
already running and storing data. This meant thinking about how to treat the data
we were working with and how to manage the multitude of forms data appeared
in. An overview of all tools used, which can be separated into three distinct areas, is
pictured in Figure 6.1.

The next section of this chapter will illustrate the steps needed to migrate the data
from the legacy system. The third section will then discuss how we managed the
data afterward and during the project. The fourth section will overview the tools
which helped us during development. In the fifth section, we will illustrate the steps
necessary for deploying the system and the methods we set up to monitor it. We will
conclude in section six with a summary.

117

6 Automatic Data Migration, Testing, and Deployment

Figure 6.1: The tools used during the project. The migration of WordPress data and
the role of Python and JavaScript is further explained in section 6.2

6.2 Data Migration: Importing from WordPress

The core focus of this work was to increase the ease of development for people
participating in the project while reducing the overhead asmuch as possible. This can
be seen in the first challenge our team faced when starting: Understanding the legacy
system and migrating the data to our new data store and format. According to J.
Morris [43], data migration is the “selection, preparation, extraction, transformation
andpermanentmovement of appropriate data that are of the right quality, to the right
place, at the right time and decommissioning of legacy data stores.” Data migration
solves a core problem:Different systems anddata stores assume varying data formats.
There is a multitude of reasons for deciding to migrate data [39]:

• Combining existing data stores as a result of unifying systems,
• Upgrades to newer systems or different data stores,
• Outside regulations that lead to new requirements,
• Changes in processes that lead to new functional requirements that are no

longer supported by the existing data structure.
When starting our project, we found ourselves dealing with the second of these

reasons. As has already been detailed in chapter 1, while our software was developed
to find a better way of solving the project partner’s requirements, it was not the first
one to try. A legacy system based on the NextGEN gallery plugin for WordPress1

1https://wordpress.org/plugins/nextgen-gallery/ (last accessed: 2022-07-13).

118

https://wordpress.org/plugins/nextgen-gallery/

6.2 Data Migration: Importing from WordPress

was already in place to manage around 7.600 pictures. However, since that system
did not successfully address all requirements, those pictures had to be migrated to
our application to prevent reentering any already digitized information. This posed
a challenge since the original system was not intended to be decommissioned until
the new one was finished. Even though we agreed with the project partner that they
would manage no new pictures or comments on the legacy system, we could not
rule out the possibility that the initially migrated data would become stale. So we
potentially had to migrate the data multiple times.

To successfully migrate data from a legacy data store to a new one, four steps are
necessary [39]:

1. Exporting appropriate data from the legacy data store (selection, preparation,
extraction),

2. Cleaning up the data and preparing it for import (transformation),
3. Importing the data into a new data store (permanent move to the right place),
4. Decommissioning of the legacy data store.
Following these four steps, we migrated the data from WordPress to Strapi.

6.2.1 Exporting from WordPress as a Legacy Data Store

The data that needed to be transferred was split across two stores forming the legacy
system. While the pictures themselves, along with their metadata, were managed
by the NextGen gallery plugin, the comments, as well as the folder-like structure
they were placed in, were provided by the enclosing WordPress installation. This
meant exporting was not as simple as gathering data from one database but rather a
multi-step process.

First, the pictures themselves were stored on the server’s hard drive as JPEG files
and could be downloaded. The NextGen gallery organizes these files in named
albums, each corresponding to a folder with the same name. These albums, the
picture metadata including tags, as well as the comments were all stored in tables
in an SQL database. WordPress allows the export of these tables as TSV files, which
gave us three intermediate data containers (album.tsv, comment.tsv, pictures.tsv).

As mentioned in chapter 2, our project partner’s requirements for organizing
pictureswere fulfilled by the options provided byNextGen gallery. They tried to solve
this by embedding standalone gallery instances, each displaying one album, onto
different web pages. Those pages were then connected using hyperlinks, creating
the virtual experience of a hierarchical folder structure for visitors. Exporting this
structure proved more complex than the previous step since the links were not
created uniformly, and a central export of WordPress pages was not easily possible.

To solve this problem, we wrote a JavaScript code snippet to scrape the pages. For
this script, we used the fetch function to get the HTML code of a target page and
then utilized JavaScript’s built-in querySelectorAll function to get description texts,
img tags, and links leading to other pages based on their respective CSS selectors (see
Listing 6.1). This function was then included in a loop iterating over a URL queue,

119

6 Automatic Data Migration, Testing, and Deployment

which eliminated cycles while traversing the page tree by checking if a URL had
already been called by a previous iteration.

Listing 6.1: Using JavaScript’s querySelectorAllmethod to traverse the page

1 const allImageIds = [...doc.querySelectorAll('.ngg-gallery-thumbnail')]
2 .map(i =>
3 i.querySelector('a').getAttribute('data-image-id')
4);
5 const allLinks = [...doc.querySelectorAll('.text a:not([data-image-id])')]
6 .map(a => a.href);

The export process provided us with the TSV files mentioned as well as the al-
bum structure as a JSON file. All information was present now, though it had to be
reinterpreted more fittingly that more closely resembled our target data structure.

6.2.2 Cleaning Up and Transforming the Data

To prepare the exported data for the import, we wrote two cleanup scripts in Python.
In this manner, two JSON files were produced. The first, created by importAlbumsTo-
JSON.py as a result of the TSV export, mapped the albums to their respective pictures
in a file called albums.json, a snippet of which is shown in Listing 6.2. This file stored
comments, keywords, and a description for each picture alongside the filename. The
second export file named tagInfo.json was produced by importTagsToJSON.py and
stored the hierarchical relation between albums as recursive “children” fields, as well
as additional information such as the title and description of an album. To prepare
this data for import into the new system, some adjustments had to be made, such as
replacing & with &.

Listing 6.2: Extract of ‘albums.json‘ file: mapping each album to its pictures and
each picture to its metadata

1 {
2 ”1”: {
3 ”dirname”: ”harzburger-musiktage”,
4 ”previewpic”: ”1”,
5 ”pictures”: {
6 ”1”: {
7 ”filename”: ”2020-06-16-11-49-0001.jpg”,
8 ”description”: ”Prof. Hermann Baumann, Naturhornwettbewerb”,
9 ”alttext”: ”Harzburger Musiktage”,

10 ”sortorder”: ”0”,
11 ”keywords”: [],
12 ”comments”: []
13 },
14 [...]
15 }
16 },
17 ”2”: {
18 [...]

120

6.2 Data Migration: Importing from WordPress

Figure 6.2: Extracting and assigning time-range tags from the other picture tags

Handling Time-Range Tags Since the target data model described in chapter 2
structured picture information more finely granulated than the source model, a one-
to-one mapping of fields was impossible. Time-range tags are a fitting example of
this because, though the time information was present on the original data (e.g., in
descriptions, titles, etc.), it was not structured in a consistent, machine-readable way.
Hence, we employed a heuristic to extract all possible time ranges from the source
data. This heuristic was executed after the import stepsmentioned in subsection 6.2.3
and its steps are pictured in Figure 6.2.

We identified potential time ranges in tags using various regular expressions (Reg-
Exp) to match common ways of expressing dates, years, and timespans found in the
source data, meaning in common German date formats. This is done by checking a
picture’s associated descriptions, titles, and albums against these RegExp and return-
ing all matches. In the further steps, the potential candidates can then be reduced.

Since the heuristic always assumes the time range with the smallest time as the
most fitting one, the results are not always correct. An example of this can be found
in the album “Engländer in Bad Harzburg/Leave-Center 1945–1955”, whose descrip-
tion states” that on the 10th of April 1954, English troops came to Bad Harzburg.
Many pictures in this album could only be dated as accurately as 1945–1955 or even
less specific. Still, the heuristic assumed this date for every picture due to the more
precise date being present in the album’s description. To deal with this, we used our
tag verification method (see chapter 2) to mark every automatically generated tag
as unverified so that tags can be corrected using further manual work in the future.

6.2.3 Importing Data into the New System

Using the Strapi Content-Type Builder (see subsection 5.4.3), we manually imple-
mented content-types according to our target data model (see chapter 2), which
created the necessary schema files. Having done that, we used Strapi’s built-in plu-
gin system to create a new plugin named bulk-import, in which we added the
endpoints needed to import the data.

First, we transferred the picture files to the server using SSH. The import pro-
cess then consisted of sequentially calling three endpoints using REST requests and
passing the JSON result files as POST parameters. First, the /bulk-import/import

121

6 Automatic Data Migration, Testing, and Deployment

endpoint took care of creating all the necessary pictures, comments as well as tags
associated with any picture: Keywords, titles, descriptions, and category tags. Please
note that this reflects an older version of our data structures, as they were when
we first imported the data. Further migrations must be executed as described in
section 6.3 to keep this approach feasible for newer data model versions.

When called, the endpoint executes the process pictured in Figure 6.3 for each
picture in each album in albums.json.

Figure 6.3: Uploading pictures using the bulk-import plugin follows this pipeline.
The step of adding tags to the picture is illustrated in more detail in Figure 6.4

Here, we considered three potential tag types for any given picture: Title, descrip-
tions, and keywords. For each of the tags, we first checked if a tag with the provided
content already exists and, if not, created a new one (see Figure 6.4).

Figure 6.4: Adding tags to a picture

In that manner, we could ensure that when we created the picture, we assigned it
a valid entity and also deduplicated content during the import by re-using already
imported strings multiple times. We also stored the unique WordPress id for each
picture so that they can be referenced in later execution steps. After completing these
steps, all pictures were imported as entities. However, the album structure was not
yet translated into categories for the new system. For this, we iterated over all albums
once more, this time using the tagInfo.json, whose “children” structure allowed
us to use a recursive approach for creating categories (see Figure 6.5).

Here, we matched pictures to their correct categories by identifying them via their
WordPress id, which is assigned to the album in the albums.json file. From there on,

122

6.2 Data Migration: Importing from WordPress

Figure 6.5: Parsing the tag json file

only the comments weremissing in the new dataset. We developed another endpoint
named /bulk-import/import-comments, which took care of this. Like the category
tag endpoint, this one used the WordPress id to assign the correct comments to the
right picture.

6.2.4 Decommissioning the Legacy Data Store

As stated above, we wanted to keep the WordPress system running while develop-
ing the new system. That meant that the fourth step had to be deferred to a later
stage, i.e., the production deployment of our software (see subsection 6.5.4). The
decommissioning was completed as soon as there was no way of publicly accessing
the old website.

6.2.5 Sidenote: Legacy Compatibility between Strapi Versions

While our team tried to keep the possibility of migrating data from its original state
completely into the latest system iteration, there was one point at which we had to
take breaking changes into account: The switch fromStrapi v3 to Strapi v4. Since there
was no migration guide yet (see subsection 5.6.5) but we needed several features not
present in the v3 release, we decided to upgrade anyway. That meant adjustments
to the import script had to be made as well. So, instead of opting to migrate the
already model-compliant data from our Strapi v3 instance, we dropped the data and
triggered another WordPress import using the same input files as before, just using
the new Strapi v4 content API.

However, during our initial testing phase, a small number of comments had al-
ready entered the system. These could not bemoderated yet but also held valuable in-
formation. We added a new endpoint named /bulk-import/import-draft-comments,
which when called migrated these comments from Strapi v3 to the v4 instance using
a custom JSON format. We built this endpoint like the import-comments endpoint
with the additional step of setting publishedAt: null for every new comment, thus
telling Strapi the comment was a draft (see subsection 5.4.3). The imported com-
ments were then moderated using the production system at a later stage.

123

6 Automatic Data Migration, Testing, and Deployment

6.3 Data Migration: Evolving the System

Having imported the original data once and prepared endpoints for later re-
importing was not enough. As mentioned in section 6.2, changes to functional re-
quirements could also lead to changes in the data structure and possibly necessary
migration. A shift in domain understanding can cause such a change. During the
project’s runtime, such shifts took place on multiple occasions, meaning data mi-
gration became a continuous process. The main challenge was migrating from one
version of a given data model to a revised version while ensuring all previous, as
well as the original WordPress data, could still be used. A pipeline was created to
migrate data from any state to the following one.

6.3.1 Migration Use Cases

Simple migrations, e.g., changing the data schema from one version to the next,
were simplified using Strapi’s built-in migration functionality (see subsection 5.4.3).
It was only necessary to restart the Strapi application with new schema files gen-
erated by the Content-Type builder for the changes to be applied to the database
automatically. However, adjusting the data itself was not as easy since, as described
in subsection 5.4.3, new model fields could contain information from different prior
fields. We would have lost data if we only created the fields and dropped the old
ones. Currently, Strapi offers a migrations system for these kinds of challenges. How-
ever, this system was not well documented enough when we first encountered this
issue. Therefore, we decided to extend our bulk-import script to offer additional
endpoints for three specific use cases that could be called to trigger the steps of
our migration pipeline. In this manner, an arbitrary state of the data model can be
reached by adapting the schema files using Strapi’s Content-Type builder and calling
the necessary steps of the migration pipeline manually.

Removing Titles From the Data Model The first of those steps – accessible via
/bulk-import/migrate-titles – was introduced once the decision was made to drop
titles from our data model. Since most titles did not contain valuable information,
such as the date the picture was scanned or an ascending enumeration, a large part
of this data could be removed. We used the regular expression shown in Listing 6.3
to identify these titles and filter them out.

Listing 6.3: The regular expression used to filter out titles that are just timestamps.
The file naming schema was determined by the previously used scanner software.

1 /(\d{4})-(\d{2}-){4}(\d{4})/gm

Other titles were merely duplicating information already present in a picture’s
description. To remove these entities, we identified the pictures associated with
any given title and compared their descriptions to the title at hand. If any assigned

124

6.3 Data Migration: Evolving the System

description’s string contained the title (checking case-insensitive), the title object
was removed. In a third step, we wanted to reduce the number of title entities further
by consolidating titles that solely differed in a suffix number (e.g., “sommerfest 1”,
“sommerfest 2”). Of all remaining entities, we assumed there to be some amount
of valuable information in them so that we could not just drop them. Instead, we
opted to convert those titles into descriptions and assign them to their respective
pictures. Since our configuration of description content types allowed us to enter
formatted text, we wrapped these titles into HTML-Header-Tags (<h1>) so they
stood out from the other descriptions. After successfully running the script, we
safely removed all titles, as well as the Content-Type “title”, without having to fear
the loss of information.

Converting Category Tags to Collections A similar approach was taken once we
decided to switch from category tags to collections for manual picture organiza-
tion. We added an endpoint at /bulk-import/migrate-collections, which assumes
a content-type named “Collection” has already been created. It then iterated over
every previous category and created a corresponding collection with the same name,
description, and pictures. However, while categories worked using “related tags”
(see chapter 2), collections employ a more strictly hierarchical approach. This meant
that related tags of previous categories had to be mapped to child collections and
parent collections of the new collection. This was only possible because our team
implicitly decided earlier to use related tags hierarchically. After this script was exe-
cuted, the category tags content type, aswell as the data, were safely deleted. The first
time we ran this script, we opted to assign each picture to the collections they were
contained in as well as to the parent collections of those. However, this made query-
ing pictures direct belonging to a collection a lot more computationally intensive at
runtime, which is why we decided to reduce the relationship between pictures and
their collections to just the immediate parents. For this, the /bulk-import/reduce-
picture-collection-relations endpoint was introduced, which selected the most
specific collection based on their parent-child relations and assigned it to the picture.

Introducing Archive Tags As a last variation point, after introducing the archive
tag type, it was decided every picture should have one archive assigned, so every
picture already present in the system should be assigned to a certain default archive.
The new endpoint named /bulk-import/add-default-archive-tag took care of this
by iterating over all pictures and assigning the default archive tag.

6.3.2 Importing Data via the Scanner

Because we did not want to halt the scanning process during project development,
we introduced temporary migration measures, such as using an Excel sheet as an
intermediate data store. More on this approach and its flaws can be found in sub-
section 6.3.3. Once the upload and curator interface was finished, data migration
had taken on another meaning: Primarily migrating data from a completely ana-
log data store, meaning physical pictures, to the digital realm without needing any

125

6 Automatic Data Migration, Testing, and Deployment

third-party data stores. The process of doing so was unoptimized before since the
digitized pictures still had to be uploaded and matched to their tags manually. As
explained in chapter 3, we wanted to enable direct scanning into the web application.
This proved difficult since we found no easy and affordable way of interfacing with a
scanner directly from a browser. A workaround employed by the solutions we found
is to use an application running on the host system interfacing with the local web
application via REST or Websockets.2 However, these solutions were very costly and
not open source, so we decided to develop a custom program for this. It is written
in Python and follows the same principle as related software, shown in Figure 6.6. It
uses the Python TWAINmodule to communicate with the device, and the websockets
module3, to connect to the browser.

Figure 6.6: Components necessary for scanner communication

The script must run on the host operating system to use the scanner. It then pro-
vides various operations which can be triggered by the web application sending
an operation code along with the necessary parameters in the form [operator]
<...parameters>. The receive function of the script then splits the received text at
whitespaces (“ ”) and executes one of the operations listed in Table 6.1.

The scanner communication itself is done by addressing the TWAIN module func-
tions, as shown in Listing 6.4. Here we use the SourceManager object provided by
the library to access the selected scanner and then request the scanned image using
RequestAcquire and XferImageNatively. To back up the image and prepare it for
further pre-upload modifications, such as automatic cropping, we store the scanned
data in a bitmap file called tmp.bmp. Then we execute these modification steps if
needed and append the scanned image to a buffer array, which will be sent via the
WebSockets after the process.

2https://asprise.com/document-scan-upload-image-browser/direct-to-server-php-asp.net-overview.html
(last accessed: 2022-07-13).

3https://github.com/aaugustin/websockets (last accessed: 2022-07-13).

126

https://asprise.com/document-scan-upload-image-browser/direct-to-server-php-asp.net-overview.html
https://github.com/aaugustin/websockets

6.3 Data Migration: Evolving the System

Table 6.1: Possible operations of the scanner script

Operation Parameters Description Response
list — List all available

scanning devices
{”list”: string[],
”selected_scanner”:
number}

scan — Obtain one or multiple
images from the
currently selected
scanner

(Images as Blob Array)
see below

set_scan-
ner

scanner_id:
number

Set the currently
selected scanner

{noop: true}

set_crop auto_crop:
boolean

Turn automatic
cropping on/off

{noop: true}

Listing 6.4: The function used to interface with the scanner device. The specific
implementation depends on the scanner type and only works with our test model
– the Plustek ePhoto Z300.

1 def get_images():
2 buffer = []
3 ss = sm.OpenSource(sm.GetSourceList()[current_scanner_id])
4 scan_start_time = time.time()
5 while True:
6 try:
7 ss.RequestAcquire(0,0)
8 rv = ss.XferImageNatively()
9 if rv:

10 (handle, count) = rv
11 file_name = 'tmp.bmp'
12 twain.DIBToBMFile(handle, file_name)
13 cropFileIfNeeded()
14 with open(file_name, 'rb') as file:
15 scan_start_time = time.time()
16 buffer.append(file.read())
17 except (twain.excTWCC_SEQERROR, twain.excDSTransferCancelled):
18 ss.destroy()
19 ss = sm.OpenSource(sm.GetSourceList()[current_scanner_id])
20 if time.time() - scan_start_time < 5:
21 continue
22 else:
23 break
24 except Exception as ex:
25 [...]
26 return buffer

We wrapped the code in an endless loop to allow the scanner to repeatedly scan
images without having to re-request the scan process. To be able to interrupt it, we
introduced a timer. This timer is reset anytime a successful scan is made. Every
time the scanner tries to obtain a scan, and no picture is available, it will throw the
twain.excTWCC_SEQERROR. We catch this error and check if more than 5 seconds have

127

6 Automatic Data Migration, Testing, and Deployment

passed since the last successful scan. If so, we break out of the loop and send the
result buffer. If not, we continue to try scanning pictures. If any other uncaught
exception occurs, we display the error. If the browser requests to crop the image
automatically, a call to the included cropping script named cropImages.py is made.
It reads the tmp.bmp file produced by the main scanner script and crops the image
according to an auto-crop Python script found on GitHub.4 Tomake execution easier
for our system’s curators, we converted the script into aWindows Executable (.exe),
using the nuitka Python compiler.5

6.3.3 Importing Data from Excel

We wanted to make sure not to halt the scanning process of pictures while we were
developing our application. However, we also wanted tomake a transition to the new
system and the new data structure easier than preparing another WordPress export,
so we introduced an interim solution: A Microsoft Office Excel sheet prepared with
columns that reflected the fields of our intended model structure (see Figure 6.7).
This sheet was handed to the project partner and used to bridge the time until a
sufficient upload interface could be provided. The pictures were still scanned using
the previous system’s method, but instead of loose storage, the information was
directly recorded in a structured way.

Figure 6.7: The sheet’s header row shows the columns that map to the tag types our
new data model assumes

This approachwas used tomanage approx. 500 pictures. After the upload interface
was finished, we extended the import plugin once again to add an endpoint for
importing from the Excel sheet, named /bulk-import/import-from-excel. In this
endpoint, we used the SheetJS node module6 to convert the row data into JSON.
The picture files were once again uploaded to the server via SSH, but the Excel file
was passed as a POST parameter. The upload process then followed mostly the same
steps as the WordPress import script, albeit with a few modifications to allow for the
import of new tag types (see Figure 6.8).

Some unforeseen issues appeared during this stage. For example, we wanted to
ensure the data entered was definitely in the proper format, so we added validation
rules to the file name and the “Date/Time-range” column, whichworked as intended.
However, for the tag columns,wewanted to have the values separated by a semicolon.

4https://github.com/z80z80z80/autocrop/blob/master/autocrop.py (last accessed: 2022-07-13).
5https://github.com/Nuitka/Nuitka (last accessed: 2022-07-13).
6https://github.com/SheetJS/sheetjs (last accessed: 2022-07-13).

128

https://github.com/z80z80z80/autocrop/blob/master/autocrop.py
https://github.com/Nuitka/Nuitka
https://github.com/SheetJS/sheetjs

6.4 Developer Experience

Figure 6.8: Steps for importing picture metadata from the Excel sheet

But due to unfortunate communication misunderstandings and inconsistencies dur-
ing the digitization process, some cells used commas instead. To mitigate this issue,
we loosened our input requirements and used another RegExp to split by both com-
mas and semicolons. This led to other problems for entries where commas were used
in the intended data. Those instances had to be manually corrected after the import.

6.4 Developer Experience

Besides migration concerns, we also focused on providing a pleasant Developer Ex-
perience (DX), which is the perception of work a (software) developer experiences
while working on a project [19]. It can be influenced by a multitude of factors, in-
cluding the environment in which the development process occurs, the tools used
during this process as well as the structure of the process itself. It was important
to us to create a DX that enabled us to achieve high productivity. This meant that
along with our agile methods, we decided on a technical development stack that
should support creating maintainable software as well as possible. This included
the environment in which to develop the software as well as accompanying tools for
assuring compliance with self-imposed coding guidelines such as the code style.

6.4.1 Typed Web Development with TypeScript and GraphQL

Our first decision was which programming language to use. We decided on using
TypeScript, an extension of the popular JavaScript language. It was developed to
make the creation of large-scale web applications more viable and improves on the
default features of JavaScript by providing a module system, classes, interfaces, and
a static typing system. TypeScript [41] can drastically improve the DX by providing
features like on-the-fly type- and null-checking. Because of these advantages and
React supporting both languages, we quickly decided on using TypeScript instead
of JavaScript when setting up the project. This meant we would be sure to produce
type-safe code and use the correct interfaces.

A similar thought process led us to closely connect GraphQL to our frontend since
it offers type support out-of-the-box, albeit with less variation than TypeScript. We

129

6 Automatic Data Migration, Testing, and Deployment

used this to ensure every API call is valid according to our current data state and
that every interaction with the API is consistent.

Generating React Hooks from GraphQL Specifications To automatically create
the TypeScript types from the GraphQL specification, we made use of the GraphQL
code generator7, which can automate the generation of typed queries, mutations, and
resolvers. This module takes the current GraphQL schema as input and generates the
necessary hooks for the Apollo Client. These can be imported and used in the React
component, meaning API calls are always valid according to the current schema
specification. A typical pipeline for generating the code follows the steps shown in
Figure 6.9.

Figure 6.9: The pipeline used when generating the API code for the frontend. The
APIConnector.tsx file contains Apollo hooks to be included in React code.

The Apollo Server provides an Introspection Query, which produces a schema
specification when called. This specification serves as a basis for further code genera-
tion. A custom schema loader located in load-remote-schema.js calls the Introspec-
tion Query, writes its result in a schema.json file, and returns it to the code generator.
The schema.json file only serves as a fallback in case the server is not reachable at

7https://www.graphql-code-generator.com/docs/getting-started (last accessed: 2022-07-13).

130

https://www.graphql-code-generator.com/docs/getting-started

6.4 Developer Experience

the time of generating the API. It should not be used during deployment since it can
introduce inconsistencies in the code compared to the remote schema. However, it
allows the generator to function during development even when no remote schema
provider is available, improving the DX. The configuration of the code generator is
stored in the codegen.yml file, detailed in subsection A.3.1.

Simplifying the Response Format As explained in subsection 5.4.7, Strapi intro-
duced a “Unified Response Format” in version 4.0.0, which enforces a recursive
structure consisting of a data layer including an id and attributes field. Because the
data structures used by our software heavily rely on relations between models, the
layer hierarchy can become very deep, leading to long access statements like the one
listed in Listing 6.5. This reduces code readability, thus impairing the DX.

Listing 6.5: Accessing the URL of a picture with “Unified Response Format”

1 const pictureUrl = data?.picture?.data?.attributes?.media.data?.attributes?.url;

To improve the readability of statements like this, we wanted to simplify accessing
the targeted fields by simplifying the returned JSON data. For this, we introduced
a queryUtils.tsx file containing the flattenQueryResponseData function. This func-
tion recursively traverses the structure and remove any data and attribute layers,
reducing structures like <object>.data.attributes.<attribute> to <object>.<at-
tribute> while maintaining attributes outside this structure such as id. To efficiently
use this function in React components, we wrapped it inside a custom useSimpli-
fiedQueryResponseData hook, returning a memoized value.

Listing 6.6: Using the useSimplifiedQueryResponseData hook inside React
components makes working with the API data much simpler.

1 const picture: FlatPicture | undefined =
useSimplifiedQueryResponseData(data)?.picture;↪→

2 const pictureUrl = picture?.media.url;

Having established this functionality meant that all API calls had to follow a
similar structure where the simplifying hook is called immediately after calling the
GraphQL hook, as shown in Listing 6.6. This was something all developers had to
take into account, but it led to increased readability across the rest of the code. It
also meant that the script could perform other transformation steps on the API data,
which came in handy when implementing the verified flag.

As discussed in subsection 5.6.1, each picture has two relations to any given tag –
one for tags which can verifiably be assigned to the picture and one where that is not
the case. To further increase the developer friendliness of this feature, we wanted
to present this as a simple boolean flag on the relations. We used the simplifying

131

6 Automatic Data Migration, Testing, and Deployment

hook to transform the data with the mergeVerifiedWithUnverifiedData function.
This allowed us to handle the verification state of any given relation as a boolean
flag verified.

6.4.2 Development Toolchain

To set up a local development environment, the frontend, aswell as the backend, have
to be configured. We used the yarn8 package manager instead of the popular npm.
To set up the frontend, three steps are necessary: First, the new code must be cloned
on the local machine. Then, the project must be installed via yarn install. Finally,
the API connection hooks must be generated using yarn generate-api, which uses
the GraphQL code generator as described in section 6.4.1. The latter command must
run whenever the database schema, mutations, or queries change.

Despite having unanimously decided to use TypeScript as our frontend develop-
ment language, our developers still used different operating systems and varying
coding setups and configurations, meaning there were still many variation points.
We, therefore, employed various automatic tools to maintain consistency across the
produced software, e.g., in the code style. We found these tools to be essential in
creating a pleasant DX.

To establish a consistent code style, we employed the code format checker eslint9

and the code formatter prettier.10 We also introduced a “Git-Hook” [4] that is
triggered every time changes concerning the React application are committed to
the repository. For this, we make use of the packages husky11 and pretty-quick.12
husky enables us to configure more flexible git hooks for different stages of the git
development process, while pretty-quick will refer to the configured formatter
but is capable of detecting which files have been changed in comparison to the last
revision. Hence only changed files will be re-formatted.

While these tools improved working on the project in general, they could also be
the source of inconveniences, such as problems with the IDE detecting the linting
settings or strict TypeScript rules that prevented quick code fixes and checks.

6.5 Integration, Deployment, and Performance

While improving the development process, we also concentrated on repeatable test-
ing and deploying the application as another major concern. This section will high-
light how we set up our testing frameworks and a Continuous Integration pipeline,
aswell as howwe built an automated deployment. Oncewe had a production system,
we also installed tools for monitoring it. Lastly, we implemented a backup system.

8https://classic.yarnpkg.com/en/docs/cli/install/ (last accessed: 2022-07-13).
9https://github.com/eslint/eslint (last accessed: 2022-07-13).

10https://github.com/prettier/prettier (last accessed: 2022-07-13).
11https://github.com/typicode/husky (last accessed: 2022-07-13).
12https://github.com/azz/pretty-quick (last accessed: 2022-07-13).

132

https://classic.yarnpkg.com/en/docs/cli/install/
https://github.com/eslint/eslint
https://github.com/prettier/prettier
https://github.com/typicode/husky
https://github.com/azz/pretty-quick

6.5 Integration, Deployment, and Performance

6.5.1 Testing Frameworks and Continuous Integration

In order to ensure stability and robustness of the deployed software, we set up a
Continuous Integration Pipeline using Github Actions.13 For this, we decided on
using two fundamental levels of abstraction for our tests: Unit testing as well as
integration/e2e testing. Unit tests were written using Jest14, and the integration tests
were written using Cypress.15 Because the developed system consists of a frontend
as well as a backend, both had to be tested. The unit tests for the frontend and
backend are executed in the same actions workflow on every push to any branch.
Here, linting is also done using yarn lint. Since the integration tests are a lot more
computationally expensive, they are managed by a separate workflow that is only
executed once a pull request to the main or staging branch is opened or if the request
is marked as “ready for review”. However, the integration tests can also be executed
manually in a Github Action anytime if necessary.

Unit Testing In the backend, since many parts of Strapi’s CMS functionality were
used as-is and because the Strapi maintainers have implemented tests for this func-
tionality, we focused on testing only the parts we customized, i.e., the lifecycle hooks
as well as the custom GraphQL resolvers and types. We closely followed the Strapi
testing guide16 when creating the unit tests, only adjusting the test structure to fit the
current Strapi v4 approach. In the frontend, jest was used as well. We decided on
testing component-wise and placing the test files directly next to the component to
make it easier to map tests to their respective subjects. A typical unit test then looks
as shown in Listing 6.7.

Listing 6.7: The structure of a typical unit test. We decided on using the ‘describe-it‘
pattern for testing.

1 it('should render the picture', async () => {
2 const { container } = renderWithAPIMocks(
3 <PictureView initialPictureId='1' />,
4 GetPictureInfoDocumentMocks
5);
6
7 await waitFor(() => {
8 const imageTags = container.getElementsByTagName('img');
9 expect(imageTags).toHaveLength(1);

10 expect(imageTags.item(0)).toBeInTheDocument();
11 expect(imageTags.item(0)).toHaveAttribute('src', asApiPath(imageURL));
12 });
13 });

13https://github.com/features/actions (last accessed: 2022-07-13).
14https://jestjs.io/ (last accessed: 2022-05-20).
15https://www.cypress.io/ (last accessed: 2022-07-13).
16https://docs.strapi.io/developer-docs/latest/guides/unit-testing.html (last accessed: 2022-07-13).

133

https://github.com/features/actions
https://jestjs.io/
https://www.cypress.io/
https://docs.strapi.io/developer-docs/latest/guides/unit-testing.html

6 Automatic Data Migration, Testing, and Deployment

The renderWithAPIMocks function used in the test is located along with some other
helper functions in the testUtils.tsx file. It calls the default render method pro-
vided by the React testing library andwraps everything in anApollo MockedProvider,
which can load mocks from a specific definition, in our case located in files named
mocks.ts, and intercept calls to specific GraphQL operations with pre-defined return
values.17 Since the MockedProvider depends on the mocked requests exactly match-
ing the requests made by the components, mocks have to be kept up-to-date when
changing code. This circumstance heavily impaired the Developer Experience since
this had to happen quite often.

Integration and E2E Testing Unit tests focus on testing a very specific small code
segment. To be able to test a whole user journey through our application, we em-
ployed integration/e2e tests by using Cypress. Cypress tests are stored in the top-
level directory named cypress/integration. The advantage of using such a frame-
work was that we were able to simulate real browser interaction and thus get as
close to what a user using the application would see as possible. To achieve this goal,
we needed mock data that had to reflect the real production data while also staying
compact andminimal. For this, we set up a fresh system instance and created the nec-
essary data. It was then exported to an SQL dump using pg_dump (see section 6.5.6).
When running the integration tests, we execute a bash script that handles setup as
well as teardown. As can be seen in Listing 6.8, it creates the database and loads the
test data from the previous export into it.

Listing 6.8: Creating a database and restoring the dumped test data to it using Post-
greSQL tools

1 createdb -h localhost -U postgres -T template0 strapi-e2e
2 pg_restore -h localhost -c -U postgres –no-owner -d strapi-e2e ./e2e/data.sql

It then starts Strapi using the appropriate environment configuration (see sub-
section 6.5.4) and uses a busy-wait system to idle until it has started. Then, the
integration tests are run using Cypress, and afterward, the Strapi process is killed.

6.5.2 Evaluating Test Coverage

Using the --coverage flag of Jest, we can plot the unit test coverage over time. This
is shown in Figure 6.10. We can see that the coverage was at its highest in April
2022, at 59.5%. This rather low test coverage stems from the fact that during our
initial prototype phase, we neglected to test essential code that became the basis
for later developments. We never went back to fix this. However, we evaluated the
added value and stability gained by the tests already written and concluded that the

17https://www.apollographql.com/docs/react/v2/development-testing/testing/ (last accessed: 2022-07-13).

134

https://www.apollographql.com/docs/react/v2/development-testing/testing/

6.5 Integration, Deployment, and Performance

most frequent errors were not being covered by the unit tests but rather problems
concerning user interaction with the system.We decided to focus on integration tests
to be able to test these use cases.

Figure 6.10: The code coverage of the unit tests. Each data point represents the test
coverage at a commit on the main branch.

In retrospect, even though the integration tests were more difficult to set up, they
allowed us to test the application in a way not possible by just employing unit tests.
Therefore, use both unit and integration tests for our application.

6.5.3 Load Testing on the System

Not only the code’s correctness but also availability was an essential factor when
we evaluated our system’s stability. To find the default response time a user could
expect when using our application, we used Apache JMeter18 to perform several
load tests on the system, specifically our Strapi backend. The results of one of these
tests can be seen in Figure 6.11. They show that when querying 100 pictures from the
system, a response time of 127ms is expected. For this test, we simulated 100 users
calling this endpoint ten times over 100 seconds.

The test query was a realistic candidate for a potentially problematic one since
it is called often when visiting the website. Other queries are not executed as fre-
quently and take similar response times. Hence, we conclude that the system can

18https://jmeter.apache.org/ (last accessed: 2022-07-13).

135

https://jmeter.apache.org/

6 Automatic Data Migration, Testing, and Deployment

Figure 6.11: The Strapi server’s response time when querying 100 pictures via
GraphQL, the mean is 127ms

withstand the expected loads. The same cannot be said for possible API calls outside
this expectation.

We configured Strapi in a way that doesn’t set a maximum limit for return values
so it gets easier for us to gather the responses we need from some GraphQL queries
during the execution of our application, e.g., when querying subcollections for any
given parent. During our load tests with approx. 15, 000 pictures, we found out that
such a query in large quantities can bring the server to a halt by filling the Knex
transaction pool, thus effectively impairing the availability for all users. We made
sure to employ Strapi’s pagination system in our application whenever the risk of
querying too many entities occurs. However, since no authorization is needed for the
GraphQL endpoints for querying pictures, an attacker could use them to provoke a
denial of service from our server. Since a single operation for querying all pictures
took more than ten seconds in our tests, and this only increased with more parallel
requests, this is something that needs to be prevented in further work on the system.

6.5.4 Deployment

Like the Continuous Integration, our deployment was also planned to be automatic
and continuous. We employ a staging strategy to deploy using two stages: “staging”
and “production”. The staging instance is automatically deployed on every push to
the staging branch, while a new production instance is deployed when pushing to
main. We say the project is deployed once a build is available for access on our server.
To make the application accessible from the web, we used the Nginx webserver.

136

6.5 Integration, Deployment, and Performance

Besides serving the built files and acting as a reverse proxy19 for the backend system,
it also handles secure connections using SSL by employing certbot20 with the --
nginx flag. The steps needed to deploy a new feature are as follows:

1. Setup a local instance of the front- and backend,
2. Check out a new feature branch,
3. Develop and test the new feature,
4. Open a pull request on the staging branch and request a review,
5. After merging the pull request, schedule a new production deployment using

a pull request on main.
The deployment itself is carried out by two separate Github Actions pipelines, one

for staging and one for production deployment. Each of the pipelines follows a simi-
lar structure for deploying the frontend and backend at the same time, making sure
they are in sync. We outsource environment variables to .env files to have a single
source of truth for all configurations and to avoid pushing sensitive information like
the database password to the public repository. These files are already stored on the
server. Furthermore, the pipelines make use of “Encrypted Action Secrets”21, small
encrypted data containers that can hold information needed for the deployment,
such as the SSH-Key for the server and user authorization information.

Deploying the Frontend Application Deploying a React application is as simple
as calling yarn build, which triggers the react-scripts build command with the
correct environment configuration. Here, we use the “env-cmd” package, which
loads the correct variables into the environment. The build command uses “Web-
pack” to compile all resources into static HTML, CSS, and JavaScript files, as well as
assets that are then transferred to the server using SSH and served using the Nginx
webserver. The workflow pipeline, therefore, has to process these steps:

1. Check out the repository at the current state,
2. Install all project dependencies For this, we use yarn’s --frozen-lockfile

flag, which prompts it to install the modules as specified in the yarn.lock file
without loading new versions of dependencies, thus making sure the built
version behaves exactly like the development instance22,

3. Generate the API TypeScript code,
4. Compile the frontend code,
5. Transfer the files to the server using the @appleboy/scp-action23, overriding

the old ones.

Deploying the Backend Application To start an instance of Strapi using the cor-
rect environment variables, we use the cross-env package.24 Furthermore, we use

19https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/ (last accessed: 2022-07-13).
20https://certbot-prod.eff.org/ (last accessed: 2022-07-13).
21https://ghdocs-prod.azurewebsites.net/en/actions/security-guides/encrypted-secrets (last accessed:

2022-07-13).
22https://classic.yarnpkg.com/en/docs/cli/install/ (last accessed: 2022-07-13).
23https://github.com/appleboy/scp-action (last accessed: 2022-07-13).
24https://github.com/kentcdodds/cross-env (last accessed: 2022-07-13).

137

https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://certbot-prod.eff.org/
https://ghdocs-prod.azurewebsites.net/en/actions/security-guides/encrypted-secrets
https://classic.yarnpkg.com/en/docs/cli/install/
https://github.com/appleboy/scp-action
https://github.com/kentcdodds/cross-env

6 Automatic Data Migration, Testing, and Deployment

the PM2 process manager to manage the Strapi production and staging instances.
PM2 is a node-based “daemon process manager”25, which primarily solves three
problems: Keeping the application running by restarting on failure, keeping track
of logs, and managing the deployment. The PM2 configuration is specified in the
ecosystem.config.js file located in the Strapi project folder. Here, the script used
to start the application is defined as well as a restart policy, so the application will
be restarted on failure (a maximum of 50 times). Also, in this file, the deployment
stages are configured. Each stage sets SSH authentication data for logging in to the
server, loading the host and user name from the environment variables, as well as
the target repository to pull from and the branch to checkout. The SSH connection
is secured by providing a key file named deploy.key, which should be located next
to the configuration file. This file is produced during the Github action’s execution
by reading from a secret and writing it to the correct file.

Using the command pm2 deploy ecosystem.config.js <production|staging>,
the corresponding stage can be deployed. When this is executed, an SSH connection
using the aforementioned login data is established, and the current data is fetched
from the specified repository and branch. Then, post-deploy steps are executed.
These steps include installing new dependencies if necessary (using --frozen-
lockfile like for the frontend deployment), building the application, and then
prompting the server’s PM2 instance to reload the configuration.

This makes the deployment process almost seamless and sets up the new Strapi
instance automatically. The pm2 save command is then executed to store the currently
running process list so that in case of an unexpected server restart, the processes are
resumed without needing any administrative intervention.

6.5.5 Monitoring Deployed Applications

Despite meticulous testing and multiple deployment stages, it is not possible to as-
sure flawless execution of the software on the end user’s hardware.More so: It should
be expected that there will be errors and exceptions occurring. Not just because of
the multitude of operating systems and browsers the system will run on but also
because of programming errors not caught by tests or during staging.

To efficiently tackle these problems, we set up a bug tracking and monitoring
solution by employing Sentry and Matomo, each offering monitoring dashboards
that can be seen in subsection A.3.2. Sentry is an error and performance monitoring
software that works out of the box once used as a Cloud service. Since its SDK offers
support for React applications as well as Strapi in the form of a plugin, we were able
to install and configure it quickly for both the front- as well as the backend of our
system. Sentry works by catching error events system-wide and transmitting the
event data to their servers. The source of such events is identified by a Data Source
Name (DSN)26, which is automatically assigned to a Sentry project on initialization.

25https://github.com/Unitech/pm2 (last accessed: 2022-07-13).
26https://docs.sentry.io/product/sentry-basics/dsn-explainer/ (last accessed: 2022-07-13).

138

https://github.com/Unitech/pm2
https://docs.sentry.io/product/sentry-basics/dsn-explainer/

6.5 Integration, Deployment, and Performance

Matomo27 is an open-source analytics software that markets itself as an alterna-
tive to paid options such as Google Analytics. Even though Matomo also offers a
cloud-based setup, since it is a PHP-based application, we hosted it directly at the
matomo.bad-harzburg-stiftung.de Subdomain by installing PHP on the server and
serving the files using Nginx. Just like Sentry, it was sufficient to include a JavaScript
snippet in our frontend, which automatically sends the tracking data to our self-
hosted instance. We opted to use a minimal configuration that does not use Cookies
to track our users.

For both Sentry and Matomo, we wanted to not clutter the relevant tracking data
with development instance events or temporary bugs, so the tracking snippets are
automatically included only when a certain environment variable is set.

6.5.6 Backup and Recovery

Another criterium for us when building a stable system was that we provide data
stability – a part of which was the ability to recover data in case of loss. The reasons
for losing data can be diverse: From human or software failures to outside attacks
or hardware problems. This is why we wanted the data to be backed up regularly
and automatically.

Backup Considerations Before creating backups, some considerations had to be
made according to what, when, and how to store them. Since a working version of
the codebase was available on GitHub at all times and could be restored quickly by
redeploying, we deemed it sufficient to back up the current data used. This included
a snapshot of the database and the current media data used by Strapi. We decided on
storing data for the last 14 days, creating a new backup every night at 2:30 am since
the user traffic on the application was expected to be limited at that point. Thus, the
increased system load during the backup was bearable. The backups were stored
in another directory on the same system. However, especially hardware failures
could target the whole hard disk, including the backup files. Because of this, we later
started synchronizing them to a separate server using SSH.

Furthermore, in our first approach, we created a full backup every night. This was
not optimal since copying every picture took a lot of time. Moreover, the produced
backups quickly grew in size, filling the available server space in less than the tar-
geted 14 days. It is to expect that a lot of that data – especially the pictures – would be
duplicated, explaining the large size of the backups. Our solution to this challenge
was to use incremental backups, which only stored new data without duplicating
data that was already included in a previous backup. Incremental backups make
use of hard links in Unix systems, meaning that a file’s contents were not duplicated
with a new backup, but rather another hard link was created to point to the same
location in memory [52]. This massively reduced the necessary storage space to
approx. 1/10th of what was previously needed.

27https://matomo.org/ (last accessed: 2022-07-13).

139

https://matomo.org/

6 Automatic Data Migration, Testing, and Deployment

Creating Backups To make creating backups more easily automatable, we created
the Bash Script listed in Listing 6.9. For our approach, we used the pg_dump [59] tool,
which is shippedwith PostgreSQL. It “makes consistent backups even if the database
is being used concurrently” in various file formats that can be reapplied using the
pg_restore tool [59], which is also bundled with the PostgreSQL release. The rsync
tool is used to back up the picture files. Using the --link-dest parameter enables
incremental backups by comparing the files in themedia directory to the files already
backed up in the latest backup directory. Only files without a hard link in the last
backup will be backed up again.

Listing 6.9: Creating a backup by dumping the current database, copying the media
files, and cleaning up old backups

1 # Dump contents of the database
2 pg_dump -U $DB_USER -Fc $DB_NAME > ”$BACKUP_TARGET/db_backup.sql”
3
4 # Sync files using incremental backup to backup directory
5 rsync -a -v –delete –link-dest=$LAST_BACKUP_DIR $MEDIA_DIR $BACKUP_TARGET
6
7 # Delete stale (> 14 days old) backups
8 find ”$BACKUP_DIR”* -mtime +14 -type d -exec rm -r {} +

The last line of Listing 6.9 uses the find utility to identify subdirectories in the
backup directory whose modified date is older than 14 days. The above script is
executed periodically using a cronjob. Since our software’s production and staging
instances use the same database, accessing different schemas, both are backed up
simultaneously. However, only the production media directory is backed up since
losing the picture files of the staging instance is not considered a risk by our team.

Restoring Backups A backup is only valuable if it can be restored easily. Our ap-
proach for restoring the backups was to offer another bash script, a snippet of which
is shown in Listing 6.10, fulfilling this task. This script takes the path of the backup
folder as a command-line argument and restores the production media files to the
location specified in the $MEDIA_DIR variable. It also restores the whole database
from the dump located at $DUMP_PATH, including staging data. As seen in the listing
below, it creates the database if it does not exist using the createdb command. For
our developers on Windows machines, we used a process that relied on the pgAdmin
application, which provides a similar restoration tool.28

Listing 6.10: Script extract: Restoring backups by reading the backup dump and
copying the files to the target media directory

28https://www.pgadmin.org/ (last accessed: 2022-07-13).

140

https://www.pgadmin.org/

6.6 Summary

1 sudo createdb $DB_NAME
2 sudo pg_restore -d $DB_NAME $DUMP_PATH
3
4 # Copy files to uploads folder
5 find $MEDIA_PATH -name '*.*' -exec cp {} $MEDIA_DIR \;

6.6 Summary

In this chapter, we had a look at various decisions that had to be made for the
development of the software to be as easy as possible to enable the developers to
focus on creating valuable features for the project partner. We found that automation
can help with this by taking care of repetitive tasks and checking and fixing code
constantly. Moreover, the different areas where automation can be utilized became
clear:

• Before development: data migration,
• During development: static code checkers, formatters, and Continuous Inte-

gration pipelines,
• During deployment: Continuous Deployment pipelines, process managers,

and backup systems.
We found that automation can help the developers but can also be a hindrance if

it does not work as intended or if too much time is invested into creating automated
workflows that will not yield considerable time savings. We also saw that constant
monitoring and evaluating of a running system’s performance can help identify bugs
and performance limitations and that different forms of tests can give mixed results.

We are providing monitoring tools and comprehensive documentation to make
the life of future developers of this project easier. However, there are still areas
that need to be addressed. These include the security concerns stemming from our
API configuration (see subsection 6.5.3) or support for more scanner models (see
subsection 6.3.2).

141

7 Low Fidelity Prototypes to Explore the
Design Space

To learn more about our users and the features they would like to use, we built three
prototypes. In this chapter, we introduce and discuss them. Thereby, we focus on
features that can be part of future work. For all prototypes, we give an introduction
as well as a classification and awalkthrough.We show our insights and discuss these
results.

7.1 Introduction

The value of every single picture of a picture archive is increased dramatically by
digitalizing it since analog pictures are victims of the process of decay. Now, to max-
imize the archive’s intangible value, we aim to also conserve the pictures’ contexts.
Every single picture in the archive documents an important moment and tells a story.
As these pictures are getting older, there are fewer people to remember these stories,
and more pictures are endangered to lose their context, thus becoming meaningless
to the viewer. In this chapter, we want to find opportunities to evolve our system in
future work. Our main goal is to find and validate new feature ideas to increase our
users’ encouragement to consume and especially add information. We pay special
attention to conserving as much knowledge and asmanymemories related to the pic-
tures as possible. To achieve this goal of knowledge transfer, we need to accomplish
the following subgoals:

1. The archive must be accessible to all potential users. They need a well-
structured entry point to about 500, 000 pictures in the archive. This is crucial
to exploring the archive to learn and add knowledge and memories.

2. The system must engage its users to consume the information in the pictures.
3. It must engage its users to contribute their knowledge and memories, too.
4. Curator activities must be supported to allow checking and revisioning of

added information.
We focus on the first three subgoals because they are all aimed at the system’s

typical users who are browsing or searching. The fourth subgoal deals with other
interfaces specifically designed for curators and already discussed in chapter 3. After
discussing different feature ideas that could serve our goal, we selected three of them
to be consolidated. To do so, we built three prototypes. We designed two user tests
to validate the prototypes and the corresponding feature ideas with participants in
Bad Harzburg. Therefore, we prepared tasks and questions as well as interviews.

143

7 Low Fidelity Prototypes to Explore the Design Space

7.2 Concepts

After our system was in a state that satisfied all the basic requirements, we started
to think about possible future work. Besides our project partner’s ideas to improve
the curator’s work process, we also wanted to work on some extraordinary ideas
that could push the boundaries of our system’s user interaction. We took one week
to collect as many ideas for potential new features as possible in a design-thinking
manner. These ideas should serve as a basis for prototyping activities to find the best
options for future development. In the following, we summarize our most important
outcomes and discuss our choice of ideas to implement as a prototype:

• Map: The archive’s pictures can be presented on amap of BadHarzburg. Users
see a clustering by location. This can be an interesting starting point to browse
through the archive. Bad Harzburg’s inhabitants can easily find places they
know, and tourists can get a better overview of the city and its history. A con-
ceivable use case is finding pictures of a user’s current location.

• Timeline: Besides by location, we can also organize the pictures by the date
they were taken. This can happen on a Timeline. Users can see the evolution
of places, events, people, etc., and search for pictures related to important
moments in their lives.

• Stories: Stories are a way of giving context to pictures. In contrast to descrip-
tions and comments per picture, a Story creates a context with contributions
to multiple pictures that build on each other. Pictures are the medium to tell
the story. This way, users can share memories and/or knowledge about a topic
(for example a person, an event, a local tradition, etc.) in a more extensive way.
Possible stories could be about the history of the “Salz- und Lichterfest” or
the life of Horst Voigt, a very dedicated inhabitant of Bad Harzburg. As users
would have to contribute their own Stories, editorial work would be necessary.

• Scavenger Hunt: Based on the idea of a scavenger hunt, users or curators
can contribute routes along important places in Bad Harzburg supported by
related pictures from the archive. This feature aims at tourists, students, and
other people that are eager to explore the city and learn more about its history.

• Gamification: Inspired by Wikipedia and StackOverflow, a scoring system can
be added to our application. Users can get scores for contributing information
which includes commentwriting and curator activities like adding descriptions
or tags. Contributing to pictures missing all information will gain the highest
scores. Based on the score, a level or badge system can be implemented, and
high scores can be shown. This way, users can get an additional incentive to
contribute their knowledge, but editorial work becomes even more important.

• Social Media:Another possibility to encourage users’ activity are social media
aspects that create a feeling of a community among the system’s users. This
can involve user accounts, likes, and personal, shareable collections. Users can
look at other people’s profiles and their favorite pictures. Chat functionalities
are possible, too.

• Campaigns and Contests: This feature idea is about digital events ranging
from special collections that are only accessible for a limited time to calls for

144

7.2 Concepts

action that physically involve the user. An example could be a “Recreating
Pictures Contest” that invites users to send in pictures they took that show the
same place, and people or pose as pictures from the archive. Other ideas are
picture coloring for children and an “Easter Challenge” where eggs are hidden
in some of the archive’s pictures. Such events could increase the archive’s
popularity and the number and engagement of users.

The process of selecting the best ideas to be implemented as a prototype was based
on two criteria:

1. Value to our main goal, which is engaging a knowledge transfer.
2. Feasibility because the prototypes needed to be developed with time con-

straints.
Campaigns and contests as well as Social Media functionalities are of limited

value to ourmain goal because they aim at entertaining the user instead of promoting
knowledge transfer. Gamification could increase users’ participation, butwe doubted
our user group’s affinity for digital games. Finding out if this assumption is correct
could be interesting but we found other ideas to have a higher value to our project at
this time. Scavenger Hunt is a way to promote subgoal 2, information consumption,
but to a limited target group (mainly tourists), so other ideas were more important
to us. Stories can provide a framework for sharing extensive knowledge. By viewing
a Story, users learn more about the bigger context of pictures. Thereby, Stories might
achieve a better knowledge contribution and consumption which serves subgoals 2
and 3. To prototype Stories, we have to simulate the creation as well as the viewing
process. These are extensive interfaces but with paper prototyping we found a tool
to simply imitate them, see section 7.5. The Map and the Timeline both propose an
answer to the same question: How can we structure the huge number of about 500
000 pictures to make them as accessible as possible? The answer to this question
is crucial to building a usable system and thereby significant in reinforcing users’
engagement with the archive, see subgoal 1. Sorting by time or by location could
be an intuitive alternative to the known thematic structure. Creating prototypes for
both views is realizable in a short time. As a result of this process, we chose the Map
and the Timeline as well as Stories to be implemented as prototypes and tested with
participants in Bad Harzburg.

We built our prototypes based on our software as described in chapter 4. Our
Browse View allows users to viewmultiple thousands of already digitalized pictures
structured in thematical non-disjunct collections. To each picture, curators can add
descriptions and a time-range tag to give the day or known time range that the
picture was taken in. Tags for people that can be seen on the picture and the place
where it was taken can be included, too. The system also provides a Search View,
where users can search in pictures’ descriptions or choose from a variety of decade
and place filters. Users can read and write comments that need to be verified by a
curator to be published.

145

7 Low Fidelity Prototypes to Explore the Design Space

7.3 Methodology

This section introduces prototyping as our main tool to work with new feature ideas.
Afterward, we present the methodological approaches and tools that we used to
design user tests to evaluate our prototypes.

7.3.1 Prototyping

We used prototyping as the main tool to work with new feature ideas. According to
Budde et al., a prototype serves as “an operational model of the application system.
It implements certain aspects of the future system“ [11]. A prototype is built for
two reasons: It serves as a “communication basis” by supporting discussions with
stakeholders, and it helps to experiment with new approaches [11]. Jensen et al. state
that prototyping is the process of „making and utilizing prototypes“ [31].

7.3.2 Qualitative User Tests

To analyze our prototypes of new feature ideas and test whether they meet our and
the user group’s requirements, we designed two user tests that we performed with
participants in Bad Harzburg. The Map and Timeline prototypes were tested in one
user test because they are trying to solve the same problem and should be compared
with each other. The Story prototype was tested individually. Every run of a user test
with a participant is considered a “testing session”. Our testing methods are mainly
qualitative. As discussed in chapter 3, we only have a limited number of participants.
But our participants’ feedback is very valuable because they represent our user group
well and they live in Bad Harzburg, most of them for their whole life. Some of them
already know the old version of the archive or are eager to get to know our new
system. Qualitative testing does not give statistical results but has the advantage of
being robust. Jakob Nielsen states that it is not as prone to methodological errors as
quantitative testing [44]. This makes it especially useful for our case. Similar to the
procedure of the usability testing described in chapter 3, each of our testing sessions
starts with an introduction given by one of our team members, the moderator of
the testing session. A second team member is present to write a transcript for later
evaluations. After the introduction, the prototypes are shown, and some tasks are
posed. We use a think-aloud approach to comprehend the participants’ opinions and
intents. When the participant finished working with the prototypes, an interview
is conducted. In the following, these methodological approaches are discussed in
more detail.

7.3.3 Think-Aloud

To collect asmuch data as possible, we chose a think-aloud approach as introduced in
chapter 3. Participants are asked to share their thoughts when they see a prototype
for the first time. According to Jakob Nielsen, thinking aloud “may be the single
most important usability engineering method” because it helps to better understand

146

7.3 Methodology

their conceptions and problems [44]. However, the think-aloud method has some
drawbacks: It influences performance measurements, and expressing their thoughts
can feel very unnatural to participants. Furthermore, participants’ feedback might
be misleading. Experimenters must pay attention to what users are thinking and
doing while they are working with a prototype [45]. If participants stop sharing
their thoughts, we intervene by asking about the reason for their actions. This helps
us to better analyze their interaction with our system. As we do not want to conduct
any performance measurement, thinking aloud is a very valuable method.

7.3.4 Moderator and Recording Clerk

To conduct a testing session, there are two team members with one participant in a
quiet environment. One of the experimenters is the moderator, and the other one,
the recording clerk, writes a transcript. The moderator takes on the communication
with the participant. They introduce the testing session and the single tasks and ask
all questions. The other person does not interrupt the testing session but takes notes
about the actions and comments of the participant that we can evaluate in depth
after the testing session. As claimed by Nielsen, it is important not to have too many
people around because participants might become shy to talk [45].

7.3.5 Interview

After the use of each prototype, we interview the participant. The interview allows us
to talk about special actions and statements participants do in an earlier phase when
it is not possible to ask without disturbing the user. Interviews are more exploratory
than questionnaires and permit us to flexibly ask follow-up questions or rephrase
statements that were not understood correctly. They allow learning more about our
participants’ requirements than planned during preparation. As a qualitative testing
method, interviews are not suitable for large numbers of participants and quantita-
tive analysis. However, this is not necessary for our testing. To successfully conduct
an insightful interview, Nielsen suggests that the moderator must pay attention not
to bias the participant and to ask open-ended questions [45].

7.3.6 Pilot Testing

Similar to our procedure described in chapter 3, we had several pilot testing sessions
with other students to prepare for the testing. Before conducting the testing sessions
with all our participants, we had one additional pilot test with a person from our
user group in Bad Harzburg. As Nielsen describes, it helped as a final rehearsal and
allowed testing of our questions and tasks for understandability [45]. We did not
have to implement major changes as no problems arose in the pilot tests.

147

7 Low Fidelity Prototypes to Explore the Design Space

7.3.7 Quantitative Approach for the First Experiment

In 1932, Rensis Likert introduced an ordered response scale to scientifically mea-
sure opinions. To do so, the so-called “Likert scales” provide statements to which
subjects are asked to express their agreement on a metric scale from strongly agree
to strongly disagree. Likert-type scales use Likert’s approach on some individual
questions without the claim to synthesize all questions [32]. We use Likert-type
scales as a quantitative approach for the first user test. They are utilized to check our
qualitative results. We retrieved our questions from the System Usability Scale intro-
duced in chapter 3. Initially, we planned to use this questionnaire for our prototype
testing as well. But during our pilot testing sessions, we noticed that participants
were overwhelmed by the number of questions and the level of detail of the System
Usability Scale, especially because the prototypes are built in one simple interface
and the time spent working with them was little. Our Likert scale uses the same
response items as the System Usability Scale: 5 points from strongly disagree (1) to
strongly agree (5).

Wewant the system to allow its users to get in touch with the archive’s pictures. To
evaluate how well our system achieves this goal, we ask for orientation, accessibility
to the archive, and clearness. In addition to these questions, we want to know how
well the prototypes perform with the whole archive in mind. The scores are not only
used to evaluate the two prototypes on their own but most importantly to compare
them. These considerations resulted in the following four questions:

• With the help of the Timeline/Map I was able to navigate through the set of
pictures,

• The Timeline/Map has brought the pictures close to me. It has given me access
to the picture archive,

• The Timeline/Map is clear,
• I would like to use the Timeline/Map to look at the entire picture archive.
This questionnaire is completed twice, after dealing with each of the two proto-

types. The complete, German questionnaires can be found in Figure A.4 and Fig-
ure A.5. It is important to notice the scientific discussion about the statistical evalua-
tion of Likert-type scales. Some scientists argue that the items’ responses cannot be
treated as an interval scale because they are not equidistant. Thereby, the Likert-type
scale results could not be arithmetically manipulated, as Jamieson describes [30].

7.3.8 Study Population

At the end of each testing session, we asked the participant to fill another question-
naire, as introduced in chapter 3, about age, an affinity for technology, and relation
to Bad Harzburg to get a better overview of our participant’s demography. Overall,
we had 7 valid testing sessions. One additional test run was interrupted multiple
times and therefore considered invalid. It may not be represented as the participant
had to perform several context switches, so we will not include it in our evaluation.
In one testing session, two people participated together. They often had different
opinions and discussed until they found an agreement. This resulted in very inter-

148

7.4 User Test 1: Map vs. Timeline

esting insights that we might not have gotten if we interviewed them separately. On
the other hand, their final answer to our questions and questionnaires fell on the
middle ground without a strong opinion. This is also why we have 8 participants
although we only conducted 7 valid testing sessions. We refer to the participants by
P1–P8. Our project partner selected our participants intending to find peoplewho are
interested in the picture archive and have a relation to the city of Bad Harzburg. We
also assumed that they have basic technical skills so they can operate a computer on
their own. The participants are all part of our project partner’s network. This causes
them all to be members of educated classes and have a relation to work with print
media, for example, 3 of our participants are working in a library. Six participants
were born in Bad Harzburg or the surrounding area, one is living there for over 30
years and one for about 2 years. Three participants are male and five are female. Our
study population has the following age distribution: One person in each age group
of 21–30, 31–40, 41–50, and 51–60. Three people were between 61 and 70 years old,
and none were older than 70 or younger than 21. We assume that this corresponds
to our actual user group very well, although we might need to test some older users
as they are the most important contemporary witnesses.

7.4 User Test 1: Map vs. Timeline

In this section, we deal with subgoal 1, the accessibility of our archive. This section
introduces the prototypes for the Map and the Timeline and classifies them. We will
first describe different prototype classifications. Afterward, we show the execution
of the user testing sessions. Finally, we evaluate the qualitative interviews as well as
the quantitative questionnaires and conclude.

7.4.1 Setting the Stage

Before we show our prototypes to the participants, we perform another user test
regarding ordering and searching with analog pictures. By working with analog
pictures, we want to introduce our problem domain and gather knowledge about
intuitiveness in the structuring of pictures. This provides a preparation to easily
get into the prototype testing. During all the phases of the test, the same random
50 pictures are used, analog as well as digital. This increases the comparability of
our prototypes because there are no differences in the quality of the picture selec-
tions. To give access to the archive, a chronological and a geographical order are the
only alternatives to the thematical order of the current archive that we and all our
participants came up with during brainstorming sessions and the analog user test.
Our prototypes are designed to explore the possibilities of a Timeline and a Map to
structure the pictures of the archive. They could be potential new features to give
users better access to our system and improve the quality of browsing through it.

149

7 Low Fidelity Prototypes to Explore the Design Space

7.4.2 Introducing the Prototype

Figure 7.1: The Map prototype

TheMap prototype, shown in Figure 7.1, is implemented using Leaflet, a JavaScript
library for interactive maps. It is included in our existing system with a new route.
We built a tool to manually place the 50 digital pictures on the Map of Bad Harzburg.
The locations are not stored in the database but a JSON file. All pictures are clickable
to show their descriptions. There is nomore information like comments or tags given
in this prototype. It is possible to interact with the Map by scrolling to zoom and
dragging to move. In a pilot test, we recognized the need for a button to go back to
the initial position on the Map because some users were accidentally scrolling to
other places and had problems navigating back to Bad Harzburg.

Figure 7.2 shows an extract of the Timeline that is prototyped within aMiro Board,
a digital whiteboard. We manually sorted the 50 given pictures by time and placed
them above and below an arrow indicating the years. Each description is located next
to the corresponding picture. Three pictures are missing a timestamp, so they have
been positioned some distance below the Timeline and labeled with “no information
available”. In both prototypes, there is one picture that is drag-and-droppable to
simulate possible curator work, for example adding a new picture to the structure.

7.4.3 Classification of a Prototype: Background

To get a better idea of our prototypes, we classify them. There are different classifica-
tions described in the literature. We first introduce the most important classifications
and then use them on the Map and Timeline prototypes as well as on the Story
prototype in subsection 7.5.4.

Fidelity To classify prototypes, fidelity is used. According to Virzi, fidelity is “a
measure of how authentic or realistic a prototype appears to the user when it is
compared to the actual service” [60]. The fidelity is low if a user can easily distinguish

150

7.4 User Test 1: Map vs. Timeline

Figure 7.2: A section of the Timeline prototype

it from the original system and it is high if the prototype looks and feels almost like
the original system. The advantage of a low-fidelity prototype is its fast development
and low cost [60]. It is possible to build a low-fidelity prototype for a testing session
and throw it away afterward. In addition to that, fewer design aspects have to be
taken into account. As given above, a prototype is used as a basis for discussions.
The low fidelity gives more space for interpretation which leads to higher-level
discussions. The participants are not stimulated to focus on details but to give their
opinion on high-level impressions. In contrast, high-fidelity prototypes can be used to
experiment with design elements and their layout. They are a basis for very detailed
discussions.

Throwaway Prototypes Asur and Hufnagel define throwaway prototypes as pro-
totypes that are used to present a rough version of the system and to clarify users’
or other stakeholders’ requirements [3]. They are built only for this purpose and
discarded afterward. As they don’t require to be extended or revised, they can be
created faster as fewer restrictions have to be considered. For example, throwaway
software prototypes can neglect refactorings and documentation.

Horizontal and Vertical Prototypes Another classification for prototypes is the
distinction between horizontal and vertical prototypes. A horizontal prototype rep-
resents all features with limited functionality. A vertical prototype on the other hand

151

7 Low Fidelity Prototypes to Explore the Design Space

exemplifies one feature by implementing all layers of the application for it [10]. For
example, a vertical prototype for our application could focus on comments: From typ-
ing and sending a comment from the user interface to storing it in the database many
layers of the application are involved. A horizontal prototype, in contrast, could only
show the user interface layer of a new feature. It does not need to interact with the
database but could work with mock data.

Classification of our Prototypes Our Timeline is a low-fidelity prototype. As it
was created with a different tool, a Miro board, it has almost no similarities to the
original system. The Map, on the other hand, is a mid-fidelity prototype. We first
planned to build it with a low fidelity like the Timeline, but this approach was way
more elaborate for theMap.We concluded that we could get a more valuable process
if we choose a higher fidelity. By integrating it into our original system we achieved
a higher fidelity in comparison to building it with an external tool. Nevertheless, the
Map is not high fidelity.Wedid not pay attention to adapting the design to our system
and only the 50 preselected pictures were shown. Changes made in the prototype are
not saved and some of the original system’s buttons do not work, as well. For both
prototypes, high fidelity is not desired. Our goal is not to find out how to build the
perfect Map or Timeline, but to determine how well they perform in presenting the
archive. Therefore, wewant to initiate discussions about the general ideas of different
structuring approaches. Our prototype development had the goal to be fast and low-
cost. This was important because we knew that both the Map and the Timeline are
Throwaway prototypes. We applied our prototypes in this manner: They were built
to get participants’ feedback and thereby refine our requirements. After the testing
sessions, the prototypes will be discarded. They are not usable for deployment. If
we do want to add a Timeline or a Map to our system, we must rebuild it from
scratch. Both our prototypes are horizontal. They embody all necessary features but
only implement one layer of the application: the user interface. They show a layout
for the 50 sampled pictures and their descriptions, and provide the functionality of
drag-and-dropping one picture but do not have any connection to the database layer.
All data is saved in the Miro board or a JSON file.

7.4.4 Execution

At the beginning of each testing session, the moderator introduced our project and
gave general information about the testing procedure. Before the prototypes were
shown, the participant was handed 50 analog pictures and some search and order
tasks. Afterward, theMap and the Timeline prototypeswere presented in alternating
order. The participant was asked to browse through the pictures using the respective
prototype and share their thoughts. After the participant has got an overview, the
moderator asked them to drag and drop one given picture to arrange it correctly. Both
the time and location of the picture were given in its description. During working
with a prototype, the moderator asked questions about the usability and observa-
tions of the participant’s behavior. By sharing their thoughts, the participant gave
a lot of input about their reception of the prototype. For example, about half of our

152

7.4 User Test 1: Map vs. Timeline

participants asked for picture descriptions in the Map prototype. P3 asked: “Is there
a possibility to see the picture’s description?”. The moderator replied: “What do
you expect: What do you have to do to see a picture’s description?”. P3 suggested
clicking on a picture but does not try to do so until the moderator motivated P3 to do
so. When the participant finished using one prototype, they were asked to answer
the Likert scales and some more questions that would have disrupted the flow of ex-
ploring the prototypes in an earlier phase. Most of the participants also shared their
thoughts while answering the questionnaires. This gave some interesting insights,
but the moderator had to pay attention not to affect the participant’s answers. At the
end of the testing session, the final interview was conducted. The moderator asked
the participant to compare the different approaches that were discussed during the
testing session and their applicability to the whole picture archive. Some follow-up
questions were asked, too.

Limitations A possible source of errors was usability problems with Miro boards.
Some subjects had issues to zoom and move the Timeline. They stated that the Time-
line’s layout is small and confusing and that the navigation through the prototype
was complicated. In comparison to the Miro board, the Map was easier to use. This
may have influenced the perception of the Timeline prototype in a negative way. As
the Map was integrated into our system’s layout, there is additional functionality
that we do not want the participants to use. To one subject, we did not explain that
some buttons should not be pressed. The participant clicked one of those buttons, so
the moderator had to intervene to navigate back to the Map. This happened during
the evaluation of the Map prototype, so we assumed it had no influence on the feed-
back. A few of our participants knew our system before we conducted our testing
session, others did not. Thereby, they had different knowledge of the thematical
order implemented in our original system. People who knew the original system
had a better understanding of the picture archive’s scale. These differences may have
influenced the participants’ responses. P2, P3, and P6 noticed two errors we made
when placing the pictures on theMap. The casino and the sports groundmoved after
the pictures have been taken but we located them in their old places. They explained
this circumstance to us, but we expect it not to have influenced the testing’s outcome.
We furthermore think that these incidents show how fast locals notice if pictures are
wrongly located on the Map and which location is shown in a picture. This could
indicate that a Map also improves users’ willingness to contribute their knowledge
by moving pictures to their correct location.

7.4.5 Qualitative Evaluation

Older people tended to have a higher demand for chronological structures than
younger users. Our three youngest participants did not like the Timeline because
they had trouble getting access to it as they have no relation to the time shown in
the pictures. On the other hand, two of our oldest participants liked the Timeline
very much. P7 searched for pictures taken in their birth year or liked the idea of
exploring the historical development of their school. Thus, we can conclude that a

153

7 Low Fidelity Prototypes to Explore the Design Space

chronological structure is important to our user groupwhich includes mainly elderly
people.

Similar to the Timeline, people with a longer relation to Bad Harzburg preferred
geographical structuresmore than people who are new to the area. P1, whomoved to
Bad Harzburg only two years ago, had trouble orientating on the Map. All the other
participants liked using it. They enjoyed looking at places they know to see what
happened there in the past. They had fun comparing the pictures to how the places
look today. But all of them also stated that they do not require a picture archive to
have this functionality. The Map was seen as a nice-to-have feature that is “rather
entertaining than helpful”, P6 said. When comparing the Map and the Timeline all
but one participant preferred the Map. Both prototypes were criticized for their lack
of clarity. On the Map, the pictures are very small and overlap at first sight. Users
have to zoom in to see the single pictures and click them to view them in detail. The
Timeline has a similar problem: When entering the page, the pictures are very small
so that a user can see the whole Timeline but must zoom in to use it properly. As
the Timeline was harder to operate for most participants, this could have influenced
our findings. At least for the Map, a solution to this problem could be arranging our
location tags instead of the single pictures.

We also asked the participants to compare the two prototypes to a thematical
structure. Participants who knew a digital version of the archive thought about its
structure, and others thought about thematical structures they knew from other con-
texts. It could have been an improvement to our testing sessions to shortly introduce
our original system to have the same preconditions for all participants. In five out of
our seven testing sessions, the participant favored a thematical structure over Map
and Timeline to browse the archive. All participants were familiar with thematical
ordering. Thereby, it seems to be the most accessible option. The problem we noticed
is that all participants would use a different thematical structure. Some preferred
having many small clusters of pictures while others would like to have a limited
number of big clusters. Some included geographical information like a rough sub-
division by area. And some were sorted only by the pictures’ motives while others
paid attention to the descriptions and the actual contents of the pictures. This makes
it difficult to provide a thematical structure that fits every user’s needs. Before our
user testing, we were not sure if thematical collections that are not disjunct could be
confusing because users may expect them to work like known, analog photo albums.
Some discussions in the testing sessions’ interviews revealed that the participants
consider this idea useful instead of confusing. Some participants even suggested it
themselves. This way the problem of different people having different requirements
on a thematical structure can be solved.

We did not ask for a comparison of the Timeline and the decade filter our system’s
Search View offers, but we expect the filter to meet the most requirements for the
chronological structure. This hypothesis could be tested in future work. Another,
more general but not less interesting insight that we got from observing our par-
ticipants is the following: The younger and more tech-savvy participants were, the
more likely they tried clicking elements if they did not know what could happen.
This means, considering our elderly users, we must pay attention to clearly show

154

7.4 User Test 1: Map vs. Timeline

which elements are clickable and make sure that users understand what happens if
they click them.

Figure 7.3: Cumulation of all questionnaire answers from ‘strongly disagree’ (bad)
to ‘strongly agree’ (good)

7.4.6 Quantitative Evaluation

To evaluate the quantitative results of our Likert-type questionnaires, we count the
number of each item answered per prototype. For all four questions, ‘strongly agree’
is the answer that rates the prototype the highest while ‘strongly disagree’ indicates
a dislike of some aspects of the prototype. The higher the number of ‘agree’ and
‘strongly agree’ the better the overall conception of a prototype. This way, we can
draw an overall comparison of both prototypes. Figure 7.3 shows the result and
illustrates that the Map has received a better rating. Even if the Map got the only
‘strongly disagree’, it received two times as many positive ratings as the Timeline.
This embraces our qualitative insight that the Map is the better option to give access
to the picture archive.

7.4.7 Conclusion

When comparing a Map to a thematical structure, our main insight is that the Map
is a nice feature that a lot of users would like to use but a thematical structure is the
most valuable to give access to the archive. This means the approach we chose for
our system so far is approved by our user testing results. We do not have to change

155

7 Low Fidelity Prototypes to Explore the Design Space

our landing page to increase the archive’s accessibility and achieve our subgoal 1. A
Timeline is not needed to be implemented as it seems to be of limited value to our
users. The requirements arising from thewish to search chronologically can bemet by
our system’s current functionalities. Users can filter for decades and search for exact
years within our Search view. This satisfies both browse and search users. A possible
extension would be the option to sort chronologically in search results or collections.
In the future, a Map can be implemented to offer the user an additional functionality
to explore the archive and browse through it. Therefore, a way to present the pictures
concisely is needed. As suggested before, the location tags can be used to do so: On
the Map, location tags would be arranged. Users would see the related pictures by
clicking them. This approach could be tested in future work. No matter the exact
implementation, a Map demands new functionalities for curators. Location tags
or pictures must be placed precisely on the Map. This task needs very profound
knowledge of Bad Harzburg and its history. The tool requires very high usability
because we should not lose people who have this knowledge.

7.5 User Test 2: Paper Prototype for a New Feature: Stories

In this section, we present the prototype and user test that we designed to collect
feedback about Stories. Stories are introduced in section 7.2. We give a motivation
for our choice of Stories to be implemented as a prototype and introduce and classify
the paper prototype we built to simulate this potential new feature. Afterward, a
walkthrough of the user test is described and the results are evaluated.

7.5.1 Setting the Stage

As introduced in section 7.1, the main goal of our project is to put the archive’s pic-
tures into context by collecting knowledge andmemories from users. Stories provide
more information than comments and descriptions of single pictures. Descriptions
have the following problem: They might be related to many different pictures. For
example, some general information about Conrad Adenauer must be related to ev-
ery picture showing the politician because a curator does not know which picture
is viewed first. This makes it difficult to tell more of a context within a description.
Again, the curator would not know where to write the additional information so it
would end up being added to every related picture, decreasing the viewers’ ease of
use. Stories can solve this problem by building a context with a selection of pictures
in a fixed order. We also want to allow sharing of Stories to all users. The creation of
stories is elaborate because suitable pictures must be found, and a lot of information
must be added. That means it is fundamental to encourage users to contribute. This
needs a convenient interface to enable users to add their own Stories. The process of
creating a Story includes selecting pictures, bringing them into the correct order, and
adding information. Additionally, editorial work needs to be supported because all
the contributions must be checked for content and spelling correctness and sources
should be reviewed before publishing. To test if Stories are an improvement to our

156

7.5 User Test 2: Paper Prototype for a New Feature: Stories

system, we decided to build a prototype for it. We were not able to implement the
whole feature. Nevertheless, we aimed at testing the whole viewing as well as the
creation functionality. It is important to keep in mind that we need users to con-
tribute Stories because otherwise there would be too little content. Therefore, we had
to search for a very low-cost prototyping tool. We do not want to include general
curator tasks in this prototype but focus on browsing users because we must find
out if this feature is wanted at all. We want to test the option to record audio com-
ments or contributions en passant. They can be more accessible and might improve
the user experience for contributing and consuming information. Therefore, we add
audio and textual content to our prototype. As discussed above, we needed to find a
low-cost prototyping tool. We decide to use paper prototyping for our use case.

7.5.2 Background: Paper Prototypes

Paper prototypes are used to represent a product’s interface and user flow. There-
fore, important elements are modeled using drawings on paper. Paper prototyping
focuses on supporting communication with shareholders instead of testing an im-
plementation of a new functionality [28].

Drawings on paper cannot simulate all possible elements of a software system’s
user interface. For example, animations cannot be prototyped. Another drawback is
the fact that people interact differently when typing on a piece of paper than they
would when typing on a tablet computer. Especially typing text is cumbersome to
simulate. On the other hand, sketching the user interface is faster than coding an
actual application [22]. Thereby, it can be considered in an early phase of the feature
development process. Especially by being very fast and with our focus on validating
the idea, paper prototyping is very suitable for our use case.

7.5.3 Implementation

The prototype’s goal is to simulate the system by showing drawings of the user
interface. The moderator has to simulate the computer. The participant is asked
to click on buttons on the paper as they would do with a digital application. The
moderator reacts to the participant’s input and exchanges the piece of paper to show
the next interface. Therefore, all possible interfaces need to be prepared on paper
which leads to better discussions since we can present our idea of Stories with more
clearness than by just talking about them. For our case, thismeanswe have to prepare
a landing page, two Stories with some pictures each, one with textual and one with
audio contributions, and some views to simulate the creation process of a Story.
Additionally, we crafted a paper iPad frame to achieve a better simulation of a digital
system used with touch control. A top bar with a back button reminding us of our
original system is included in this frame as well.

In Figure 7.4 the landing page is shown. You can see two big buttons to view
Stories, the first one with informational text, symbolized by a “T” in the upper right
corner, and the second one with audio content, symbolized by a speaker symbol.
The third button leads to the interface for creating new Stories. The layout is adapted

157

7 Low Fidelity Prototypes to Explore the Design Space

Figure 7.4: The landing page of our paper prototype with the iPad frame

to our original system’s layout with its big buttons for collections. Above those three
main buttons, there is another one serving as a help button.

In Figure 7.5 we can see the interface to view a picture, showmore information and
comments, navigate to the last and the next picture, and hear an audio contribution
that explains some details of the event shown in the picture. The audio file was
recorded before and played from the moderator’s smartphone.

Figure 7.6 shows the interface that enables users to add information to a picture
in a new Story. The user can choose between adding text or audio comments. There
are buttons to save a contribution and to show more information and comments as
well as buttons to go to the last or the next picture.

To show two example Stories we researched some facts about the “Finkenschla-
gen”, a very old tradition in the area around Bad Harzburg, and about the racehorse
Luciano that is honored by a memorial stone in Bad Harzburg. We created an audio
Story with 5 “Finkenschalgen” pictures and a textual Story with 4 pictures related
to Luciano. After the participant has viewed one or both Stories, we ask them to
contribute a new Story. Therefore, we prepared a text introducing an imaginary
politician and summarizing four important events in his life. Corresponding to the
four parts of the text, we preselected four pictures. After clicking “Create a new
Story” a user sees a screen to select pictures from the archive. As it is not possible to
simulate the whole archive with paper, we skip this step and directly show the four
preselected pictures. Then, the user can change their order. By clicking a picture, it

158

7.5 User Test 2: Paper Prototype for a New Feature: Stories

Figure 7.5: A picture in a story in our paper prototype

can be seen larger, and information can be added and saved. This is simulated by
writing a text on a piece of paper and placing it in the correct position or pressing a
start and stop button to record an audio contribution. If the Story is done the user
can click “Save” and return to the landing page.

7.5.4 Classification of our Prototype

As described above, this is a paper prototype. Its fidelity section 7.4.3 is low because
users can easily distinguish the paper prototype from the digital system. Like the
Map and Timeline prototypes, this one is a throw-away prototype (section 7.4.3)
as it is not used for future development but must be discarded after testing. It is a
horizontal prototype too (section 7.4.3): All needed features are simulated only in
the interface layer.

7.5.5 Execution

At the beginning of the testing session, the moderator presented the landing page
and explained the idea of a paper prototype. The participant was asked to try to
imagine working with an actual digital application while the moderator imitates a
tablet computer’s response to input. Again, the participant was asked to share their
thoughts, so the recording clerk was able to take precise notes. The experimenters

159

7 Low Fidelity Prototypes to Explore the Design Space

Figure 7.6: The view for adding information when creating a new story

paid special attention to the participant’s reactionswhen being handed the prototype
for the first time. In a real scenario, there would be no experimenter who can explain
the new feature, so it needs to be intuitively understandable at first sight. Otherwise,
too many users would leave the website without viewing a single Story because
they are deterred. Some users were confused at the beginning. If a participant asked
about the meaning of Stories and this landing page, the moderator hinted at the
help button. After the participant read the information text, the moderator made
sure that the participant does understand our idea. Most of the time, the participant
clicked one of the two Stories’ buttons or asked what happens if you do so. Then,
the participant looked at the presented pictures and read or heard the information
given. Almost all participants clicked the button to get more information and other
users’ comments at least once. We noticed that it is difficult to understand the origin
of these descriptions and comments. It was hard to distinguish whether information
belongs to the Story itself or the original picture. The same applies to comments.
In our understanding, a comment on the picture belongs to the picture itself but
some participants expected to write comments on the Story. When the participant
finished viewing Stories and gave some feedback, the moderator explained the task
to create a new Story. A piece of paper with text introducing an imaginary politician
was handed to the participant.

160

7.5 User Test 2: Paper Prototype for a New Feature: Stories

Limitations When some participants asked for an explanation at the beginning of
the experiment, the moderator should not have advised them to click the help button.
Instead, the participants should have been asked what they expect this system to
offer and what they would do if they do not understand it in the first place. Thereby,
we could have learned if our users would use the help button on their own and get
to know how they behave if they are overwhelmed by our system. It could have been
an improvement to the testing if we prepared a second version or another prototype
with the same goal. Test users then would have to compare two options similar to the
discussion ofMap versus Timeline in the first testing session, described in section 7.4.
In our interviews, they often only told us that they like or dislike certain things. The
moderator then had to ask for an explanation. Most participants were overwhelmed
and confused by the task to contribute a new Story. They did not understand it
correctly. They thought the written text was part of a Story like the other two they
have seen. So, they tried to think of a new fact that could be the fifth part of the text.
Although the moderator tried to explain the task differently after four unsuccessful
attempts, only one subject completely understood it correctly.

7.5.6 Evaluation

Overall, the feedback was rather positive. Most participants liked the idea of Stories
and the way the prototype implements them. P5 even said: “This is the best idea
I can think of to tell and experience stories about the past”. Others liked that this
feature presents pictures livelier. Especially viewing Stories has been very enjoyable
for the participants. Our participants often responded that they would contribute
Stories if they knew something important. As they have a close relationship to Bad
Harzburg and most of them even to the area’s history, they are the perfect creators.
Three participants did not come up with an idea for a new Story but assumed that
they could find interesting topics if they browse through the archive. If so, they
would try to make a Story. The second topic of this testing session was whether our
users would like to use audio contributions. The audio could be used not only for
Stories but also for comments. Surprisingly, all our participants have an aversion to
voice messages and therefore use audio comments, too. But all of them admit that
they know a lot of people who like to use these functionalities.

7.5.7 Conclusion

Our test shows that Stories could be a valuable feature to increase people’s engage-
ment and knowledge transfer on our system. The fact that all but one participants
were not able to make their own Story is a vitally important aspect because the fea-
ture cannot be implemented if no one is contributing Stories. We do not know if the
problem is the creation of Stories itself or if our prototype or task is misleading. Be-
fore implementing Stories as a feature in our system we should test this aspect again.
Maybe higher fidelity prototypes showing different versions are the best approach.
This way we could analyze if the problem is the idea of creating Stories itself or the
implementation of an interface. The question of whether audio contributions are a

161

7 Low Fidelity Prototypes to Explore the Design Space

new requirement cannot be finally answered by our testing results. To find a solution
we need to conduct another test with other participants that are not selected with
the same bias subsection 7.3.8.

7.6 Summary

In this chapter, we examined the prototypes we built: a Map and a Timeline to
structure the archive, and Stories to bringmore context to the pictures.We introduced
these prototypes and our methodology for testing them with potential users in Bad
Harzburg. Awalkthrough of both testing sessionswas described beforewe evaluated
the insights we gained from them. Now we want to draw an overall conclusion. The
prototypes we chose to implement brought a lot of useful feedback to our project,
especially noticing our and the participants’ time constraints. We have a lot of other
exciting ideas as well that would have been interesting to prototype. But we are
satisfied with the outcome of our work. Other ideas can be tested in future work.
In the first user test, we found that a Timeline is not required by our users even
especially older participants like a chronological structure. In contrast, a Map could
be an enhancement by adding a new, entertaining view to the system. In addition,
we know that a thematic order is the best choice for structuring the archive. We also
understood that putting a picture into multiple collections is not confusing but well
understandable and even wanted by many users. In the second user test, with the
help of paper prototyping, we not only learned how easily and fast we can simulate a
new feature idea but also got some helpful insights.We discovered Stories to be a nice-
to-have feature. Except for the aspect of our participants’ missing encouragement to
create their own Stories, which should be tested again, this feature seems to be a valid
option to increase knowledge transfer with our system and thereby contribute to our
main goal. Due to our time constraints, these insights were not put into practice. But
this work explored potential future implementations. We proposed many ideas for
possible new features. Three of them were prototyped and tested. This led to the
outlook of the Map and Stories being features that can shape future work on this
project.

162

8 Summary

Our goalwas to implement a crowd-sourced picture archive in collaborationwith our
project partner. Our main focus was to enable the transfer of knowledge to conserve
as much of the analog pictures’ value as possible.

Therefore, we built a system that integrates the scanning process, a structuring and
an annotation tool. This helps to engage users to consume and share their knowledge
by providing a convenient user interface that allows browsing through the available
pictures and quickly contribute their knowledge.

In the beginning, we defined crowd-sourcing in the cultural heritage domain and
presented different crowd-sourcing platforms. Then, we introduced our project part-
ner, the Bad Harzburg-Stiftung. We illustrated and investigated existing platforms
that focus on sharing historical pictures and knowledge. Following, we examined our
projects prerequisites such as the parties involved, the legacy website and potentials
for crowd-soucing.

We discussed related work and introduced the different roles interacting with our
system. We categorized three kinds of photo management software: personal photo
archives, photo sharing platforms and website builder. Layout, upload process and
personalized structure were compared. We derived requirements for our system and
in particular the data model, which the content models in the backend are based on.

We presented our qualitative and quantitative testing methods to validate the
system’s usability. We pointed out ways to improve the user experience by imple-
menting the feedback we gained from usability testings and interviews. We focussed
on the navigation through the user interface, the comment section and the curator
tools.

Following the elaboration of system and design requirements we showed their
mapping to a technical implementation. We described how we developed our fron-
tend application with the help of the UI-framework React. We took a closer look into
the architecture and the most important components. We gave an overview over the
data flow within our system. Additionally, GraphQL as a query language and server
runtime was introduced as the interface to our backend.

For this backend system, we discussed the usage of Content Management Systems.
We introduced Strapi, an open-source representative of such systems, and described
how we used and customized it. The goal was to fullfil the requirements of the data
model and to provide the necessary interfaces for the frontend application. Thereby,
we showed how we dealt with the most important technical challenges with the use
of this kind of backend application and evaluated our solutions.

We discussed various opportunities for automations that we encountered during
the development process of both the frontend and backend applications. Their goal
was to simplify the developers’ experience. This work introduced several tools to

163

8 Summary

improve ourworkflow before and during development aswell as during deployment.
These dealtwith aspects like datamigration, Continuous Integration andContinuous
Deployment pipelines.

In the end, we presented three prototypes we built and tested with participants
from Bad Harzburg to explore the system’s design space even further. Our method-
ological approaches were presented and testings’ outcomes were discussed. Struc-
turing pictures by location was found to be a better approach than structuring by
time, although most people like the thematical structure already implemented in the
system. With the third prototype, Stories were perceived to be a promising option
for future work.

This work also proposed further ideas for future work. The whole project could
be shifted by implementing social media aspects found in related work like user
accounts, upload of personal pictures, co-curated collections and group or forum
functionalities. The initial requirements can be further refined by developing auto
curated collections using machine learning approaches and new search and filter
functionalities. Besides some small changes in the design, a bulk editing tool should
be subject to future work to further increase the system’s usability. The technical
implementation can be improved by changing the client-server communication from
GraphQL toREST and byusing an external search engine. Regarding the deployment,
security concerns and support for additional scanner models need to be addressed.

164

Appendices

A Appendix

A.1 Evaluation

A.1.1 Test Tasks

1. Finde dieses Bild.

2. Du warst in den 70ern bei der Einweihung eines Freibads, bei dem auch zwei
Schauspieler engagiert wurden, ein Mann und eine Frau. Du erinnerst dich an eine
Szene, bei der der Mann die Frau auf der einen Schulter getragen hat. Finde ein Bild
davon.

3. Deine Tante hat dir immer wieder von dem Walpurgisfest erzählt, in dem dein Onkel
Friedema mitgewirkt hat. Sie hat auch noch eine Maske von diesem Tag, die zu
seinem Kostüm gehört hat. Die Maske ist golden und hat lange orangene Flammen,
die aus dem Kopf hervor steigen. Jetzt möchtest du einmal nachschauen, ob du ein
passendes Bild findest.

167

A Appendix

1. Finde dieses Bild.

2. Du warst in den 70ern bei der Einweihung eines Freibads, bei dem auch zwei
Schauspieler engagiert wurden, ein Mann und eine Frau. Du erinnerst dich an eine
Szene, bei der der Mann die Frau auf der einen Schulter getragen hat. Finde ein Bild
davon.

3. Deine Tante hat dir immer wieder von dem Walpurgisfest erzählt, in dem dein Onkel
Friedema mitgewirkt hat. Sie hat auch noch eine Maske von diesem Tag, die zu
seinem Kostüm gehört hat. Die Maske ist golden und hat lange orangene Flammen,
die aus dem Kopf hervor steigen. Jetzt möchtest du einmal nachschauen, ob du ein
passendes Bild findest.

4. Bei der Galopprennwoche 1950 war auch Hans Günther Winkler beteiligt. Auf einem
Pferd mit weißem Körper und dunklen Beinen. Dieser war ein deutscher Springreiter.
Er gewann zwischen 1956 und 1976 fünf Gold- und eine Silbermedaille. Finde ein
Bild von ihm und teile dein Wissen über ihn mit.

5. Dein Onkel Hans berichtet dir von einem Erlebnis aus seiner frühen Kindheit, als er
beim Finkenschlagen in Hohegeiß dabei war. Finde ein passendes Bild, auf dem dein
Onkel zu sehen sein könnte und merke an, dass es sich beim Finkenmanöver um
eine Art Gesangswettbewerb für Buchfinken, eine über 500 Jahre alte Tradition aus
dem Harz, handelt, die sogar zum immateriellen UNESCO-Kulturerbe zählt.

6. Die 1988/89 zur Miss Germany gekrönte Nicole Reinhardt stattete der Sole-Therme
einen Besuch ab. Sie flüchtete aus der DDR in den Westen. Ergänze/kommentiere
diese Information zu einem Bild von ihr.

7. Eine dänische Prinzessin eröffnete 1988 eine Veranstaltung in Bad Harzburg. Finde
ihren Namen und die Veranstaltung.

168

A.1 Evaluation

A.1.2 Meta Questionnaire

Fragen zu User Nr.______ Test:_________________________________ Datum:_______

Technikaffinität

Bitte markieren Sie:

Wie häufig benutzen Sie folgende Geräte:

- Handy nie selten mehrfach die Woche täglich

- Tablet nie selten mehrfach die Woche täglich

- Laptop nie selten mehrfach die Woche täglich

- Desktop-PC nie selten mehrfach die Woche täglich

Wohnort

Bitte markieren Sie:

Bad- Harzburg Harz anderer Ort:_______________________________

Bezug zu Bad Harzburg?

z.B. zur Schule in Bad Harzburg gegangen, 30 Jahre dort gelebt, erst seit kurzem in
Bad Harzburg…

Altersgruppe

Bitte markieren Sie:

unter 20 20-30 30-40 40-50 50-60 70-80 80+
169

A Appendix

A.1.3 Meta and SUS questionnaire results

A.1.4 Evaluation Questions

1. Fragen:
1. Wie hast du die Suche empfunden?
2. Was hat dir gefallen an dem System?
3. Was hat dich eingeschränkt bzw. was war unpraktisch?
4. Was hättest du dir gewünscht?

A.1.5 Final Evaluation Questions

1. Was fandest du gut?
2. Was hat dich gestört?
3. Was muss unbedingt geändert werden?
4. Was hat dir am besten gefallen?
5. Meta Feedback

• Anmerkung zum Test?

A.2 Queries and Filters

Listing A.1: The complete filters object for the search terms “Harz” and “1954”

1 {
2 ”and”: [{
3 ”or”: [{”keyword_tags”: {”name”: { ”containsi”: ”Harz”}}},
4 {”verified_keyword_tags”: {”name”: { ”containsi”: ”Harz”}}},
5 {”person_tags”: {”name”: { ”containsi”: ”Harz”}}},
6 {”verified_person_tags”: {”name”: { ”containsi”: ”Harz”}}},

170

A.2 Queries and Filters

7 {”collections”: {”name”: { ”containsi”: ”Harz”}}},
8 {”location_tags”: {”name”: { ”containsi”: ”Harz”}}},
9 {”verified_location_tags”: {”name”: { ”containsi”: ”Harz”}}},

10 {”descriptions”: {”text”: { ”containsi”: ”Harz”}}},
11 {”time_range_tag”: {}},
12 {”verified_time_range_tag”: {}}
13]
14 },
15 {
16 ”or”: [
17 {”keyword_tags”: {”name”: { ”containsi”: ”1954”}}},
18 {”verified_keyword_tags”: {”name”: { ”containsi”: ”1954”}}},
19 {”person_tags”: {”name”: { ”containsi”: ”1954”}}},
20 {”verified_person_tags”: {”name”: { ”containsi”: ”1954”}}},
21 {”collections”: {”name”: { ”containsi”: ”1954”}}},
22 {”location_tags”: {”name”: { ”containsi”: ”1954”}}},
23 {”verified_location_tags”: {”name”: { ”containsi”: ”1954”}}},
24 {”descriptions”: {”text”: { ”containsi”: ”1954”}}},
25 {”time_range_tag”: {
26 ”start”: {”gte”: ”1954-01-01T00:00:00.000Z”},
27 ”end”: {”lte”: ”1954-12-31T23:59:59.000Z”}}},
28 {”verified_time_range_tag”: {
29 ”start”: {”gte”: ”1954-01-01T00:00:00.000Z”},
30 ”end”: {”lte”: ”1954-12-31T23:59:59.000Z”}}}
31]
32 }
33]
34 }

Listing A.2: SQL Query based on the first implementation of the described search
scenario

1 SELECT DISTINCT ”t0”.”published_at”, ”t0”.* FROM ”public”.”pictures” AS ”t0”
2 LEFT JOIN ”public”.”pictures_keyword_tags_links” AS ”t1” ON ”t0”.”id” =

”t1”.”picture_id”↪→
3 LEFT JOIN ”public”.”keyword_tags” AS ”t2” ON ”t1”.”keyword_tag_id” = ”t2”.”id”
4 LEFT JOIN ”public”.”pictures_verified_keyword_tags_links” AS ”t3” ON ”t0”.”id” =

”t3”.”picture_id”↪→
5 LEFT JOIN ”public”.”keyword_tags” AS ”t4” ON ”t3”.”keyword_tag_id” = ”t4”.”id”
6 LEFT JOIN ”public”.”pictures_time_range_tag_links” AS ”t5” ON ”t0”.”id” =

”t5”.”picture_id”↪→
7 LEFT JOIN ”public”.”time_range_tags” AS ”t6” ON ”t5”.”time_range_tag_id” =

”t6”.”id”↪→
8 LEFT JOIN ”public”.”pictures_verified_time_range_tag_links” AS ”t7” ON ”t0”.”id” =

”t7”.”picture_id”↪→
9 LEFT JOIN ”public”.”time_range_tags” AS ”t8” ON ”t7”.”time_range_tag_id” =

”t8”.”id”↪→
10 LEFT JOIN ”public”.”pictures_person_tags_links” a s ”t9” ON ”t0”.”id” =

”t9”.”picture_id”↪→
11 LEFT JOIN ”public”.”person_tags” AS ”t10” ON ”t9”.”person_tag_id” = ”t10”.”id”
12 LEFT JOIN ”public”.”pictures_verified_person_tags_links” AS ”t11” ON ”t0”.”id” =

”t11”.”picture_id”↪→
13 LEFT JOIN ”public”.”person_tags” AS ”t12” ON ”t11”.”person_tag_id” = ”t12”.”id”
14 LEFT JOIN ”public”.”pictures_collections_links” AS ”t13” ON ”t0”.”id” =

”t13”.”picture_id”↪→
15 LEFT JOIN ”public”.”collections” AS ”t14” ON ”t13”.”collection_id” = ”t14”.”id”
16 LEFT JOIN ”public”.”pictures_location_tags_links” AS ”t15” ON ”t0”.”id” =

”t15”.”picture_id”↪→

171

A Appendix

17 LEFT JOIN ”public”.”location_tags” AS ”t16” ON ”t15”.”location_tag_id” = ”t16”.”id”
18 LEFT JOIN ”public”.”pictures_verified_location_tags_links” AS ”t17” ON ”t0”.”id” =

”t17”.”picture_id”↪→
19 LEFT JOIN ”public”.”location_tags” AS ”t18” ON ”t17”.”location_tag_id” = ”t18”.”id”
20 LEFT JOIN ”public”.”pictures_descriptions_links” AS ”t19” ON ”t0”.”id” =

”t19”.”picture_id”↪→
21 LEFT JOIN ”public”.”descriptions” AS ”t20” ON ”t19”.”description_id” = ”t20”.”id”
22 LEFT JOIN ”public”.”pictures_keyword_tags_links” AS ”t21” ON ”t0”.”id” =

”t21”.”picture_id”↪→
23 LEFT JOIN ”public”.”keyword_tags” AS ”t22” ON ”t21”.”keyword_tag_id” = ”t22”.”id”
24 LEFT JOIN ”public”.”pictures_verified_keyword_tags_links” AS ”t23” ON ”t0”.”id” =

”t23”.”picture_id”↪→
25 LEFT JOIN ”public”.”keyword_tags” AS ”t24” ON ”t23”.”keyword_tag_id” = ”t24”.”id”
26 LEFT JOIN ”public”.”pictures_time_range_tag_links” AS ”t25” ON ”t0”.”id” =

”t25”.”picture_id”↪→
27 LEFT JOIN ”public”. ”time_range_tags” AS ”t26” ON ”t25”.”time_range_tag_id” =

”t26”.”id”↪→
28 LEFT JOIN ”public”.”pictures_verified_time_range_tag_links” AS ”t27” ON ”t0”.”id” =

”t27”.”picture_id”↪→
29 LEFT JOIN ”public”.”time_range_tags” AS ”t28” ON ”t27”.”time_range_tag_id” =

”t28”.”id”↪→
30 LEFT JOIN ”public”.”pictures_person_tags_links” AS ”t29” ON ”t0”.”id” =

”t29”.”picture_id”↪→
31 LEFT JOIN ”public”.”person_tags” AS ”t30” ON ”t29”.”person_tag_id” = ”t30”.”id”
32 LEFT JOIN ”public”.”pictures_verified_person_tags_links” AS ”t31” ON ”t0”.”id” =

”t31”.”picture_id”↪→
33 LEFT JOIN ”public”.”person_tags” AS ”t32” ON ”t31”.”person_tag_id” = ”t32”.”id”
34 LEFT JOIN ”public”.”pictures_collections_links” AS ”t33” ON ”t0”.”id” =

”t33”.”picture_id”↪→
35 LEFT JOIN ”public”.”collections” AS ”t34” ON ”t33”.”collection_id” = ”t34”.”id”
36 LEFT JOIN ”public”.”pictures_location_tags_links” AS ”t35” ON ”t0”.”id” =

”t35”.”picture_id”↪→
37 LEFT JOIN ”public”.”location_tags” AS ”t36” ON ”t35”.”location_tag_id” = ”t36”.”id”
38 LEFT JOIN ”public”.”pictures_verified_location_tags_links” AS ”t37” ON ”t0”.”id” =

”t37”.”picture_id”↪→
39 LEFT JOIN ”public”.”location_tags” AS ”t38” ON ”t37”.”location_tag_id” = ”t38”.”id”
40 LEFT JOIN ”public”.”pictures_descriptions_links” AS ”t39” ON ”t0”.”id” =

”t39”.”picture_id”↪→
41 LEFT JOIN ”public”.”descriptions” AS ”t40” ON ”t39”.”description_id” = ”t40”.”id”
42 WHERE ((((LOWER(CAST(”t2”.”name” AS VARCHAR)) LIKE LOWER(?))
43 OR (LOWER(CAST(”t4”.”name” AS VARCHAR)) LIKE LOWER(?))
44 OR (LOWER(CAST(”t10”.”name” AS VARCHAR)) LIKE LOWER(?))
45 OR (LOWER(CAST(”t12”.”name” AS VARCHAR)) LIKE LOWER(?))
46 OR (LOWER(CAST(”t14”.”name” AS VARCHAR)) LIKE LOWER(?))
47 OR (LOWER(CAST(”t16”.”name” AS VARCHAR)) LIKE LOWER(?))
48 OR (LOWER(CAST(”t18”.”name” AS VARCHAR)) LIKE LOWER(?))
49 OR (LOWER(CAST(”t20”.”text” AS VARCHAR)) LIKE LOWER(?)))
50 AND ((LOWER(CAST(”t22”.”name” AS VARCHAR)) LIKE LOWER(?))
51 OR (LOWER(CAST(”t24”.”name” AS VARCHAR)) LIKE LOWER(?))
52 OR (”t26”.”start” >= ? AND ”t26”.”end” <= ?)
53 OR (”t28”.”start” >= ? AND ”t28”.”end” <= ?)
54 OR (LOWER(CAST(”t30”.”name” AS VARCHAR)) LIKE LOWER(?))
55 OR (LOWER(CAST(”t32”.”name” AS VARCHAR)) LIKE LOWER(?))
56 OR (LOWER(CAST(”t34”.”name” AS VARCHAR)) LIKE LOWER(?))
57 OR (LOWER(CAST(”t36”.”name” AS VARCHAR)) LIKE LOWER(?))
58 OR (LOWER(CAST(”t38”.”name” AS VARCHAR)) LIKE LOWER(?))
59 OR (LOWER(CAST(”t40”.”text” AS VARCHAR)) LIKE LOWER(?))))
60 AND ”t0”.”published_at” IS NOT NULL)
61 ORDER BY ”t0”.”published_at” ASC
62 LIMIT ?

172

A.2 Queries and Filters

Listing A.3: SQL Query based on the optimized implementation for the described
search scenario

1 SELECT DISTINCT ”pictures”.* FROM ”pictures”
2 LEFT JOIN ”pictures_keyword_tags_links” ON ”pictures”.”id” =

”pictures_keyword_tags_links”.”picture_id”↪→
3 LEFT JOIN ”pictures_verified_keyword_tags_links” ON ”pictures”.”id” =

”pictures_verified_keyword_tags_links”.”picture_id”↪→
4 LEFT JOIN ”keyword_tags” ON ”pictures_verified_keyword_tags_links”.”keyword_tag_id”

= ”keyword_tags”.”id” OR ”pictures_keyword_tags_links”.”keyword_tag_id” =
”keyword_tags”.”id”

↪→
↪→

5 LEFT JOIN ”pictures_location_tags_links” ON ”pictures”.”id” =
”pictures_location_tags_links”.”picture_id”↪→

6 LEFT JOIN ”pictures_verified_location_tags_links” ON ”pictures”.”id” =
”pictures_verified_location_tags_links”.”picture_id”↪→

7 LEFT JOIN ”location_tags” ON
”pictures_verified_location_tags_links”.”location_tag_id” = ”location_tags”.”id”
OR ”pictures_location_t ags_links”.”location_tag_id” = ”location_tags”.”id”

↪→
↪→

8 LEFT JOIN ”pictures_person_tags_links” ON ”pictures”.”id” =
”pictures_person_tags_links”.”picture_id”↪→

9 LEFT JOIN ”pictures_verified_person_tags_links” ON ”pictures”.”id” =
”pictures_verified_person_tags_links”.”picture_id”↪→

10 LEFT JOIN ”person_tags” ON ”pictures_verified_person_tags_links”.”person_tag_id” =
”person_tags”.”id” OR ”pictures_person_tags_links”.”person_tag_id” =
”person_tags”.”id”

↪→
↪→

11 LEFT JOIN ”pictures_time_range_tag_links” ON ”pictures”.”id” =
”pictures_time_range_tag_links”.”picture_id”↪→

12 LEFT JOIN ”pictures_verified_time_range_tag_links” ON ”pictures”.”id” =
”pictures_verified_time_range_tag_links”.”picture_id”↪→

13 LEFT JOIN ”time_range_tags” ON
”pictures_verified_time_range_tag_links”.”time_range_tag_id” =
”time_range_tags”.”id” OR ”pictures_time_range_tag_links”.”time_range_tag_id” =
”time_range_tags”.”id”

↪→
↪→
↪→

14 LEFT JOIN ”pictures_descriptions_links” ON ”pictures”.”id” =
”pictures_descriptions_links”.”picture_id”↪→

15 LEFT JOIN ”descriptions” ON ”pictures_descriptions_links”.”description_id” =
”descriptions”.”id”↪→

16 LEFT JOIN ”pictures_collections_links” ON ”pictures”.”id” =
”pictures_collections_links”.”picture_id”↪→

17 LEFT JOIN ”collections” ON ”pictures_collections_links”.”collection_id” =
”collections”.”id”↪→

18 WHERE (”keyword_tags”.”name” ilike ?
19 OR ”location_tags”.”name” ilike ?
20 OR ”person_tags”.”name” ilike ?
21 OR ”collections”.”name” ilike ?
22 OR ”descriptions”.”text” ilike ?)
23 AND (”keyword_tags”.”name” ilike ?
24 OR ”location_tags”.”name” ilike ?
25 OR ”person_tags”.”name” ilike ?
26 OR ”collections”.”name” ilike ?
27 OR ”descriptions”.”text” ilike ?
28 OR (”time_range_tags”.”start” >= ? AND ”time_range_tags”.”end” <= ?))
29 AND ”pictures”.”published_at” IS NOT NULL
30 ORDER BY ”pictures”.”published_at” ASC
31 LIMIT ?

173

A Appendix

A.3 GraphQL and Monitoring

A.3.1 GraphQL Code Generator

When configuring the code generator, we use the codegen.yml file shown in List-
ing A.4 to set it up.

Listing A.4: The codegen.yml file contains the configuration of the GraphQL code
generator. It sets the schema definitions source and the target of where to store the
generated code (APIConnector.tsx).

1 overwrite: true
2 schema:
3 - https://bp.bad-harzburg-stiftung.de/api/graphql:
4 loader: ./src/graphql/schema/loadRemoteSchema.js
5 - ”src/graphql/schema/schema.json”
6 documents: ”src/graphql/*.graphql”
7 generates:
8 src/graphql/APIConnector.tsx:
9 plugins: [...]

10 config: [...]

We instruct the generator to use the remote schema as well as the local fallback
schema. The two will be merged1 and used as the generator input along with any
file located in the same folder with the .graphql file type. In our case, the only file
satisfying this condition is the operation.graphql file, containing the mutation and
query definitions our developers wrote. According to these definitions, hooks for
use in React components are generated.

1https://www.graphql-code-generator.com/docs/config-reference/schema-field (last accessed: 2022-07-13).

174

https://www.graphql-code-generator.com/docs/config-reference/schema-field

A.3 GraphQL and Monitoring

A.3.2 Monitoring the Application

Figure A.1: The sentry dashboard groups and shows all captured error messages.
For each error there is a separate page detailing the stack trace as well as the clients
information if it is present (see Figure A.2).

Figure A.2: The sentry detail page shows the stack trace, user agent information and
code snippets for every error captured

175

A Appendix

Figure A.3: The matomo dashboard shows an overview of all user interactions, the
devices used and their region of origin

176

A.4 Questionnaires

A.4 Questionnaires

Durch die Karte konnte ich mich gut in der Bildermenge orientieren.

Die Karte hat mir die Bilder nahe gebracht. Sie hat mir einen Zugang zum
Bilderarchiv gegeben.

Die Karte ist übersichtlich.

Ich würde die Karte gerne nutzen, um mir das gesamte Herbert-Ahrens-
Bilderarchiv anzuschauen.

Figure A.4: The Likert-type questionnaire we designed as a quantitative approach
to rate the Map prototype

177

Durch den Zeitstrahl konnte ich mich gut in der Bildermenge orientieren.

Der Zeitstrahl hat mir die Bilder nahe gebracht. Er hat mir einen Zugang zum
Bilderarchiv gegeben.

Der Zeitstrahl ist übersichtlich.

Ich würde den Zeitstrahl gerne nutzen, um mir das gesamte Herbert-Ahrens-
Bilderarchiv anzuschauen.

Figure A.5: The Likert-type questionnaire we designed as a quantitative approach
to rate the Timeline prototype

178

References

[1] C. Alvino and J. Basilico. Learning a Personalized Homepage. Netflix Technology
Blog. Apr. 2017. url: https://netflixtechblog.com/learning-a-personalized-homepage-aa8ec670

359a (last accessed: 2022-07-13).
[2] Apple Support. Anzeigen von Fotos in der App „Fotos“ auf dem iPhone. url: https:

//support.apple.com/de-de/guide/iphone/iph3d267610/ios (last accessed: 2022-07-13).
[3] S. Asur and S. Hufnagel. “Taxonomy of rapid-prototypingmethods and tools”.

In: [1993] Proceedings The Fourth International Workshop on Rapid System Proto-
typing. IEEE, 1993. doi: 10.1109/IWRSP.1993.263196.

[4] Atlassian. Git Hooks | Atlassian Git Tutorial. url: https://www.atlassian.com/git/tutorials

/git-hooks (last accessed: 2022-06-28).
[5] A. Bangor, P. T. Kortum, and J. T. Miller. “An Empirical Evaluation of the

SystemUsability Scale”. In: International Journal of Human-Computer Interaction
24.6 (July 2008). doi: 10.1080/10447310802205776.

[6] A. Bangor, P. T. Kortum, and J. T. Miller. “Determining What Individual SUS
ScoresMean: Adding an Adjective Rating Scale”. In: Journal of Usability Studies
4.3 (May 2009).

[7] A. Bodin. Announcing Strapi v4. Nov. 30, 2021. url: https://strapi.io/blog/announcing-
strapi-v4 (last accessed: 2022-07-11).

[8] J. Brooke. “SUS–A Quick and Dirty Usability Scale”. In: Usability evaluation in
industry. Edited by P. W. Jordan, B. Thomas, I. L. McClelland, and B. Weerd-
meester. CRC Press, 1996.

[9] J. Brooke. “SUS: a retrospective”. In: Journal of usability studies 8.2 (2013).
[10] R. Budde and H. Zullighoven. “Prototyping revisited”. In: COMPEURO’90:

Proceedings of the 1990 IEEE International Conference on Computer Systems and
Software Engineering – Systems Engineering Aspects of Complex Computerized
Systems. 1990. doi: 10.1109/CMPEUR.1990.113653.

[11] R. Budde, K. Kautz, K. Kuhlenkamp, and H. Züllighoven. “What is prototyp-
ing?” In: Information Technology & People 6.2/3 (Jan. 1992). doi: 10.1108/EUM00000
00003546.

[12] P. P.-S. Chen. “The entity-relationship model - toward a unified view of data”.
In: ACM Transactions on Database Systems 1.1 (1976). doi: 10.1145/320434.320440.
url: https://doi.org/10.1145/320434.320440.

[13] Contentful. Headless CMS explained in 1 minute. url: https://www.contentful.com/r/kn

owledgebase/what-is-headless-cms/ (last accessed: 2022-05-18).

179

https://netflixtechblog.com/learning-a-personalized-homepage-aa8ec670359a
https://netflixtechblog.com/learning-a-personalized-homepage-aa8ec670359a
https://support.apple.com/de-de/guide/iphone/iph3d267610/ios
https://support.apple.com/de-de/guide/iphone/iph3d267610/ios
https://doi.org/10.1109/IWRSP.1993.263196
https://www.atlassian.com/git/tutorials/git-hooks
https://www.atlassian.com/git/tutorials/git-hooks
https://doi.org/10.1080/10447310802205776
https://strapi.io/blog/announcing-strapi-v4
https://strapi.io/blog/announcing-strapi-v4
https://doi.org/10.1109/CMPEUR.1990.113653
https://doi.org/10.1108/EUM0000000003546
https://doi.org/10.1108/EUM0000000003546
https://doi.org/10.1145/320434.320440
https://doi.org/10.1145/320434.320440
https://www.contentful.com/r/knowledgebase/what-is-headless-cms/
https://www.contentful.com/r/knowledgebase/what-is-headless-cms/

References

[14] L. Crum. “Laws of UX: Using Psychology to Design Better Products & Ser-
vices”. In: Design and Culture 12.3 (Sept. 2020). doi: 10.1080/17547075.2020.1822074.

[15] T. Deplanque. Strapi plugin migrations. June 2022. url: https://github.com/TonyDepla

nque/strapi-plugin-migrations (last accessed: 2022-06-16).
[16] Digital Curation Centre. What is digital curation? url: https://www.dcc.ac.uk/about/di

gital-curation (last accessed: 2022-05-25).
[17] O. Elgabry. Plug-in Architecture. May 2020. url: https://medium.com/omarelgabrys-blo

g/plug-in-architecture-dec207291800.
[18] J. Esterkin. Plug-In Architecture. June 29, 2020. url: https://openclassrooms.com/en/c

ourses/6397806-design-your-software-architecture-using-industry-standard-patterns/6896171-plug-in

-architecture.
[19] F. Fagerholm and J. Münch. “Developer experience: Concept and definition”.

In: 2012 International Conference on Software and System Process (ICSSP). June
2012. doi: 10.1109/ICSSP.2012.6225984.

[20] R. T. Fielding. “Architectural Styles and theDesign ofNetwork-based Software
Architectures”. 2000.

[21] M. Gao, P. Kortum, and F. L. Oswald. “Multi-Language Toolkit for the System
Usability Scale”. In: International Journal of Human–Computer Interaction 36.20
(Dec. 2020). doi: 10.1080/10447318.2020.1801173.

[22] S. Gao. Paper Prototyping — How-to, Pros & Cons, and the Struggles of Guerrilla
Usability Testing. Jan. 31, 2018. url: https://medium.com/@sheneral/paper-prototyping

-how-to-pros-cons-and-the-struggles-of-guerrilla-usability-testing-5546dd446d5e (last accessed:
2022-07-13).

[23] H. Gernsheim. A Concise History of Photography. Courier Corporation, Jan.
1986.

[24] HackEDU Team. How to prevent SQL Injection vulnerabilities: How Prepared
Statements Work. Feb. 11, 2020. url: https://www.hackedu.com/blog/how-to-prevent-sql-inj

ection-vulnerabilities-how-prepared-statements-work (last accessed: 2022-07-14).
[25] E. C. Hallett, Z. Roberts, J. Sweet, M. L. Chan, Y. Sun, W. Dick, A. Monge,

and K.-P. L. Vu. “Computer Accessibility: How Individuals with Low Vision
Adjust the Presentation of Electronic Text for Academic Reading”. In: Procedia
Manufacturing 3 (2015), pages 5206–5213. doi: 10.1016/j.promfg.2015.07.586.

[26] J. Howe. “The Rise of Crowdsourcing”. In: Wired (June 2006). url: https://www
.wired.com/2006/06/crowds/ (last accessed: 2022-07-08).

[27] Imagely.Working with Albums. url: https://www.imagely.com/docs/albums/ (last accessed:
2022-07-13).

[28] Institut für Konstruktionstechnik. Papierprototyp - Methodos. Technische Uni-
versität Braunschweig. June 30, 2017. url: https://methodos.ik.ing.tu-bs.de/methode/Pa

pierprototyp.html (last accessed: 2022-06-14).
[29] N. Jakob. Definition Usability. Jan. 2012. url: https://www.nngroup.com/articles/usabilit

y-101-introduction-to-usability/.

180

https://doi.org/10.1080/17547075.2020.1822074
https://github.com/TonyDeplanque/strapi-plugin-migrations
https://github.com/TonyDeplanque/strapi-plugin-migrations
https://www.dcc.ac.uk/about/digital-curation
https://www.dcc.ac.uk/about/digital-curation
https://medium.com/omarelgabrys-blog/plug-in-architecture-dec207291800
https://medium.com/omarelgabrys-blog/plug-in-architecture-dec207291800
https://openclassrooms.com/en/courses/6397806-design-your-software-architecture-using-industry-standard-patterns/6896171-plug-in-architecture
https://openclassrooms.com/en/courses/6397806-design-your-software-architecture-using-industry-standard-patterns/6896171-plug-in-architecture
https://openclassrooms.com/en/courses/6397806-design-your-software-architecture-using-industry-standard-patterns/6896171-plug-in-architecture
https://doi.org/10.1109/ICSSP.2012.6225984
https://doi.org/10.1080/10447318.2020.1801173
https://medium.com/@sheneral/paper-prototyping-how-to-pros-cons-and-the-struggles-of-guerrilla-usability-testing-5546dd446d5e
https://medium.com/@sheneral/paper-prototyping-how-to-pros-cons-and-the-struggles-of-guerrilla-usability-testing-5546dd446d5e
https://www.hackedu.com/blog/how-to-prevent-sql-injection-vulnerabilities-how-prepared-statements-work
https://www.hackedu.com/blog/how-to-prevent-sql-injection-vulnerabilities-how-prepared-statements-work
https://doi.org/10.1016/j.promfg.2015.07.586
https://www.wired.com/2006/06/crowds/
https://www.wired.com/2006/06/crowds/
https://www.imagely.com/docs/albums/
https://methodos.ik.ing.tu-bs.de/methode/Papierprototyp.html
https://methodos.ik.ing.tu-bs.de/methode/Papierprototyp.html
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/

References

[30] S. Jamieson. “Likert scales: how to (ab)use them”. In: Medical Education 38.12
(Dec. 2004). doi: 10.1111/j.1365-2929.2004.02012.x.

[31] L. S. Jensen, A. G. Özkil, N. H. Mortensen, et al. “Prototypes in engineering
design: Definitions and strategies”. In: DS 84: Proceedings of the DESIGN 2016
14th International Design Conference. 2016.

[32] A. Joshi, S. Kale, S. Chandel, and D. Pal. “Likert Scale: Explored and Ex-
plained”. In: British Journal of Applied Science & Technology 7.4 (Jan. 2015).
doi: 10.9734/BJAST/2015/14975.

[33] E. Koptyug. Number of smartphone users in Germany 2009-2021. url: https://w
ww.statista .com/statistics /461801/number -of - smartphone-users - in -germany/ (last accessed:
2022-07-14).

[34] M. D. Levi and F. G. Conrad. “Usability testing of world wide web sites”. In:
Conference on Human Factors in Computing Systems: CHI’97 extended abstracts on
Human factors in computing systems: looking to the future. Volume 22. 27. 1997.

[35] J. R. Lewis and J. Sauro. “Item Benchmarks for the System”. In: 13.3 (2018).
[36] Lexico. English Dictionary. url: lexico.com (last accessed: 2022-07-13).
[37] D. MacAskill. The world’s most-beloved, money-losing business needs your help.

Dec. 2019. url: https://blog.flickr.net/en/2019/12/19/the-worlds-most-beloved-money-losing-bus

iness-needs-your-help/ (last accessed: 2022-07-13).
[38] N. Mathur. Rethink Your Master Data: The Limits of Relational Databases. Neo4j

Graph Data Platform. June 2020. url: https://neo4j.com/blog/rethink-your-master-data-t

he-limits-of-relational-databases.
[39] F. Matthes, C. Schulz, and K. Haller. “Testing amp; quality assurance in data

migration projects”. In: 2011 27th IEEE International Conference on Software
Maintenance (ICSM). Sept. 2011. doi: 10.1109/ICSM.2011.6080811.

[40] D. Mehaffy. Discussion regarding the complex response structure for REST &
GraphQL (Developer Experience) - Discussions. Dec. 2021. url: https://forum.str

api.io/t/discussion-regarding-the-complex-response-structure-for-rest-graphql-developer-experience

/13400 (last accessed: 2022-07-11).
[41] Microsoft. The TypeScript Handbook. url: https://www.typescriptlang.org/docs/handbook

/intro.html (last accessed: 2022-05-18).
[42] W. Moris. Why You Should Offer Image Commenting on Your Photography Website

(And How to Get Started). Jan. 5, 2021. url: https://www.imagely.com/image-commenting/

(last accessed: 2022-07-13).
[43] J. Morris. Practical Data Migration. BCS, The Chartered Institute, 2012.
[44] J. Nielsen. Thinking Aloud: The #1 Usability Tool. url: https://www.nngroup.com/articl

es/thinking-aloud-the-1-usability-tool/ (last accessed: 2022-07-11).
[45] J. Nielsen. Usability engineering. Morgan Kaufmann, 1994.
[46] M. T. Nygard. Release It!: Design and Deploy Production-Ready Software. The

Pragmatic Programmers. O’Reilly Media, Feb. 2018.

181

https://doi.org/10.1111/j.1365-2929.2004.02012.x
https://doi.org/10.9734/BJAST/2015/14975
https://www.statista.com/statistics/461801/number-of-smartphone-users-in-germany/
https://www.statista.com/statistics/461801/number-of-smartphone-users-in-germany/
lexico.com
https://blog.flickr.net/en/2019/12/19/the-worlds-most-beloved-money-losing-business-needs-your-help/
https://blog.flickr.net/en/2019/12/19/the-worlds-most-beloved-money-losing-business-needs-your-help/
https://neo4j.com/blog/rethink-your-master-data-the-limits-of-relational-databases
https://neo4j.com/blog/rethink-your-master-data-the-limits-of-relational-databases
https://doi.org/10.1109/ICSM.2011.6080811
https://forum.strapi.io/t/discussion-regarding-the-complex-response-structure-for-rest-graphql-developer-experience/13400
https://forum.strapi.io/t/discussion-regarding-the-complex-response-structure-for-rest-graphql-developer-experience/13400
https://forum.strapi.io/t/discussion-regarding-the-complex-response-structure-for-rest-graphql-developer-experience/13400
https://www.typescriptlang.org/docs/handbook/intro.html
https://www.typescriptlang.org/docs/handbook/intro.html
https://www.imagely.com/image-commenting/
https://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/
https://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/

References

[47] J. Oomen and L. Aroyo. “Crowdsourcing in the Cultural Heritage Domain:
Opportunities and Challenges”. In: Proceedings of the 5th International Confer-
ence on Communities and Technologies. C&T ’11. Association for Computing
Machinery, 2011. doi: 10.1145/2103354.2103373.

[48] Oracle. What is a content management system (CMS)? url: https://www.oracle.com/c

ontent-management/what-is-cms/ (last accessed: 2022-07-13).
[49] K. Orfanou, N. Tselios, and C. Katsanos. “Perceived usability evaluation of

learning management systems: Empirical evaluation of the System Usability
Scale”. In: The International Review of Research in Open and Distributed Learning
16.2 (Apr. 2015). doi: 10.19173/irrodl.v16i2.1955.

[50] V. Pareto. Manual of Political Economy. AM Kelley, 1971.
[51] W. Reinhardt, E. Ruegenhagen, and B. Rummel. System Usability Scale – jetzt

auch auf Deutsch. Feb. 16, 2016. url: https://blogs.sap.com/2016/02/01/system-usability-sca

le-jetzt-auch-auf-deutsch/.
[52] M. Rubel. Easy Automated Snapshot-Style Backups with Rsync. 2004. url: http://w

ww.mikerubel.org/computers/rsync_snapshots/ (last accessed: 2022-05-25).
[53] J. Sauro and J. R. Lewis. Quantifying the User Experience: Practical Statistics for

User Research. Morgan Kaufmann, 2016.
[54] N. Simon. The Participatory Museum. Museum 2.0, 2010. url: https://www.participa

torymuseum.org/read/.
[55] Statista. Bevölkerung in Deutschland I. url: https://de.statista.com/statistik/studie/id/7661

/dokument/bevoelkerung-in-deutschland-i-statista-dossier/ (last accessed: 2022-07-11).
[56] Statista. Mobile percentage of website traffic 2021. url: https://www.statista.com/statistic

s/277125/share-of-website-traffic-coming-from-mobile-devices/ (last accessed: 2022-07-13).
[57] Strapi Team. Headless CMS explained in 5 minutes. url: https://strapi.io/what-is-headl

ess-cms (last accessed: 2022-05-18).
[58] Strapi Team. Strapi User Guide. url: https://docs.strapi.io/user-docs/latest/getting-started/i

ntroduction.html (last accessed: 2022-05-25).
[59] The PostgreSQL Global Development Group. PostgreSQL 14.6 Documentation.

May 2022. url: https://www.postgresql.org/docs/14 (last accessed: 2022-07-13).
[60] R. A. Virzi. “What can you Learn from a Low-Fidelity Prototype?” In: Pro-

ceedings of the Human Factors Society Annual Meeting 33.4 (Oct. 1989). doi:
10.1177/154193128903300405.

182

https://doi.org/10.1145/2103354.2103373
https://www.oracle.com/content-management/what-is-cms/
https://www.oracle.com/content-management/what-is-cms/
https://doi.org/10.19173/irrodl.v16i2.1955
https://blogs.sap.com/2016/02/01/system-usability-scale-jetzt-auch-auf-deutsch/
https://blogs.sap.com/2016/02/01/system-usability-scale-jetzt-auch-auf-deutsch/
http://www.mikerubel.org/computers/rsync_snapshots/
http://www.mikerubel.org/computers/rsync_snapshots/
https://www.participatorymuseum.org/read/
https://www.participatorymuseum.org/read/
https://de.statista.com/statistik/studie/id/7661/dokument/bevoelkerung-in-deutschland-i-statista-dossier/
https://de.statista.com/statistik/studie/id/7661/dokument/bevoelkerung-in-deutschland-i-statista-dossier/
https://www.statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices/
https://www.statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices/
https://strapi.io/what-is-headless-cms
https://strapi.io/what-is-headless-cms
https://docs.strapi.io/user-docs/latest/getting-started/introduction.html
https://docs.strapi.io/user-docs/latest/getting-started/introduction.html
https://www.postgresql.org/docs/14
https://doi.org/10.1177/154193128903300405

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band ISBN Titel Autoren/Redaktion

148 978-3-86956-544-6 openHPI: 10 years of
MOOCs at the Hasso
Plattner Institute

Christoph Meinel, Christian
Willems, Thomas Staubitz,
Dominic Sauer, Christiane
Hagedorn

147 978-3-86956-533-0 Modeling and formal
analysis of
meta-ecosystems with
dynamic structure using
graph transformation

Boris Flotterer, Maria Maximova,
Sven Schneider, Johannes Dyck,
Christian Zöllner, Holger Giese,
Christelle Hély, Cédric
Gaucherel

146 978-3-86956-532-3 Probabilistic metric
temporal graph logic

Sven Schneider, Maria
Maximova, Holger Giese

145 978-3-86956-528-6 Learning from failure:
a history-based,
lightweight test
prioritization technique
connecting software
changes to test failures

Falco Dürsch, Patrick Rein, Toni
Mattis, Robert Hirschfeld

144 978-3-86956-526-2 Die HPI Schul-Cloud –
Von der Vision zur
digitale Infrastruktur für
deutsche Schulen

Christoph Meinel, Catrina John,
Tobias Wollowski

143 978-3-86956-531-6 Invariant analysis for
multi-agent graph
transformation systems
using k-Induction

Sven Schneider, Maria
Maximova, Holger Giese

142 978-3-86956-524-8 Quantum computing
from a software
developers perspective

Marcel Garus, Rohan Sawahn,
Jonas Wanke, Clemens Tiedt,
Clara Granzow, Tim Kuffner,
Jannis Rosenbaum, Linus
Hagemann, Tom Wollnik,
Lorenz Woth, Felix Auringer,
Tobias Kantusch, Felix Roth,
Konrad Hanff, Niklas Schilli,
Leonard Seibold, Marc Fabian
Lindner, Selina Raschack

141 978-3-86956-521-7 Tool support for
collaborative creation of
interactive storytelling
media

Paula Klinke, Silvan Verhoeven,
Felix Roth, Linus Hagemann,
Tarik Alnawa, Jens Lincke,
Patrick Rein, Robert Hirschfeld

140 978-0-86956-517-0 Probabilistic metric
temporal graph logic

Sven Schneider, Maria
Maximova, Holger Giese

ISBN 978-3-86956-545-3
ISSN 1613-5652

	Title
	Imprint

	Abstract
	Zusammenfassung
	Contents
	1 A Crowd-Sourced Picture Archive
	1.1 The Cultural Heritage Domain
	1.2 Crowd-Sourcing in the Cultural Heritage Domain
	1.2.1 Definition of Crowd-Sourcing
	1.2.2 Models of Crowd-Sourcing and Participation in the Cultural Heritage Domain

	1.3 Related Work
	1.3.1 CALIsphere
	1.3.2 Project Apollo Archive on Flickr
	1.3.3 Britain from Above
	1.3.4 Europeana
	1.3.5 Zooniverse

	1.4 Our Project Partner: Bad Harzburg-Stiftung
	1.5 Our Project Prerequisites
	1.5.1 Parties Involved
	1.5.2 Legacy System
	1.5.3 Problems of the Legacy System
	1.5.4 Potential of Crowd-Sourcing Initiatives

	1.6 Summary

	2 Functional Constraints and Requirements
	2.1 Initial Project Partner Requirements
	2.2 Picture Management Applications
	2.3 Application Selection
	2.3.1 Personal Picture Management Systems: Adobe Lightroom CC
	2.3.2 Analysis: Adobe Lightroom CC
	2.3.3 Personal Picture Management Systems: Apple Photos
	2.3.4 Analysis: Apple Photos
	2.3.5 Social Media Platforms: Flickr
	2.3.6 Analysis
	2.3.7 Conclusion
	2.3.8 Website Builder: WordPress
	2.3.9 Analysis
	2.3.10 Different Domain: Netflix

	2.4 Concept for a Collaborative Picture Archive
	2.4.1 Interface Design Choices
	2.4.2 Picture Uploading
	2.4.3 Picture Editing
	2.4.4 Picture Structuring
	2.4.5 Collaboration
	2.4.6 User Roles
	2.4.7 Data Model

	2.5 Summary

	3 Evaluating Design Decisions regarding Usability
	3.1 Design and Implementation
	3.1.1 Prototypes
	3.1.2 Design Details Visitor View V0
	3.1.3 Design Details Curator View V2

	3.2 Empirical Evaluation
	3.2.1 Heuristics
	3.2.2 User Testing
	3.2.3 Pilot testing
	3.2.4 Qualitative User Testing with Think Aloud
	3.2.5 Quantitative
	3.2.6 Curator V2
	3.2.7 Limitations

	3.3 Discussion
	3.4 Conclusion and Outlook

	4 Architecture and Implementation of a Web-Based Frontend
	4.1 Technical Components
	4.2 Background
	4.2.1 React
	4.2.2 GraphQL

	4.3 Frontend Architecture
	4.3.1 Design Guidelines
	4.3.2 Component Overview

	4.4 Data Flow
	4.4.1 Fetching Picture Information
	4.4.2 Editing Picture Information
	4.4.3 Discussion: Layers of Indirection

	4.5 Summary

	5 Strapi as a Customizable Content Management System
	5.1 Motivation for Using a Content Management System
	5.2 Introduction to Content Management Systems
	5.2.1 Monolithic vs. Headless Content Management Systems

	5.3 Introduction to Plugin Architectures
	5.4 Strapi as a Content Management System
	5.4.1 The Administration Panel
	5.4.2 The Media Library
	5.4.3 Defining the Content Models
	5.4.4 Connection to Relational Databases and the Knex Query Builder
	5.4.5 Using the Users & Permissions Plugin as an Authorization & Authentication Layer
	5.4.6 Further Internal APIs: The Entity Service and the Query Engine
	5.4.7 Accessing the Content Through the REST API
	5.4.8 Accessing the Content Through the GraphQL API
	5.4.9 Internationalization

	5.5 Customizing Strapi
	5.5.1 Frontend
	5.5.2 Backend
	5.5.3 Plugins

	5.6 Discussion
	5.6.1 Lack of Attributes on Relations
	5.6.2 Possible Solutions
	5.6.3 Evaluating the Chosen Solution
	5.6.4 Too Generic Query Building Resulting in Rather Cost-Intensive Queries
	5.6.5 Migrating Between Major Versions
	5.6.6 Alternative Systems

	5.7 Summary

	6 Automatic Data Migration, Testing, and Deployment
	6.1 Tools and Tasks in Modern Web Development
	6.2 Data Migration: Importing from WordPress
	6.2.1 Exporting from WordPress as a Legacy Data Store
	6.2.2 Cleaning Up and Transforming the Data
	6.2.3 Importing Data into the New System
	6.2.4 Decommissioning the Legacy Data Store
	6.2.5 Sidenote: Legacy Compatibility between Strapi Versions

	6.3 Data Migration: Evolving the System
	6.3.1 Migration Use Cases
	6.3.2 Importing Data via the Scanner
	6.3.3 Importing Data from Excel

	6.4 Developer Experience
	6.4.1 Typed Web Development with TypeScript and GraphQL
	6.4.2 Development Toolchain

	6.5 Integration, Deployment, and Performance
	6.5.1 Testing Frameworks and Continuous Integration
	6.5.2 Evaluating Test Coverage
	6.5.3 Load Testing on the System
	6.5.4 Deployment
	6.5.5 Monitoring Deployed Applications
	6.5.6 Backup and Recovery

	6.6 Summary

	7 Low Fidelity Prototypes to Explore the Design Space
	7.1 Introduction
	7.2 Concepts
	7.3 Methodology
	7.3.1 Prototyping
	7.3.2 Qualitative User Tests
	7.3.3 Think-Aloud
	7.3.4 Moderator and Recording Clerk
	7.3.5 Interview
	7.3.6 Pilot Testing
	7.3.7 Quantitative Approach for the First Experiment
	7.3.8 Study Population

	7.4 User Test 1: Map vs. Timeline
	7.4.1 Setting the Stage
	7.4.2 Introducing the Prototype
	7.4.3 Classification of a Prototype: Background
	7.4.4 Execution
	7.4.5 Qualitative Evaluation
	7.4.6 Quantitative Evaluation
	7.4.7 Conclusion

	7.5 User Test 2: Paper Prototype for a New Feature: Stories
	7.5.1 Setting the Stage
	7.5.2 Background: Paper Prototypes
	7.5.3 Implementation
	7.5.4 Classification of our Prototype
	7.5.5 Execution
	7.5.6 Evaluation
	7.5.7 Conclusion

	7.6 Summary

	8 Summary
	A Appendix
	A.1 Evaluation
	A.1.1 Test Tasks
	A.1.2 Meta Questionnaire
	A.1.3 Meta and SUS questionnaire results
	A.1.4 Evaluation Questions
	A.1.5 Final Evaluation Questions

	A.2 Queries and Filters
	A.3 GraphQL and Monitoring
	A.3.1 GraphQL Code Generator
	A.3.2 Monitoring the Application

	A.4 Questionnaires

	References
	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

