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ABSTRACT
Growing data volumes and velocities in fields such as Industry 4.0
or the Internet of Things have led to the increased popularity of
data stream processing systems. Enterprises can leverage these de-
velopments by enriching their core business data and analyses with
up-to-date streaming data. Comparing streaming architectures for
these complex use cases is challenging, as existing benchmarks do
not cover them. ESPBench is a new enterprise stream processing
benchmark that fills this gap. We present its architecture, the bench-
marking process, and the query workload. We employ ESPBench
on three state-of-the-art stream processing systems, Apache Spark,
Apache Flink, and Hazelcast Jet, using provided query implementa-
tions developed with Apache Beam. Our results highlight the need
for the provided ESPBench toolkit that supports benchmark exe-
cution, as it enables query result validation and objective latency
measures.

CCS CONCEPTS
• Software and its engineering → Software performance; •
Information systems → Stream management; Database per-
formance evaluation; • Applied computing → Enterprise data
management.
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1 INTRODUCTION
The need to process growing data volumes has led to the increased
importance of data stream processing approaches. While in 2016,
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the music streaming service Spotify handled 1.5M events/second,
this number had dramatically increased to 8Mevents/second in
2018 [49]. Even businesses less involved with the digital world face
high amounts of data, e.g., those from the manufacturing domain.
For example, an ultrasonic sensor production plant creates about
170GB of data per day [47]. Manufacturing equipment such as a
single saw can generate 50,000 messages or 1.2G B of data on a daily
basis [16]. Injection molding machines even produce up to multiple
terabytes of sensor data in 24 hours [35]. These developments high-
light the large data volumes companies are facing today as well as
the high rate of growth.

Various new data stream processing systems (DSPSs), which are
leveraged for analyzing continuously generated data, have been de-
veloped recently [27]. This increased choice has led to more options
for DSPS users, which raises the question of how to identify the
DSPS that best satisfies current and future demands. Performance
benchmarks offer solutions for this challenge as they reveal perfor-
mance differences between systems or configurations. Currently,
there is no satisfying benchmark for DSPSs that comprises:

• Integration of existing, traditional business data, such as
production orders or customer information [34]

• Satisfying tool support (data ingestion, query result valida-
tion, objective performance result calculation, automation)

• Coverage of the core DSPS functionalities, e.g., windowing
and transformation capabilities.

We close this gap with a benchmark for enterprise stream pro-
cessing architectures. The contributions are as follows:

• Wepropose ESPBench, an enterprise stream processing bench-
mark. It includes a toolkit for data ingestion, query result
validation, benchmark result calculation, and automation.

• We present an example implementation of the ESPBench
queries using Apache Beam [1], an abstraction layer for
defining data processing applications, which can be executed
on any of the currently more than ten supported DSPSs [2].

• We conduct an experimental evaluation, benchmarking three
state-of-the-art stream processing systems with the Apache
Beam example implementation with the objective to validate
the concepts and tools of ESPBench.
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Table 1: Jim Gray’s [25] design criteria for domain-specific database benchmarks as applied to data stream processing systems

Criteria Description Applied to DSPS benchmarks
Relevance Typical operations of the problem domain

need to be tested
• Queries cover core functionalities of DSPSs
• Queries validated with industry
• Design represents real-world settings
• Data rates configurable

Portability Easy to use on different systems or architectures • No restrictions on SUT architecture specifics by toolkit
• System-independent query definitions

Scalability Applicable to both, single node systems and
scale-out systems with multiple nodes;
benchmark should be scalable to larger systems

• Data rates configurable/scalable
• Scale-out scenarios supported by benchmark tools

Simplicity Easy to understand and easy to use/implement
to ensure result creditbility

• Automation of entire benchmark process
• Publication of usable example query implementation
• Tool support for essential benchmark functions, e.g.,
query result validation and data stream generation

To allow result reproduction and the use of ESPBench, we pub-
lished all artifacts [28] and created a public repository1. The re-
mainder of this paper is structured as follows: Section 2 presents
ESPBench.We describe the benchmark scenario and its architecture,
the benchmark process, the input data, and the queries. Section 3
introduces the validation setup for ESPBench, illustrating the sys-
tems under test and the benchmarking landscape. Subsequently,
we discuss the benchmark results in the experimental evaluation
section, followed by an outline of threats to validity. Sections 6
and 7 elaborate on the lessons learned and highlight related work.
The last section concludes and gives an outlook on future work.

2 THE ESPBENCH BENCHMARK
This section introduces the developed ESPBench, a performance
benchmarkwith comprehensive tool support; covering all core func-
tionalities of DSPSs, including the combination of streaming data
with structured business data. It builds upon the ideas presented
in [30] and [33]. We start by presenting the overall design objec-
tives associated with ESPBench. Afterward, we give an overview of
the benchmark scenario, its architecture as well as workflow, and
present the employed input data and queries.

2.1 Design Objectives
One of the most influential works on design principles for bench-
marking is The Benchmark Handbook for Database and Transaction
Processing Systems by Jim Gray [25]. He defines four criteria a
domain-specific benchmark has to meet to be considered useful.
Although the work is from the early 90s, it shows major overlaps
to newer publications of its kind, such as the work by Karl Hup-
pler [36] or v. Kistowski et al. [54]. The four criteria defined by Gray
are described in Table 1. We translated these rather general aspects
to the requirements of DSPS benchmarks. These applied design
principles build the foundation for ESPBench, i.e., they are taken
into account for all design decisions and satisfied by ESPBench.

2.2 Benchmark Scenario
The benchmark scenario sketches the management of a production
plant. It is inspired by the 2012 Grand Challenge published at the
Distributed and Event-Based Systems (DEBS) conference [38]. This
1https://github.com/guenter-hesse/ESPBench

challenge is about a company that uses high-tech manufacturing
machines equipped with sensors. The company aims to improve
the monitoring and analytical capabilities of its manufacturing
processes by making use of the continuously captured sensor data,
e.g., by leveraging stream processing technology. Processing this
data enables for, e.g., faster reactions to unintended system states
and the combination of sensor and structured business data, i.e.,
vertical integration in the context of Industry 4.0. The integration of
these traditionally separate data sources reveals additional product
insights and allows for a holistic view of the production process [34].

The employed sensors monitor multiple machine variables, e.g.,
the power consumption or the state of an additive release valve.
Multiple sensors are installed on a single manufacturing machine
and their data are collected using an embedded PC. The benchmark
scenario includes two such machines sending sensor values of the
same structure.

2.3 Benchmark Architecture
Figure 2 shows the architecture of ESPBench. It comprises four
major components: input data, the toolkit, the message broker, and
the system under test (SUT). The components labeled as toolkit are
provided by the benchmark.

The input data is stored in comma-separated values (CSV) format.
It comprises business data as well as sensor data stored in three
different files. The business data and the production times streaming
data are generated by the provided data generator as part of the
benchmark process. The other two files can be obtained online, as
outlined in the description of ESPBench [28]. Details on the data
characteristics and scalability are presented in Section 2.5.

The data sender is part of the toolkit and responsible for two
tasks: the import of the business data into the database management
system (DBMS) that is part of the SUT as well as the ingestion
of streaming data into the message broker. ESPBench defines a
configuration file used to configure several parameters, such as
message broker information or the data input rate.

The message broker of ESPBench, Apache Kafka [42], is respon-
sible for storing data and represents the interface to the SUT. ESP-
Bench incorporates a message broker to separate the SUT and the
data sender. This separation allows for realistic and objective per-
formance measurements outside of the SUT, which is important
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Figure 1: ESPBench process visualized as Unified Modeling Language (UML) Activity Diagram [24]

as DSPSs have diverse definitions of latency [40]. Additionally,
changes to the data sender, e.g., launching multiple instances to
increase the input rate, does not require adaptions to query im-
plementations. A potential issue with message brokers identified
in [40] is a change to the partitioning during benchmark runs. We
address this point by employing Apache Kafka, which does not
perform automated re-partitioning. The combination of Apache
Kafka and a DSPS is comparable to other architectures, both within
the domains of performance benchmarking as well as data pro-
cessing [32, 55]. Thus, this architecture is relevant as it represents
real-world environments.

It is crucial to ensure that the message broker does not become
a bottleneck since the objective of a benchmark is to analyze the
SUT and not any of the tooling components. Therefore, an input
rate that Apache Kafka can manage needs to be configured. Ex-
isting studies on this topic give orientation regarding achievable
data input rates for specific settings [32]. Our studies of multiple
manufacturing companies with revenues of at least a billion EUR
show that these manageable rates are high enough to represent
current environments.

ESPBench 
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Figure 2: Architecture of ESPBench as Fundamental Model-
ing Concepts (FMC) diagram [41]

The SUT comprises a DSPS and a DBMS in its default setting. It
is responsible for answering the defined benchmark queries. The
benchmark does not impose any scalability restrictions on the SUT,
e.g., regarding the cluster size of the DSPS. PostgreSQL [52], a well-
known and widely used DBMS, is the default database of ESPBench.
A change in the DBMS only requires minor adaptions to the toolkit,
e.g., to the data sender logic for importing business data into the

DBMS. Alternatively to the SUT default setup, a single system that
is able to store the business data and to answer the benchmark
queries can be used, reducing communication and data transfer
overhead. While ESPBench provides this flexibility, such a scenario
fails to represent most of the current enterprise IT landscapes.

The SUT reads input data from Apache Kafka and writes results
back to either Apache Kafka or the DBMS, depending on the query.
The validator and result calculator determines the correctness of the
query answers and calculates the benchmark results. The tool deter-
mines aggregated results, such as the mean latency and percentiles,
as well as single latencies for each output record. It writes the out-
put to log and CSV files, which can be used for further analyses,
like plotting single latencies. Technically, the tool uses Akka [11], a
toolkit for developing distributed applications, also in a streaming
fashion. The validator reads the input data, calculates the query
results, and compares them to the SUT’s output. Furthermore, it
computes result latencies, i.e., timestamp differences. The validator
does that by leveraging the Apache Kafka or DBMS timestamps,
i.e., the times taken when an input or result record is written to
the log of Apache Kafka or the DBMS. This concept allows for
the previously mentioned objective performance measurements
outside of DSPSs.

2.4 Benchmark Process
The activity diagram in Figure 1 shows the process of ESPBench and
sums up the Ansible [13] script, which automates the benchmark
steps. The process steps are exchangeable and can be extended by
the user, e.g., to incorporate additional monitoring tools.

In step (1), the benchmark parameters are set and the project is
compiled to a fat Java Archive (JAR), which contains all dependen-
cies. The compilation uses sbt-assembly [15], an assembly plugin
for the open-source build tool sbt [14]. The setting of parameters is
only relevant in scenarios where multiple runs, i.e., multiple rounds
of the benchmarking process, are executed and automated. In this
case, the main Ansible benchmarking script is invoked multiple
times with the defined parameters for the different runs by an
overarching Ansible script. For instance, distinct runs want to use
different Apache Kafka topics to be able to distinguish between
runs. If there is only a single run, the parameters are read from the
configuration files shown in Figure 2, which provide default values.

In step (2), the required Apache Kafka topics are created ac-
cording to the configuration and the naming schema defined by
ESPBench. Topics are the entities in which Apache Kafka organizes
and stores data. The created topics are then reassigned to assure an
even topic distribution across the Apache Kafka brokers. ESPBench
creates topics with one partition, as Apache Kafka only guarantees
the correct order of records within a single partition.



Table 2: Data characteristics of the sensor measurement
stream (based on [38])

# Technical Information Description

1 required fixed64 ts timestamp
2 required fixed64 index message index
3 required fixed32 mf01 electrical power main phase 1
4 required fixed32 mf02 electrical power main phase 2
5 required fixed32 mf03 electrical power main phase 3
6-8 required fixed32 pc13-pc15 anode current drop detection

cell 1-3
9-11 required uint32 pc25-pc27 anode voltage drop detection

cell 1-3
12 required uint32 res unknown
13-18 required bool bm05-bm10 chemical additive information
19-66 optional bool pp01-pp36,

pc01-pc06, pc19-pc24
unknown

67 required fixed32 workpla-
ceid

worklace ID

In step (3), the Ansible script invokes the data generator. The
resulting business data is copied to the DBMS node and imported
into the DBMS by the data sender tool (step (4)). The Unix daemon
CollectD [3] is started on all nodes in step (5) to gather system data
during the benchmark run. This enables further analyses, such as
evaluating differences between configurations regarding memory
consumption or CPU utilization.

Step (6) starts the benchmark application, i.e., the benchmark
query or queries that are to be executed. After a few seconds wait
time for the DSPSs to receive and start the application, the script
invokes the data sender in step (7), which sends the streaming data
to the corresponding Apache Kafka topic(s). The ESPBench naming
convention allows identifying the correct topic names based on the
configuration parameters, which eases query implementation.

The data sender runs for the configured period of time. Once it
completes, the Ansible script waits until the queries have finished
data processing, represented as step (8). In step (9), CollectD is
stopped and the recorded data is transferred to the main node where
the Ansible script is executed. In the last step, step (10), ESPBench
invokes the validator and result calculator.

2.5 Input Data
The input data of ESPBench is drawn from two domains: business
data and sensor data from manufacturing equipment. Both types
of data are described in the following.

2.5.1 Sensor Data. There are two types of data streams that ESP-
Bench incorporates. The first one is the data set used at the DEBS
Grand Challenge 2012, which contains measurements frommultiple
sensors combined to single records. There are two machines send-
ing this kind of data. The record’s structure is depicted in Table 2.
ESPBench extends the data structure by the column workplace id,
which is used for combining sensor and business data. The data
includes information from analog as well as binary sensors.

Within the sensor data, the column most relevant for ESPBench
is mf01, the electrical power on main phase one. It represents the
energy consumption of themachines, which is valuable information,
e.g., for identifying irregularities in the production process.

Table 3: Data characteristics of the sensor data used for pro-
duction time determination

# Technical Information Description

1 required uint32 pt_o_id order id
2 required uint32 pt_ol_number order line number
3 required uint32 pt_pol_number production order line number
4 required bool pt_is_end indicates entering / leaving of work-

place

Figure 3: ESPBench business data in Crow’s Foot Notation

The second type of data stream coming from the manufacturing
equipment consists of information about the production times that
allow combining sensor and business data. It is not part of the DEBS
Grand Challenge, but designed by ESPBench and created by its data
generator tool. The data stream’s structure is shown in Table 3. It
contains the order id, order line number, production order line number,
and a column that indicates whether the corresponding product
entered or left the workplace. The structure of the business data
that is visualized in Figure 3 reveals that the first three columns
are the primary key of the PRODUCTION_ORDER_LINE table and
thus, can identify the workplace. Information about when products
entered and left a workplace is needed for time-based vertical data
integration, e.g., for linking sensor measurements at manufacturing
machines to the product currently being worked on. Our conducted
industry studies showed that this is a broadly adopted practice
enterprise settings [31].

2.5.2 Business Data. The schema of the business data is depicted
in Figure 3. It is based on the data schema of the TPC-C bench-
mark [43], one of the most known DBMS benchmarks that uses
structured business data. Its schema covers core business relations,
such as CUSTOMER and ORDER, that are representative of any
manufacturing company. We simplified the TPC-C table design
without impacting query costs. Inspired by modern business sys-
tems, we also added new relations that incorporate industrial man-
ufacturing’s domain character. Specifically, we removed the tables
WAREHOUSE, STOCK, DISTRICT, HISTORY, and NEW-ORDER. We



Table 4: ESPBench query set (based on [33])

# Use Case Tested
Aspects

Query Definition Description

1 Check
Sensors

1;2;3 SELECT AVG(mf01), MIN(mf01), MAX(mf01), COUNT(mf01)
FROM STREAM_SENSOR TUMBLINGWINDOW 1 SECONDS

Calculate avg, min, max, count for the
last 1sec for mf01 for monitoring.

2 Determine
Outliers

1;6 SELECT STOCHASTIC_OUTLIERS(mf01, mf02),
outlier_probability
FROM STREAM_SENSOR
CUSTOMWINDOW 500 ELEMENTS WHERE threshold >= 0.5

Calculate outliers using Stochastic Out-
lier Selection [37] for combination of
mf01 and mf02. Output records that are
an outlier with at least 50% probability.

3 Identify
Errors

4 SELECT * FROM STREAM_SENSOR WHERE mf01 > 14,963 Log if sensor value electrical power
main phase 1 exceeds limit of 14,963.

4 Check
Machine
Power

5;7 SELECT * FROM STREAM_SENSOR1 AS s1, STREAM_SENSOR2 AS s2, DB_TABLE_1 AS tWHERE
(s1.M_ID = t.M_ID AND s1.mf03 < 8,105 AND (s1.TS > t.DOWNT_END OR s1.TS < t.DOWNT_START))
OR (s2.M_ID = t.M_ID AND s2.mf03 < 8,105 AND (s2.TS > t.DOWNT_END OR s2.TS < t.DOWNT_START))

Log if anymachine is in an unscheduled
phase of being turned off or in standby
(assumption: there is always the next
downtime stored in DB_TABLE_1).

5 Persist Pro-
cessing Times
for Products

4;7 UPDATE PRODUCTION_ORDER_LINE IF (STREAM_TIMES.PT_IS_END == 0) {
SET POL_START_TS = (SELECT TIMESTAMP FROM STREAM_TIMES) }
ELSE { SET POL_END_TS = (SELECT TIMESTAMP FROM STREAM_TIMES) }
WHERE POL_O_ID = STREAM_TIMES.PT_O_ID AND POL_OL_NUMBER =
STREAM_TIMES.PT_OL_NUMBER AND POL_NUMBER = STREAM_TIMES.PT_POL_NUMBER

Whenever a product enters or leaves
a workplace, log the time to the cor-
responding DBMS entry (PRODUC-
TION_ORDER_LINE table).

extend the schema by the tables PRODUCTION_ORDER, PRODUC-
TION_ORDER_LINE, andWORKPLACE, which are highlighted in
green in Figure 3. By default, to have a representative data size, data
is generated with a scale factor of three, which would equal a TPC-C
setting with three warehouses. This configuration parameter has
an impact on the overall business data size and can be altered for
scaling reasons.

The introduced tableWORKPLACE contains information about
scheduled downtimes. These data allow distinguishing planned
downtimes from irregularities that require reactions. The other
two added tables contain information about the production orders,
which are linked to the customer orders and workplaces. Storing
business entities, such as sales or production orders, in a header and
an item table is a common concept in Enterprise Resource Planning
systems [31, 48].
2.6 Benchmark Queries
This section presents the benchmark queries that the SUT is tasked
with. Moreover, we introduce the design objectives that were taken
into account when developing these queries.
2.6.1 Relevance of Queries. When defining benchmark queries,
relevance and simplicity need special consideration. As outlined in
Table 1, having easily understandable queries is a crucial require-
ment for, e.g., credibility reasons. Another aspect influenced by
simplicity is the application of the benchmark. A rather straightfor-
ward workload is essential for implementing the queries for other
streaming architectures at adequate costs, i.e., with implementation
efforts for the queries that take a justifiable amount of time. This
simplicity also benefits the usage of the benchmark.

To ensure the relevance of queries, the proximity of the work-
load to real-world scenarios and the coverage of important stream
processing functionalities need to be considered. We addressed the
first aspect by discussing our queries regarding their closeness to
real-world use cases with two multi-billion revenue manufacturing
companies, which confirmed their applicability.

To guarantee that all essential operations of DSPSs are covered,
we first need to identify these. Our definition of these function-
alities is based on the core set of operations for event processing
systems presented by Mendes [45]. Although this set is defined for

event processing systems, it is applicable to stream processing in
general [33]. To incorporate the benchmark’s enterprise character,
we extend the original list. Particularly, we broaden the included
term pattern detection by altering it to machine learning to better
represent current requirements on DSPSs. Furthermore, we add
the aspects of transforming data, also included in earlier work by
Mendes et al. [46], and of combining streaming with historical data.
The latter challenge of integrating stored data is one of the eight re-
quirements of real-time stream processing defined by Stonebraker,
Çetintemel, and Zdonik [51].

The resulting list of core operations of DSPSs that the queries of
ESPBench need to cover to be in line with the design objective of
relevance is:

(1) Windowing
(2) Transformation
(3) Aggregation/Grouping
(4) Filtering (Selection /

Projection)

(5) Correlation / Enrich-
ment (Join)

(6) Machine Learning
(7) Combination with His-

torical Data

2.6.2 Query Definitions. Table 4 contains the query set of ESP-
Bench. It specifically shows a query id, a brief description of the
use case, the tested core functionalities of DSPSs, the exact query
definition, and a more detailed explanation of the scenario and
motivation. The queries of ESPBench fully cover the previously pre-
sented list of core operations. ESPBench defines the queries using
a syntax inspired by the Continuous Query Language (CQL) [17].
CQL is based on the popular Structured Query Language (SQL) and
extends it by incorporating data streams and corresponding con-
structs for data stream processing. However, CQL is, unlike SQL,
not a language that is supported by a majority of DSPSs.

Query 1 - Check Sensor Status. The query Check Sensors monitors
the attribute mf01, i.e., the electrical power in main phase one,
to allow operators insights into irregularities as soon as possible
by providing useful and up-to-date key performance indicators
(KPIs). The query calculates the average, minimum, maximum, and
the overall number of sensor values in tumbling windows of one
second. The result records contain these calculated KPIs separated
by comma.



Query 2 - Determine Outliers. Th second query determines out-
liers based on the input of mf01 and mf02. Its results give hints
on irregularities in the manufacturing equipment. We employ the
stochastic outlier selection algorithm [37] on count-based tumbling
windows with 500 elements. The query outputs values that are an
outlier with a probability of ⩾ 50% in order to identify possible
irregularities. Structurally, the output is represented as the corre-
sponding input sensor record plus the outlier probability correct
to two decimal places, which is separated from the corresponding
sensor record by a comma.

Query 3 - Identify Errors. Query three reports actual errors, which
are defined by unusually high power consumption of a machine, i.e.,
greater than 14,963, the 99.5%tile in main phase one. The output of
query three is the corresponding input sensor record. Benchmark
runs with input rates of 1K and 10Kmessages/second output about
4 and 40 errors/second, respectively.

Query 4 - Check Machine Power. This query checks if the power
is unexpectedly low, which is a state requiring actions. As input,
the query gets two structurally identical data streams from two
machines and business data. If any of the machines are in an un-
planned phase of being shut-down or on standby, the corresponding
record needs to be logged. This is the case if mf03 falls below the
value of 8,105, the 9%tile, and there is no downtime planned for
the machine. Planned downtimes are persisted in the DBMS that
is part of the SUT. The table WORKPLACE stores the beginning
(WP_DOWNTIME_START ) and end (WP_DOWNTIME_END) of the
next scheduled downtime for any machine identifiable by its ID
(WP_ID). This machine or workplace identifier is part of the sensor
data as shown in Table 2.

Query 5 - Persist Processing Times. Query five represents an-
other use case where sensor data and historical business data are
combined, which highlights the enterprise character of ESPBench.
Particularly, this query stores time data in the DBMS, which is
contrary to query four that reads business data. Having this in-
formation allows for data integration, i.e., for connecting sensor
data with business data, by using a timestamp-based approach. Our
industry studies revealed that this is a commonly applied technique
and thus, incorporating it strengthens the relevance of ESPBench.

The DBMS relation DB_PRODUCTION_ORDER_LINE, which con-
tains information about the factory’s production orders, needs to
be updated by query five. Data input for this query is the pro-
duction times stream with the structure depicted in Table 3. The
contained data indicates when a product or a part of it entered or
left a workplace. The current timestamp needs to be set in table
PRODUCTION_ORDER_LINE, either in the start or end timestamp
column, depending on the incoming sensor record.

3 ESPBENCH VALIDATION SETUP
This section gives details on the ESPBench validation, particularly
on its concept, the employed DSPSs, and the technical setup.

3.1 Validation Concept
To validate the concepts and functioning of ESPBench with its tools,
we benchmark three state-of-the-art DSPSs and PostgreSQL, the de-
fault DBMS of ESPBench. We developed and published an example
implementation of the benchmark queries using the Apache Beam
SDK in version 2.16.0 for these measurements. This abstraction

layer is employed in academic as well as real-world scenarios, e.g.,
at Lyft [19] and Spotify [44]. Besides, the execution of Apache Beam
applications is not only supported by open-source DSPSs [2], but
also by commercial closed-source DSPSs, such as IBM Streams [9],
and Google Cloud Dataflow [4]. This broad application of Apache
Beam, both from a user perspective and a DSPS perspective, illus-
trates its relevance. Nevertheless, it is important to be aware that
the level of effort put into Apache Beam support by DSPSs is likely
to be reflected in the performance. The performance penalty traded
for the gain in flexibility is analyzed by Hesse et al. [29].

3.2 Data Stream Processing Systems
The three analyzed DSPSs are Hazelcast Jet [6], Apache Flink [21],
and Apache Spark Streaming [57], which is an extension to the
Apache Spark [56] system. All of these systems are mainly written
in a Java Virtual Machine (JVM) language, i.e., Java or Scala. Apache
Spark Streaming processes micro-batches, while the other systems
process records tuple-by-tuple. While Apache Flink and Spark fol-
low a master-worker pattern in their system design, a Hazelcast Jet
cluster only contains nodes of the same kind. All systems are able
to provide exactly-once processing guarantees [8, 27].

As Hazelcast Jet is a less popular system compared to Flink and
Spark, we introduce it in the following paragraph. Hazelcast Jet,
short Jet, is the stream processing engine of the Hazelcast company,
headquartered in Silicon Valley. The streaming engine uses the
Hazelcast distributed in-memory data grid (IMDG), short Hazelcast.
Next to open-source versions of Hazelcast IMDG and Hazelcast
Jet published under the Apache License [7, 12], the commercial
versions Hazelcast IMDG Enterprise and Hazelcast IMDG Enterprise
HD are also offered. The latter one extends Hazelcast IMDG Enter-
prise by, e.g., a high-density (HD) memory store. There is also a
Hazelcast Jet Enterprise component, which extends Hazelcast Jet
by, e.g., security features and a lossless restart functionality [5].

From an architectural perspective, Jet is different from Apache
Spark and Apache Flink due to its masterless design. The oldest
node in the cluster represents the de facto leader and manages data
responsibilities within the cluster. Hazelcast organizes the data
in shards or partitions, which are distributed equally among the
cluster. It keeps data backups at multiple nodes to prevent data loss
in case of a node failure [39].

Two deployment modes are supported for both Hazelcast IMDG
and Jet: the embedded mode and the client-server mode. Figures 4
and 5 visualize the embedded and client-server deployments, re-
spectively. In embedded deployment mode, both the application
as well as Jet share a single JVM. This design has the advantage
of low-latency data access due to the tight coupling of applica-
tion and Jet. A downside of the embedded mode is its inability
to scale the application and data processing engine/data persis-
tence independently [5, 39]. In contrast, a client-server deployment
may create, scale, and manage the cluster independently from any
application executed on it. This setup allows separation of appli-
cation and cluster but also introduces challenges. For instance,
classpath management of both, application and cluster nodes, re-
quires more attention [39]. For validating ESPBench, we employ
the client-server deployment, which is is more relevant in corpo-
rate contexts, as the provided scalability and flexibility aspects are
standard requirements for enterprise IT landscapes.
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Figure 4: Architecture of an embedded Hazelcast Jet deploy-
ment with three cluster nodes (based on[5, 39])
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Figure 5: Architecture of a client-serverHazelcast Jet deploy-
mentwith three cluster nodes and two apps (based on[5, 39])

3.3 Server Landscape
The validation setup consists of eight virtual machines (VMs), each
of which exclusively uses their underlying server. This allows run-
ning the benchmark components independently of each other.

One of these servers serves as the starting point, from which the
Ansible script that automates the benchmark execution is started.
The DBMS is deployed on another VM. Three further nodes build
the Apache Kafka cluster and the remaining three VMs contain
the DSPS. Hazelcast Jet is deployed in the client-server mode using
all three nodes. Apache Spark and Apache Flink use two nodes as
workers and one node as the master.

The system characteristics of the nodes employed for the experi-
ments are listed in Tables 5 and 6. All system configurations are part
of the ESPBench repository. To ensure that Apache Kafka does not
become a bottleneck, i.e., to make sure that the SUT is benchmarked
as intended, we employ data rates that can provably be handled
by Apache Kafka in the described setup. The study presented by
Hesse et al. [32] indicates that Apache Kafka can easily handle 1K
as well as 10Kmessages/second. Our conducted industry studies
revealed that these are satisfying ingestion rates for the majority of
scenarios in the industrial manufacturing sector. Besides, the work
shows that input rates in such a range with the used input data
characteristics do not saturate the network capacities.

4 EXPERIMENTAL EVALUATION
This section presents the results of the experimental evaluation of
ESPBench, which are also made available online2. After giving an
overview of the measurements, we analyze each query in detail.
These individual analyses include a view on the system loads, which
ESPBench collects every ten seconds in the applied settings. The
system load gives an overview over the CPU and I/O utilization
of a server, i.e., also reflecting performance limits regarding disk
2https://github.com/guenter-hesse/ESPBenchExperiments

Table 5: System characteristics of the Apache Kafka brokers

Characteristic Value

Operating System Ubuntu 18.04 LTS
CPU Intel(R) Xeon(R) CPU X7560 @ 2.27GHz, 8 cores

(2x),
Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz, 8
cores (1x)

RAM 57GB (2x), 32GB (1x)
Network 10Gbit via Fujitsu PRIMERGY BX900 S1
Disk 13 Seagate ST320004CLAR2000 in RAID 6, access

via Fibre Channel with 8Gbit/s
Hypervisor VMware ESXi 6.7.0
Apache Kafka Version 2.3.0
Java Version OpenJDK 1.8.0_222

Table 6: System characteristics of the SUT nodes

Characteristic Value

Operating System Ubuntu 18.04 LTS
CPU Intel(R) Xeon(R) CPU E5450 @ 3.00GHz, 8 cores
RAM 57GB
Network 10Gbit via Fujitsu PRIMERGY BX900 S1
Disk 13 Seagate ST320004CLAR2000 in RAID 6, access

via Fibre Channel with 8Gbit/s
Hypervisor VMware ESXi 6.7.0
Apache Flink Version 1.8.2
Hazelcast Jet Version 3.0
Apache Spark Version 2.4.4
PostgreSQL Version 9.6.12
Scala Version 2.12.8
Java Version OpenJDK 1.8.0_222

writes. It is defined as the number of processes demanding CPU
time, specifically processes that are ready to run or waiting for
disk I/O. The included figures visualize one-minute-averages of
this system load KPI. As we are using servers with an eight-core
CPU, described in Section 3.3, it is desirable that no node exceeds a
system load of eight to do not over-utilize a machine [26].

4.1 Result Overview
Table 7 shows a summary of the results, i.e., the 90%tile, minimum,
maximum, and mean latencies for the different ESPBench queries
and benchmark settings. Each query was executed three times on
every system and with each data input rate, which is sufficient due
to the low variance of latency results. We benchmarked data input
rates of 1K and 10Kmessages/second. A single benchmark run lasts
five minutes. Overall, the latency results are diverse with Jet often
performing best with respect to the 90%tile and mean values. Next
to Table 7, Figure 6 visualizes single latencies and system loads for
selected queries and settings.

4.2 Query 1 - Check Sensor Status
The results shown in Table 7 reveal that Jet performed significantly
better than Apache Flink. Although Apache Flink’s minimum la-
tency is relatively low (49ms), there are remarkably higher latencies,
the maximum being above 18 s and the 90%tile being at more than
10 s. In contrast, Jet’s worst response time is about 700ms.

https://github.com/guenter-hesse/ESPBenchExperiments


Table 7: Latency result overview of the experimental analysis conducted as part of the validation of ESPBench

Query Input Rate in
messages/second System 90%tile in s Min in s Max in s Mean in s

1 - Check Sensors 1,000 Apache Flink 10.659 0.049 18.591 4.269
Hazelcast Jet 0.024 0.009 0.691 0.020

Apache Spark Streaming n/a n/a n/a n/a
10,000 Apache Flink 16.492 0.048 33.423 5.767

Hazelcast Jet 0.036 0.012 1.030 0.029
Apache Spark Streaming n/a n/a n/a n/a

2 - Determine Outliers 1,000 Apache Flink 615.078 9.352 676.535 358.076
Hazelcast Jet 533.177 5.353 590.170 304.689

Apache Spark Streaming n/a n/a n/a n/a
10,000 Apache Flink 8,175.784 40.446 9,147.738 4,599.666

Hazelcast Jet 7,425.443 24.564 8,282.022 4,140.149
Apache Spark Streaming n/a n/a n/a n/a

3 - Identify Errors 1,000 Apache Flink 0.011 0.001 0.045 0.005
Hazelcast Jet 0.021 0.004 0.158 0.017

Apache Spark Streaming 0.534 0.121 1.248 0.387
10,000 Apache Flink 14.979 0.002 19.058 4.581

Hazelcast Jet 0.016 0.005 0.795 0.014
Apache Spark Streaming 1.557 0.137 5.380 0.780

4 - Check Machine Power 1,000 Apache Flink 0.717 0.003 2.792 0.251
Hazelcast Jet 0.371 0.006 4.082 0.195

Apache Spark Streaming 1.008 0.141 1.966 0.644
10,000 Apache Flink 470.689 1.936 517.291 275.096

Hazelcast Jet 87.299 6.008 94.599 56.236
Apache Spark Streaming 303.432 4.255 325.951 188.158

5 - Persist Processing Times 1,000 Apache Flink 106.892 0.506 114.750 65.261
for Products Hazelcast Jet 88.006 1.823 96.316 51.278

Apache Spark Streaming 102.736 0.803 112.815 61.820
10,000 Apache Flink 2,028.137 2.274 2,211.899 1,136.910

Hazelcast Jet 2,129.287 6.202 2,345.790 1,170.944
Apache Spark Streaming 1,863.259 1.941 2,061.002 1,041.930

Apache Spark’s response times cannot be compared as the query
results differ from the expected results. This is the case although we
use the same application developed using the Apache Beam SDK
for all systems. This valuable finding highlights the importance
of having a query result validation for performance benchmarks
as published with ESPBench. An explanatory hypothesis for the
false results is related to the data architecture of Apache Spark
Streaming, i.e., the distinguishing use of micro-batches. Through
batching mechanisms, windows might look different. If a micro-
batch represents the finest granularity and cannot be split, it could
be left out of a window even though most of the contained records
semantically belong to the window, depending on the window
semantics of the DSPS. The work by Botan et al. [20] studies the
heterogeneity in window semantics that exists in DSPSs.

Figure 6a visualizes the result latencies of query one for the
input rate of 1Kmessages/second. It becomes visible that there are
upward outliers for both systems, while the overall latencies on

Apache Flink are significantly higher as identified before. After the
Apache Flink latency reaches a new local maximum, the latencies
slowly decline step-by-step. This behavior is different from the
latency development that we can observe for Jet runs, where the
latency, after facing an upward outlier, immediately jumps back to
normal, i.e., the value range to which most latencies belong.

The gathered system characteristics reveal that Hazelcast utilizes
the cluster more. Figure 6b shows the system load for the SUT nodes
while executing the first query. Two major differences between
Apache Flink and Hazelcast Jet become visible. Firstly, all Hazelcast
Jet nodes show a higher system load than the Apache Flink node
with the highest utilization. Secondly, while Hazelcast Jet utilizes
all three nodes, which results in a load between approximately two
and six, there is only one Apache Flink node that shows a utilization
close to one. The better system utilization is likely to be a reason
for the lower latencies that are associated with Hazelcast Jet for
query one compared to Apache Flink, cf. Table 7.
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Figure 6: Selected latency and system load graphs of the experiments conducted as part of the validation of ESPBench

4.3 Query 2 - Determine Outliers
The latencies of Table 7 show significantly higher values for
query two than for query one, with Hazelcast Jet slightly out-
performing Apache Flink. Executing the query implementation
on the Apache Spark Streaming system did not reveal any la-
tencies, but another valuable finding. Specifically, the system
throws an exception when submitting the Apache Beam program:
java.lang.IllegalStateException: No TransformEvaluator registered for
UNBOUNDED transform View.CreatePCollectionView. This obser-
vation indicates that the DSPS exchangeability of Apache Beam
applications is limited.

The latencies of both systems show a steadily growing latency 3,
which indicates queuing in the system. That means the outlier
detection cannot be performed fast enough for the configured input
rate. This queuing does not become visible when looking at the
overall numbers shown in Table 7, which highlights the importance
of the ESPBench feature to output single record latencies.

Figure 6c visualizes the system loads for both systems. The load
is generally lower and both systems create more similar system
loads compared to query one. These measurements suggest that
the implementation of the stochastic outlier selection has room for
improvement regarding its performance, e.g., by parallelizing it.

3https://github.com/guenter-hesse/ESPBenchExperiments, accessed: 2021-02-01

https://github.com/guenter-hesse/ESPBenchExperiments


4.4 Query 3 - Identify Errors
Figure 6d shows the latencies for the input of 1Kmessages/second,
specifically every tenth latency for readability reasons. It illustrates
that there are ups and downs that stay in system-specific ranges,
Apache Flink having the lowest latencies, followed by Hazelcast
Jet and Apache Spark Streaming. Apache Spark Streaming further
shows a pattern-like trend, which can be due to the use of micro-
batches.

Figure 6e shows every 100th latency for 10Kmessages/second.
Hazelcast Jet and Apache Spark Streaming again show ups and
downs within a comparatively small range. The previously ob-
servable pattern for Apache Spark is not present anymore. Apache
Flink presents a different behavior. For about half of the five-minute
benchmark run, the latencies are on a relatively high level. After
this period, the latencies drop and stay on this new level, with rela-
tively high swings though. This unique progress can be observed
in all Apache Flink runs for this input rate and query. It again high-
lights the importance of having and studying single latencies to get
full insights.

Figure 6f visualizes the system load of query three for the input
rate of 10Kmessages/second. The utilization of the Jet runs is similar
to the one observed in Figure 6b, i.e., a higher utilization on all
three nodes. Moreover, the utilization of each node is greater than
the highest system loads of both, Apache Flink and Apache Spark
Streaming runs.

4.5 Query 4 - Check Machine Power
Figure 6g visualizes the latencies for a run with an input rate of
1Kmessages/second. Relatively small peaks can be identified for
all systems, which might be caused by garbage collection runs.
While peaks for Apache Spark are comparatively high and constant
throughout the benchmark run, the peaks for Apache Flink and
Jet are bigger at the beginning with a decreasing trend. For the
input rate of 10Kmessages/second, steadily increasing latencies
can be observed, similar to the latency trend for query two. It again
indicates that records were queuing up, i.e., the SUTs cannot handle
the higher data input rate in a sustainable fashion.

Figure 6h presents the system loads for query four. Contrary to
the other system load charts, this figure includes the DBMS node as
the database is incorporated in the queries four and five. Figure 6h
draws a similar picture as Figure 6f with the system loads for query
three, with the difference of having higher loads for Jet and Apache
Spark. Especially node #1 of the Jet cluster shows the overall highest
measured load of about 6.5 for a short period. The PostgreSQL node
shows a very low system load of less than one for all settings.

4.6 Query 5 - Persist Processing Times
The evaluation shows steadily increasing latencies as for query two.
It again indicates that the SUT cannot handle the load properly.
The gathered results reveal that the DBMS is the bottleneck for this
write-heavy query with about 300K required updates for the five
minute runs with 1Kmessages/second as data input rate.

Figure 6i visualizes the system loads with an overall maximum
below two. Hazelcast Jet again created the highest system loads
compared to the other two DSPSs. The loads on the PostgreSQL VM
are higher than for the previous query, with Hazelcast Jet causing
the highest system load on the server where the DBMS is installed.

5 THREATS TO VALIDITY
One threat to validity is related to the applicability of results pro-
duced by ESPBench to domains different from manufacturing. The
workload of ESPBench belongs to the manufacturing domain and is
validated with companies from this industry sector. Depending on
the target domain, the employed combination of data and queries
might have a varying value. However, as the queries cover all core
functionalities of DSPSs, results of ESPBench give at least a general
hint on a system’s performance.

Another threat to validity is the limited number of metrics em-
ployed by ESPBench. However, it benefits the simplicity of the
benchmark. Regarding the results of the experimental evaluation,
the amount of three executions for each benchmark run is another
threat to validity, even though variances between runs are low.

6 LESSONS LEARNED
We learned three main lessons from developing and evaluating ESP-
Bench, one of them being the importance of result validation, which
unfortunately lacks proper tool support in existing benchmarks.
We highlight this importance by pointing to differing results for
the same application executed on different DSPSs. Depending on
the scenario, correctness might be more or less important to users
of DSPSs. However, it is crucial to be aware of a system’s behavior.

Secondly, the portability of Apache Beam applications is not
always given, i.e., it is not guaranteed that the paradigm ’write once,
execute anywhere’ holds. In particular, we logged an exception
when running the application for query two with Apache Spark
after successfully executing it on Apache Flink and Hazelcast Jet.

Thirdly, we learned that having single response times is of para-
mount importance. Aggregated KPIs often do not allow to fully
understand the system’s behavior or are even misleading. That is
the case, e.g., when latencies are steadily growing, i.e., a system can-
not handle the load and queues incoming records. It can be falsely
assumed that the mean latency determined after a limited bench-
marking period is the one that can be expected in a production
deployment, i.e., when the application is running permanently.

7 RELATEDWORK
Though there is an abundance of benchmarks for DBMSs, only a few
focus on stream processing architectures. Linear Road by Arasu et
al. [18] is one of the most popular benchmarks for DSPSs. It includes
a toolkit comprising a data generator, a result validator, and a data
sender stub, i.e., an incomplete implementation of a data sender
that is designed to be completed by a benchmark user. Providing
only a stub introduces the danger of different implementations
among benchmark users, resulting in less comparable benchmark
results. Furthermore, the benchmark creators cannot assure that
the data sender does not become a bottleneck while benchmarking.
An additional challenge of the Linear Road benchmark is the lack
of supporting tools for automation. The scenario of Linear Road
is a variable tolling system for a metropolitan area with multiple
expressways. The accumulated tolls vary and depend on the city’s
traffic situation. Linear Road defines four queries. However, in the
implementations described in the benchmark paper, one of them is
skipped due to complexity [18]. Besides streaming data, historical
data is sparsely incorporated as tolling history for some queries.



Table 8: Comparison of data stream processing benchmarks

Linear Road [18] StreamBench [50] RIoTBench [50] YSB [23] OSPBench [53] ESPBench

Benchmark type application micro mixed application application application
Historical data briefly; one file

with historical
tolls

- - briefly; key-
value store with
advt. data

- comprehensively;
business data,
based on TPC-C

DSPS functionalities partially covered partially covered partially covered partially covered partially covered fully covered
Data sender stub provided - - yes yes yes
Result validator yes - - yes - yes
Automation - - - yes partially yes
Query implemen- - - yes yes yes yes
tations published

StreamBench [50] is a micro benchmark aimed at distributed
DSPSs. It defines a group of seven queries, which contains queries
with a single as well as with multiple computational steps. The
employed queries further differ regarding their requirements on
keeping state. Although the queries cover a variety of functionali-
ties, typical streaming operations, such as window functions, are
not incorporated. StreamBench uses two real-world data sets as
seeds for data generation. Contrary to Linear Road and similarly
to ESPBench, StreamBench employs Apache Kafka for decoupling
data generation and consumption. However, a benchmark tool for
data ingestion is neither published nor described by the authors
of StreamBench. StreamBench uses multiple result metrics, includ-
ing latency and throughput. Additionally, StreamBench presents: a
durability index (uptime), a throughput penalty factor (assessing
throughput change in a node failure scenario), and a latency penalty
factor (assessing latency change in a node failure scenario). The
benchmark does not offer a tool for query result validation.

RIoTBench [50] defines micro benchmark as well as application
benchmark use cases. These cover Extract, Transform, and Load
(ETL) processes, statistics generation, model training, and predictive
analytics scenarios. RIoTBench uses scaled real-world data sets from
Internet of Things (IoT) domains, comprising smart city, smart
energy, and health. Neither a data sender tool nor an application for
query result validation is provided by the benchmark. RIoTBench
measures latency, throughput, CPU, andmemory utilization, as well
as jitter. The latter expresses the difference between the expected
and actual output rate during a certain period.

Yahoo! published a DSPS benchmark, known as Yahoo! Streaming
Benchmark (YSB), in 2015 [22, 23]. YSB distinguishes it from the
other benchmarks as it originates from the industry. However, it
contains only a single query in the domain of advertisement. Van
Dongen and Van den Poel [53] contributed measurements of the
relatively new client library Kafka Streams [10] using their own
benchmark. However, the authors do not incorporate historical data
in the proposed Open Stream Processing Benchmark (OSPBench).

Table 8 compares the five benchmarks with ESPBench. In sum-
mary, we see the need for a new stream processing benchmark for
several reasons. First, historical data is not or only barely taken into
account in all major DSPS benchmarks. We believe that this is a cru-
cial aspect for enterprises, because, to achieve the greatest added
value, streaming data needs to be combined with business data.
Second, the majority of current stream processing benchmarks lack
satisfying tool support, e.g., for result validation or data ingestion.

Almost none of the benchmarks supports full automation, which
is essential for the simplicity of a stream processing benchmark.
This absence of proper tooling complicates the application of these
benchmarks and retrieving objective and credible results. Finally,
the workloads of existing benchmarks fail to cover the core DSPS
functionalities, which leads to limited meaningfulness of results.

8 CONCLUSION AND FUTUREWORK
This paper presents ESPBench, a benchmark for data stream process-
ing architectures in the enterprise context, where streaming data is
combined with structured business data. The ESPBench workload
covers all core functionalities of DSPSs. As part of ESPBench, we
provide an example implementation using Apache Beam and a com-
prehensive toolkit, which simplifies the benchmark use. The toolkit
allows an objective result calculation, i.e., ESPBench does not rely
on the different and differently measured performance metrics sev-
eral systems provide. We validated ESPBench using the example
query implementation in an experimental evaluation, benchmark-
ing three state-of-the-art DSPSs along with a modern DBMS. The
benchmark results that incorporate the impact of Apache Beam
reveal that no system outperforms the others for all scenarios.

To include additional use cases for ESPBench in the future, the
validator can be extended to allow ignoring the query result order,
focusing only on the existence of results. This additional feature
allows for extended scaling concerning the Apache Kafka topic
partitions. In the current setting, we topics with a single partition
to guarantees the correct order of records. However, there might be
use cases where the result order is not crucial that justify having this
validator option. By scaling via Apache Kafka topic partitions, the
data input rate manageable by the message broker can be increased.

Future work further includes query extensions, e.g., other kinds
of windowing scenarios, and extended evaluations. Topics of inter-
est include analyses of the scalability characteristics of the DSPSs
and the impact of altered DBMSs or their configurations on the
latencies. In this work, we have focused on open-source DSPSs. Re-
sults of comparisons with commercial systems using ESPBench will
lead to a more complete overview of the DSPS landscape. Regarding
the benchmark results, the metrics calculated by the validator and
result calculator tool can be extended by, e.g., throughput.

ESPBench represents an easy-to-use yet meaningful benchmark
that produces objectively determined results. We are confident
that ESPBench improves performance benchmarking in the area of
DSPSs and invite others to apply it and to propose improvements.
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