
Agile Metrics for a University Software
Engineering Course

Christoph Matthies, Thomas Kowark, Matthias Uflacker, and Hasso Plattner
Hasso Plattner Institute, University of Potsdam

August-Bebel-Str. 88
Potsdam, Germany

Email: {firstname.lastname}@hpi.de

C. Matthies, T. Kowark, M. Uflacker and H. Plattner, “Agile metrics for a university software engineering course,” 2016 IEEE Frontiers in Education
Conference (FIE), Erie, PA, USA, 2016, pp. 1-5. doi: 10.1109/FIE.2016.7757684

Copyright c©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Abstract—Teaching agile software development by pairing
lectures with hands-on projects has become the norm. This
approach poses the problem of grading and evaluating practical
project work as well as process conformance during development.
Yet, few best practices exist for measuring the success of students
in implementing agile practices. Most university courses rely on
observations during the course or final oral exams. In this paper,
we propose a set of metrics which give insights into the adherence
to agile practices in teams. The metrics identify instances in
development data, e.g. commits or user stories, where agile
processes were not followed. The identified violations can serve
as starting points for further investigation and team discussions.
With contextual knowledge of the violation, the executed process
or the metric itself can be refined. The metrics reflect our
experiences with running a software engineering course over the
last five years. They measure aspects which students frequently
have issues with and that diminish process adoption and student
engagement. We present the proposed metrics, which were tested
in the latest course installment, alongside tutoring, lectures, and
oral exams.

Index Terms—Metrics, Computer engineering, Assessment
tools, Capstone projects, Higher education

I. INTRODUCTION

In order to provide feedback to students and educators
on how well Scrum and agile best practices are followed
in a team, the day-to-day development process needs to
be assessed. We propose objective, automated conformance
metrics which can perform this assessment, complementing
proven techniques, such as assessments by tutors or exams.
Conformance metrics rely on collected development data, e.g.
commits or issues, which are created during regular devel-
opment activities. This ensures that established workflows do
not need to be adapted and additional documentation overhead
for students is avoided. Conformance metrics measure to what
degree an executed process is in agreement with previously de-
fined ones, i.e. practices recommended by agile methodologies
such as Scrum or XP.

Our approach detects and quantifies instances where the ex-
ecuted process deviates from the defined one. These instances,
i.e. patterns in the collected data that do not comply with the
details of the process, are referred to as violations. Violations
can reveal problem areas in the executed process, that need
special attention. This approach is comparable to test coverage
tools and the Lint [1] tool, which do not guarantee the absence
of defects, but identify weaknesses.

II. CONFORMANCE METRICS

Conformance metrics follow the iterative model described
in Figure 1, adapted from Zazworka et al. [2]: conformance
metrics are defined, violations are detected, the context of
these violations is researched and measures are taken to
prevent future violations.

Fig. 1. Activity diagram of the iterative lifecycle of conformance metrics.

A. Definition

In order to create a conformance metric there must be a
common understanding of the practice that should be executed
and measured. This involves both those who have knowledge
and experience in agile development, i.e. the teaching staff
as well a the team, who might have previous experience
and personal preferences. Agile methodologies such as XP or
Scrum advise a multitude of practices, e.g. “no functionality
is added early” or “all code must have unit tests”. Sletholt et
al. [3] mention 35 main ones, which can serve as a starting
point to select practices that are applicable in the context of
a certain project. If a process is considered relevant enough
to be measured and a common understanding of its details is
found, this knowledge should be recorded in the form of the
process conformance template, based on previous work [2],
see Table I.

a) Description: The only requirement of a metric’s de-
scription is that it is detailed enough to allow defining what
patterns in the collected data constitute a violation and which
do not. This means the description may, but is not required
to, follow formal definitions.

b) Score Calculation: In order to allow users a quick
overview, the results of a metric are summarized using a rating
function. It maps the violation details returned by the query
into the more abstract form of a score, bounded by a high and

https://doi.org/10.1109/FIE.2016.7757684


Name The unique, descriptive identifier of the metric.
Synopsis A short description of the type of violations the

metric measures, e.g. “commits without tests”.
Descrip-
tion

Overview of the expected process, i.e. the prac-
tice which should be followed, and its ad-
vantages, with references to literature. A de-
scription of what constitutes a violation of this
process should be included.

Data
sources

A list of data sources the metric requires and
which the query is based on, e.g. code reposi-
tories or issue trackers.

Query Steps needed to extract violations from the data
sources. Ideally, these steps can be automated,
e.g. as a database query.

Rating
function

Function that maps detected violations into a
numerical score, indicating the degree of mis-
match between the executed process and the one
detailed in the description.

Pitfalls Description of what the metric does not mea-
sure, e.g. limitations or possible misconceptions
about the results of the metric.

Cate-
gories

Topics in the domain of agile software devel-
opment the metric attempts at measuring, e.g.
“XP practices”

Effort How much effort collecting violations and cal-
culating a score requires. Either low, medium
or high, e.g. using an automated process on
existing data sources is “low” effort. Low effort
metrics should be implemented first.

Severity Importance in the context of the project’s agile
development process. How severe violations
found by this metric are. Either informational,
very low, low, normal or high.

TABLE I: Conformance metric template.

low value We employed percentages from 0 to 100, where
100 indicates that no violations were detected and 0 that the
described practice was not followed at all. Numerical values
allow the development of a metric over time to be visualized,
as well the results of individual metrics to be summed into
an overall team score in an iteration, e.g. a sprint. Two main
types of rating function were used:

1) Threshold function, a linearly decreasing function, re-
turning 0 for inputs larger than a threshold, e.g. g(x) in
Figure 2.1.

2) Cut-off parabola, returning the perfect scores for a range
of optimal input values, while results for values outside
of the optimal range quickly fall, e.g. h(x) in Figure 2.2.

c) Classification: The severity of a conformance metric
reflects the relative importance of the metric for the process.
The severity determines the weight with which the metric
influences the overall score of a team. We identified three main
factors, which influenced the initial severity rating:

1) Importance in agile methodologies Core elements of

Fig. 2. Graphs of examples of the two main types of rating functions,
threshold (1) and cut-off parabola (2), mapping the output of conformance
metrics to a score between 0 and 100.

agile methodologies, e.g. working in iterations, were
considered to be of high severity. Practices that are found
in multiple methodologies, e.g. Scrum and XP, were
rated more severe.

2) Importance for team Agile development practices need
to be adapted to a team’s context. Even established
practices can be of low importance to a particular team.

3) Confidence in generally established values While there
is some level of consensus on agile core practices [3],
there is often little consensus on what values constitute
a violation. Until reasonable values for a team are found
through iterative refinement, the severity of metrics
would initially be low.

B. Query Execution

After development data has been collected from the defined
data sources, the query part of the metrics can be used to
extract process violations, see Listing 1. The rating function
then outputs a list of process violations by teams and iteration
as well as a score, indicating the seriousness of the extracted
violations.

MATCH (m:Milestone)-[]-(i:Issue)-[]-(l:Label)
WHERE m.title = "Sprint 12"
and m.due_on<timestamp() AND i.current_state="open"
WITH m, m.title as Sprint, collect(DISTINCT i) AS Issues,

count(DISTINCT i) AS Amount
MATCH m-[:milestone]-(j:Issue)
WITH Issues, count(j) AS Total, Amount, m.title as Sprint
RETURN Sprint, Amount, Issues, Total,

Amount/Total AS Percent

Sprint Amount Issues Total Percent
Sprint 12 2 #129, #135 10 0.2

Listing 1: Example of a Neo4J graph database query [4], as
well as an example result, of user stories that were part of
sprints before Sprint 12 but are not marked as done.

C. Context Analysis

In order to gather information about the quality of viola-
tions, e.g. identifying false positives, additional information on
detected violations is needed. For example, the change history
of a user story can be viewed or directly discussed with the
involved developers.



D. Improvement

A major part of the lifecycle of conformance metrics is their
continuous improvement; this means ensuring that the metrics
fit the project and team context. Especially the amount of false
positives, i.e. process violations that were detected but do not
actually pose a problem for a development team, need to be
minimized. The amount of real violations, i.e. true positives,
can be reduced by modifying the query or process description,
thereby adjusting the metric to better fit the executed process,
or by making sure the defined process is followed more
closely, e.g. by additional training or tutoring [5].
The knowledge that was gathered in the improvement step can
then be made explicit again in the first step of the lifecycle,
by editing the conformance template.

III. CONFORMANCE METRICS DETAILS

While the conformance metrics presented in this section are
based on common agile practices, they are often tailored to the
specific set of Scrum, agile and organizational practices that
we focused on in student courses. We therefore do not include
the query or the rating function, as these are not universal.
They are available in a open-source licensed repository1. The
metrics in this section are divided by their categories.

a) XP Practices: Metrics measuring violations of Ex-
treme Programming development practices.

Name: Collective Code Ownership
Synopsis: Code which is edited heavily by few developers.
Severity:
Normal

Effort:
Low

Data Source:
Version control

Description: Collective Code Ownership, as defined by
Beck [6] states that “every programmer improves any code
anywhere in the system at any time if they see the opportu-
nity”. It is one of the core extreme programming practices.
Closely related is the “bus number” [7], which is the number
of developers that a project would need to lose to halt its
progress. It measures the concentration of knowledge about
software components in individual team members. Following
the practice of Collective Code Ownership can help every
developer work on any user story. This metric finds files that
had many edits by only few authors. The more of these there
are, the less the practice of Collective Code Ownership was
followed.

Name: Test-Later Development
Synopsis: Increasing code complexity while decreasing

code coverage.
Severity:
Normal

Effort:
Medium

Data Source:
version control, code coverage stats

Description: In TDD, an automated test is written before the
code that makes it pass. This is followed by a refactoring
step. Following TDD can have a positive effect on system
design and assures that all code is always tested [8].
Kniberg states “You can take my house and my TV and

1https://github.com/hpi-epic/ScrumLint

my dog, but dont try to stop me from doing TDD!” [9].
TDD is also related to the XP practice of YAGNI (you ain’t
gonna need it) [10]. Tests act as a reminder to work on the
current story. This metric identifies commits where TDD
was not followed, i.e. commits which introduced additional
complexity to the system, but led to decreased code coverage.

Name: Huge User Stories
Synopsis: User stories that are unusually large.
Severity:
Low

Effort:
Low

Data Source:
User story tracker

Description: User stories should be small enough to get a
quick overview of the work to be done, but should contain
enough information to allow developers to estimate it. The
text of a user story should fit on an index card [11]. If a
user story is much longer than the average this might be an
indicator that it is too large, was hard to estimate and should
be split [10]. The user stories identified by this metric are
significantly above the average length of stories in the sprint
or have many times the amount of tasks of other stories.

b) Backlog Maintenance: Metrics attempting to measure
violations concerning both product and sprint backlogs.

Name: One Story, Multiple Backlogs
Synopsis: User stories that were in multiple sprint backlogs.
Severity:
High

Effort:
Low

Data Source:
User story tracker

Description: Ideally, a sprint backlog contains exactly
as many user stories as the team can complete in an
iteration [12], so that at the end of the sprint all user stories
in the sprint backlog are completed. This ensures the ability
to plan the software’s development and enables teams
to build on the finished functionality in the next sprint.
However, sometimes, at the end of the sprint not all stories
conform to the “Definition of Done” [9]. These user stories
are then carried over to the next sprint, if the product owner
still considers them a priority. A story that spans multiple
sprints can be a blocker for other teams that depend on
it. This metric identifies user stories that were assigned to
the sprint backlog of multiple sprints. The percentage of
offending “neverending” stories should be minimal.

Name: Duplicates
Synopsis: User Stories which are suspected duplicates.
Severity:
Very Low

Effort:
Low

Data Source:
User story tracker

Pitfalls: This metric relies on developers or teaching staff
tagging user stories as duplicates. There might be additional
duplicates that were not tagged.
Description: User stories are the main tool of specifying
what will be done in a sprint [11]. User stories should not
overlap in described functionality, as there is the risk of
features being developed twice if these user stories are given

https://github.com/hpi-epic/ScrumLint


to different teams in the same sprint. This metric identifies
user stories that were marked as possible duplicates by
developers.

c) Developer Productivity: Metrics dealing with topics
such as how work is structured, how it is assigned and the
workload of developers.

Name: At the Last Minute
Synopsis: Commits shortly before sprint deadline.
Severity:
Normal

Effort:
Low

Data Source:
Version control

Description: Work in an agile project should follow
a “sustainable, measurable, predictable pace” [13] and
overtime should be avoided [6]. The software at the end of
the sprint should be as completed, tested and integrated as
possible. If work is slanted towards the end of the sprint and
code is committed at the very last minute, this can cause
a range of problems: Scrum meetings might be ineffective,
due to lack of content, blockers for or by other teams can
not be communicated in a timely fashion and code review
through other developers becomes more difficult. This
metric measures commits that were made during the last
minutes before sprint deadline. The more of these there are,
the less likely it is that a sustainable pace was followed.

Name: No Committing
Synopsis: Average amount of commits per developer.
Severity:
Normal

Effort:
Low

Data Source:
Version control

Description: The rule of Check in Early, Check in Often is
encourages small patch sizes [14]. Jeff Atwood, co-founder
of Stack Overflow, considers it a “golden rule of source
control”. He states that from a team member’s viewpoint,
“if the code isn’t checked into source control, it doesn’t
exist” [15]. Committing finished functionality frequently is
also a requirement for continuous integration and delivery
called for in the principles of the agile manifesto [16].
Committing often allows coworkers to build on functionality,
review the code and makes version control and merging
easier. This metric measures the average amount of commits
that were made by the developers of a team over the course
of a sprint. Generally, the more commits were made, the
better, however, they should represent working increments
of the software.

Name: Daily User Story Amount
Synopsis: Average amount of user stories a developer is

assigned per day.
Severity:
Low

Effort:
Low

Data Source:
User story tracker

Description: User stories should conform to the INVEST
acronym (independent, negotiable, valuable, estimable,
small, testable). Small has been defined to mean a few
person-days to a few person-weeks [17]. Cohn does not state

absolute values but explains that “the ultimate determination
of whether a story is appropriately sized is based on the
team, its capabilities, and the technologies in use” [11].
While the amount of user stories a developer should be
able to finish per day is hard to state generally, working
on multiple stories per day results in increased context
switching overhead [18]. This metric measures the average
amount of user stories a developer would have to finish
every day, given constant productivity. If this number is
high, it is possible that the requirements of the Definition
of Done, deployment, communication and context switching
overhead were underrated and the Sprint Backlog is too full.

Name: Fast pull requests
Synopsis: Pull requests that were closed quickly

without comments.
Severity:
High

Effort:
Low

Data Source:
Pull Requests

Description: Pull requests can be a tool to help inform
team members what functionality is added in a collection
of commits. It allows team members and stakeholders to
comment and perform code review. According to Boehm
and Basili, code reviews by peers catch around 60% of
defects [19]. Furthermore, continuous integration services
can run the proposed changes, making sure all tests pass,
before code is merged. If pull requests are merged in a
short timespan without anyone commenting, this hints at
many of these possibilities remaining unused. This metric
identifies pull requests that were closed quickly and had no
comments. The more of these “speedy pulls” are found, as
a percentage of all pull requests, the worse the score.

IV. CONCLUSION

Using the presented conformance metrics, violations for all
teams in all sprints could be extracted from data gathered in
the 2014/15 installment of our undergraduate agile software
development course with 38 participants. As the presented
metrics rely solely on data, they allow a more unbiased view
of teams. By providing the offending development artifacts,
the root causes of violations could be established, such as
bad communication between teams involved with user man-
agement. All metrics could be used to identify instances where
tutor intervention would have been helpful. In some cases,
severe violations were found that were missed by tutors,
such as a very complex, wrongly prioritized user story, that
had been in the sprint backlog of all sprints. As it was
one user story among hundreds it was missed by manual
analyses. As such, we see this data-driven approach as a good
supplement to the usually employed assessment techniques in
undergraduate student software engineering capstone projects.
Future work includes employing the presented metrics in the
next installments of project courses as well as continuously
improving them in order to better reflect project reality and
eliminate false positives.



REFERENCES

[1] S. C. Johnson, “Lint, a C Program Checker,” Comp. Sci. Tech. Rep, pp.
78–1273, 1978.

[2] N. Zazworka, K. Stapel, E. Knauss, F. Shull, V. R. Basili, and K. Schnei-
der, “Are Developers Complying with the Process: An XP Study,”
in Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement. ACM, 2010, p. 14.

[3] M. T. Sletholt, J. E. Hannay, D. Pfahl, and H. P. Langtangen, “What Do
We Know about Scientific Software Development’s Agile Practices?”
Computing in Science and Engineering, vol. 14, no. 2012, pp. 24–36,
2012.

[4] F. Holzschuher and R. Peinl, “Performance of Graph Query Languages:
Comparison of Cypher, Gremlin and Native Access in Neo4j,” in
Proceedings of the Joint EDBT/ICDT 2013 Workshops. ACM, 2013,
pp. 195–204.

[5] C. Matthies, T. Kowark, K. Richly, M. Uflacker, and H. Plattner, “How
Surveys, Tutors, and Software Help to Assess Scrum Adoption in a
Classroom Software Engineering Project,” in The 38th International
Conference on Software Engineering (ICSE), Austin, TX, 2016.

[6] K. Beck, Extreme Programming Explained: Embrace Change. Addison-
Wesley Professional, 2000.

[7] F. Ricca, A. Marchetto, and M. Torchiano, “On the difficulty of comput-
ing the truck factor,” in Product-Focused Software Process Improvement.
Springer, 2011, pp. 337–351.

[8] L. Madeyski, Test-Driven Development: An Empirical Evaluation of
Agile Practice, 1st ed. Springer Publishing Company, Incorporated,
2010.

[9] H. Kniberg, Scrum and XP from the Trenches. C4Media, 2007.
[10] R. Jeffries, A. Anderson, and C. Hendrickson, Extreme Programming

Installed. Addison-Wesley Professional, 2001.
[11] M. Cohn, User Stories Applied: For Agile Software Development.

Addison-Wesley Professional, 2004, vol. 1.
[12] K. Schwaber and J. Sutherland, “The Scrum Guide,” 2013.

[Online]. Available: http://www.scrumguides.org/docs/scrumguide/v1/
Scrum-Guide-US.pdf

[13] D. Wells, “The Rules of Extreme Programming,” 1999. [Online].
Available: http://www.extremeprogramming.org/rules.html

[14] A. Bosu, “Identifying the Characteristics of Vulnerable Code Changes:
An Empirical Study,” in 36th International Conference on Software
Engineering, ICSE ’14, Companion Proceedings. Hyderabad, India:
ACM, 2014, pp. 736–738.

[15] J. Atwood, “Check In Early, Check In Often,” 2008. [Online].
Available: http://blog.codinghorror.com/check-in-early-check-in-often/

[16] K. Beck, M. Beedle, A. Van Bennekum, W. Cockburn, Alistair
Cunningham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt,
and R. Jeffries, “Agile Manifesto,” 2001. [Online]. Available:
http://agilemanifesto.org/

[17] B. Wake, “INVEST in Good Stories, and SMART
Tasks,” 2003. [Online]. Available: http://xp123.com/articles/
invest-in-good-stories-and-smart-tasks/

[18] P. M. Johnson, H. Kou, J. Agustin, C. Chan, C. Moore, J. Miglani,
S. Zhen, and W. E. J. Doane, “Beyond the Personal Software Process:
Metrics collection and analysis for the differently disciplined,” in Pro-
ceedings of the 25th international Conference on Software Engineering.
IEEE Computer Society, 2003, pp. 641–646.

[19] B. Boehm and V. R. Basili, “Software Defect Reduction Top 10 List,”
Computer, vol. 34, pp. 135–137, 2001.

http://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-US.pdf
http://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-US.pdf
http://www.extremeprogramming.org/rules.html
http://blog.codinghorror.com/check-in-early-check-in-often/
http://agilemanifesto.org/
http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

	Introduction
	Conformance Metrics
	Definition
	Query Execution
	Context Analysis
	Improvement

	Conformance Metrics Details
	Conclusion
	References

