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Abstract—Message brokers see widespread adoption in modern
IT landscapes, with Apache Kafka being one of the most
employed platforms. These systems feature well-defined APIs
for use and configuration and present flexible solutions for
various data storage scenarios. Their ability to scale horizontally
enables users to adapt to growing data volumes and changing
environments. However, one of the main challenges concerning
message brokers is the danger of them becoming a bottleneck
within an IT architecture. To prevent this, knowledge about the
amount of data a message broker using a specific configuration
can handle needs to be available. In this paper, we propose a
monitoring architecture for message brokers and similar Java
Virtual Machine-based systems. We present a comprehensive
performance analysis of the popular Apache Kafka platform
using our approach. As part of the benchmark, we study selected
data ingestion scenarios with respect to their maximum data
ingestion rates. The results show that we can achieve an ingestion
rate of about 420,000 messages/second on the used commodity
hardware and with the developed data sender tool.

Index Terms—performance, benchmarking, big data, Apache
Kafka

I. INTRODUCTION

In the current business landscape, with an ever-increasing
growth in data and popularity of cloud-based applications,
horizontal scalability is becoming an increasingly common and
important requirement. Message brokers play a central role in
modern IT systems as they satisfy this requirement and thus,
allow for adaptations of the IT landscape to data sources that
grow both in volume and velocity. Moreover, they can be used
to decouple disparate data sources from applications using this
data. Usage scenarios where message brokers are employed are
manifold and reach from e.g., machine learning [1] to stream
processing architectures [2], [3], [4] and general-purpose data
processing [5].

In the context of a complex IT architecture, the degree,
to which a system aligns with its application scenarios and
the functional and non-functional requirements derived from
it, are key [6]. If non-functional requirements related to
performance are not satisfied, the system might become a
bottleneck. This situation does not directly imply that the
system itself is inadequate for the observed use case, but might
indicate a suboptimal configuration. Therefore, it is crucial
to be able to evaluate the capabilities of a system in certain
environments and with distinct configurations. The knowledge

about such study results is a prerequisite for making informed
decisions about whether a system is suitable for the existing
use cases. Additionally, it is also crucial for finding or fine-
tuning appropriate system configurations.

The contributions of this research are as follows:

+« We propose a user-centered and extensible monitoring
framework, which includes tooling for analyzing any
JVM-based system.

o We present an analysis that highlights the capabilities of
Apache Kafka regarding the maximum achievable rate of
incoming records per time unit.

« We enable reproducibility of the presented results by
making all needed artifacts available online'.

The rest of the paper is structured as follows: In Section II
we give a brief introduction of Apache Kafka. Section III-A
presents the benchmark setup and the developed data sender
tool. Subsequently, we describe the results of the ingestion rate
analyses. Section V introduces related work and Section VI
elaborates on the lessons learned. The last chapter concludes
the study and outlines areas of future work.

II. APACHE KAFKA

Apache Kafka is a distributed open-source message broker
or messaging system originally developed at LinkedIn in
2010 [7]. The core of this publish-subscribe system is a
distributed commit log, although it has extended its scope
through extensions. An example is Kafka Streams [8], a client
library for developing stream processing applications.

The high-level architecture of an exemplary Apache Kafka
cluster is visualized in Figure 1. A cluster consists of multiple
brokers, which are numbered and store data assigned to topics.
Data producers send data to a certain topic stored in the cluster.
Consumers subscribe to a topic and are forwarded new values
sent to this topic as soon as they arrive.

Topics are divided into partitions. The number of topic parti-
tions can be configured at the time of topic creation. Partitions
of a single topic can be distributed across different brokers of
a cluster. However, a message order across partitions is not
guaranteed by Apache Kafka [10], [9].

Next to the number of partitions, it is possible to define
a replication factor for each topic, one being the minimum.
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Fig. 1. Apache Kafka cluster architecture (based on [9])

This allows preventing data loss in the case of a single broker
failure. In the context of replication, Apache Kafka defines
leaders and followers for each partition. The leader handles all
reads and writes for the corresponding topic partition, whereas
followers copy or replicate the inserted data. In Figure 1, the
leader partitions are shown in bold type. The first topic, topicl
has two partitions and a replication factor of one, while topic2
has only one partition and a replication factor of two [10].

Figure 2 shows the structure of an Apache Kafka topic,
specifically of a topic with two partitions. Each of these
partitions is an ordered and immutable record sequence where
new values are appended. A sequential number is assigned to
each topic record within a partition, referred to as an offset.
Apache Kafka itself provides the topic __consumer_offsets for
storing the offsets. However, consumers must manage their
offset. They can commit their current offset either automati-
cally in certain intervals or manually. The latter can be done
either synchronously or asynchronously. When polling data,
a consumer needs to pass the offser to the cluster. Apache
Kafka returns all messages with a greater offset, i.e., all new
messages that have not already been sent to this consumer. As
the consumer has control over its offset, it can also decide to
start from the beginning and to reread messages [10].
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Fig. 2. Apache Kafka topic structure (based on [11])

Furthermore, Apache Kafka can be configured to use the Lo-
gAppendTime feature, which induces Apache Kafka to assign
a timestamp to each message once it is appended to the log.
The existing alternative, which represents the default value,
is CreateTime. In this setting, the timestamp created by the
Apache Kafka producer when creating the message, i.e., before
sending it, is stored along with the message. For transmitting

messages, a producer can require multiple retries, which would
increase the difference between the timestamp assigned with
a message and the time when it is appended to the log and
thus, made available for consuming applications [10].

III. BENCHMARK SETUP

This section introduces the monitoring architecture em-
ployed in the ingestion rate study as well as the developed
data sender tool.

A. Monitoring Architecture

The architecture of the monitoring system is shown in Fig-
ure 3. We use Grafana [12], an open-source tool for creating
and managing dashboards and exporting data, as the interface
to the user. The presented benchmarks employ version 5.4.5
of its docker image. OS-level virtualization through docker
is used for ease of installation and replicability of results.
The OS base image used in this image allows a simple
time zone configuration via an environment variable, which is
important for time synchronization among all systems. Later
versions of the image contain a different OS, specifically
Alpine Linux [13], which no longer supports this feature.
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Fig. 3. Monitoring architecture in Fundamental Modeling Concepts
(FMC) [14]
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Grafana fetches the data to display from Graphite [15], an
open-source monitoring tool. It consists of three components:
Carbon, Whisper, and Graphite-web. Carbon is a service that
retrieves time-series data, which is stored in Whisper, a persis-
tence library. Graphite-web includes an interface for designing
dashboards. However, these dashboards are not as appealing
and functionally comprehensive as the corresponding compo-
nents of Grafana, which is why Grafana is employed. For the
installation of Graphite, the official docker image in version
1.1.4 is used, again for time zone configuration reasons.

Graphite receives its input from two sources: collectd [16]
and jmxtrans [17]. The former is a daemon collecting system
and application performance metrics, that runs on the broker’s
machines in the described setup. It offers plugins for gathering
OS-level measurements, such as memory usage, system load,
and received or transmitted packages over the network.



Jmxtrans, the other data source for Graphite, is a tool for
collecting JVM runtime metrics. These metrics are provided
via Java Management Extensions (JMX) [18]. Using jmxtrans
we tracked internal metrics, such as JVM memory usage,
the number of incoming bytes, and the number of messages
entering Apache Kafka per time unit.

Apache Kafka is the system under test (SUT) in the
evaluation of this paper. It can be exchanged for any other
system running in a JVM, i.e., the proposed architecture is
not limited to Apache Kafka or message brokers in general.
The information gathered in Graphite is summarized in a
Grafana dashboard. Exports of the collected Grafana data
enable further, more detailed analysis.

TABLE I
CHARACTERISTICS OF THE APACHE KAFKA BROKER NODES

Value
Ubuntu 18.04.2 LTS

Characteristic

Operating system

CPU Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz, 8
cores

RAM 32GB

Network bandwidth  1Gbit:

- measured bandwidth between nodes: 117.5 MB/s
- measured bandwidth of intra-node transfer: 908 MB/s

Disk min. 13 Seagate ST320004CLAR2000 in RAID 6,
access via Fibre Channel with 8Gbit/s:
measured write performance about 70 MB/s
Hypervisor VMware ESXi 6.7.0

2.3.0
OpenJDK 1.8.0_222

Kafka version
Java version

Apache Kafka is installed on three virtual machines fea-
turing identical hardware setups and configurations, which
are shown in Table I. We use a commodity network setup
whose bandwidth we determined using ipfer3 [19]. The
write performance is measured using the Unix command-line
tool dd [20], specifically with the following command: “dd
if=/dev/zero of=/opt/kafka/testl.img bs=1G
count=1 oflag=dsync”. The data sender is a Scala appli-
cation compiled to a fat jar file and executed using OpenJDK
1.8 with the default parallel garbage collector (ParallelGC).
The data sender is assigned an initial memory allocation
pool of 1 GB while the maximum size of this pool is about
14 GB. Apache Kafka uses an initial and maximum memory
allocation pool of 1GB and the Garbage-First garbage col-
lector (G1 GC). Additional arguments passed to the Apache
Kafka JVMs are MaxGCPauseMillis=20, Initiat-
ingHeapOccupanyPercent=35, as well as Explic-
itGCInvokesConcurrent, which fine-tune the garbage
collection behavior.

B. Data Sender

To study the attainable ingestion rates of Apache Kafka, we
developed a configurable data sender tool in the Scala pro-
gramming language, which is part of the published artifacts.
It uses the Apache Kafka producer class for sending data to
the message broker.

TABLE II
APACHE KAFKA DEFAULT PRODUCER PROPERTIES

Property Value

key-serializer-class org.apache.kafka.common.serialization.StringSerial-
izer
org.apache.kafka.common.serialization.StringSerial-
izer

value-serializer-class

batch-size 16,384 bytes
buffer-memory-size 33,554,432 bytes
acks 0

Table I shows the default configuration parameters, i.e.,
properties, that the data sender applies to the Apache Kafka
producer. Unless otherwise stated, these are the parameters
employed in the presented measurements in Section IV. An
Apache Kafka producer batches messages to lower the number
of requests, thereby increasing throughput. The batch-size
property limits the size of these message packages. The used
value is the default of 16,384 bytes, as defined in the Apache
Kafka documentation [11]. The acks producer property deter-
mines the level of acknowledgments for sent messages. There
are three different options for the acks configuration:

o 0: The producer does not wait for any acknowledgment
and counts the message as sent as soon as it is added to
the socket buffer.

e I: The leader will send an acknowledgment to the pro-
ducer as soon as the message is written to its local log.
The leader will not wait until its followers, i.e., other
brokers, have written it to their log.

e all: The leader waits until all in-sync replicas acknowl-
edge the message before sending an acknowledgment to
the producer. By default, the minimum number of in-sync
replicas is set to one.

In addition to the configuration of the Apache Kafka pro-
ducer, the developed data sender tool can be customized. The
read-in-ram Boolean setting determines how inputs are read. If
read-in-ram is not set, the data source object returns an iterator
object of the records. If it is set, the source object first loads the
entire data set into memory by converting it into a list and then
returns an iterator object for the created data structure. Unless
otherwise stated, read-in-ram is enabled in the presented
results. The number of messages the data sender emits per
time unit can be controlled using the java.util. concur—
rent .ScheduledThreadPoolExecutor class. It can
execute a thread periodically by applying a configurable delay.
Using this parameter, we can determine how many messages
are to be sent per time unit. Each execution sends a single
message to Apache Kafka. A configured delay of, e.g., 10K ns,
leads to an input rate of 100K messages/second (MPS).

IV. INGESTION RATE ANALYSIS

This section presents the Apache Kafka ingestion rate
analysis, starting with a description of the benchmark process.
It comprises analyzing three selected input rates with varying



configurations regarding acks levels, batch size, data sender
locality, read-in-ram option, and data sender processes.

A. Benchmark Execution Process

Each analysis run lasts ten minutes. The main characteristic
studied is the number of incoming or ingested messages,
particularly, the one-minute rate of this key performance
indicator (KPI), i.e., the number of incoming messages during
the last minute. If not stated otherwise, the data sender is
executed on the broker server where the topic is stored.

To reduce the number of manual steps needed, Ansible [21]
is used for automation. Starting the Ansible script triggers a
build of the data sender project, the creation of a topic, and
the assignment of this topic to the first of our three Apache
Kafka brokers. For all measurements, we use topics with a
single partition and a replication factor of one. Having one
partition is a setting used for scenarios in which the order of
data is crucial. That is the case as Apache Kafka only makes
guarantees for the correct message order within a partition, as
outlined in Section II.

After the Apache Kafka topics are prepared, the data
sender is started. Subsequently, a rise in the number of
incoming messages of Apache Kafka can be observed using
the Grafana dashboard. Once the configured send period is
over, the Ansible script stops and the dashboard charts adapt
correspondingly. The dashboard data is then exported as CSV.
The timeframe of these exports is configurable in Grafana.

We incorporate the data set of the Grand Challenge pub-
lished 2012 at the conference Distributed and Event-Based
Systems (DEBS) [22] as input. It contains data captured from
multiple sensors that are combined into single records by
an embedded PC within the manufacturing equipment. One
record comprises 66 columns with numerical and Boolean
values. When the end of the input file is reached, the data
sender starts again from the beginning.

B. Result Overview

Figure 4 shows the maximum achieved input rates (ir) of
Apache Kafka for the selected configurations. The input rates
illustrated in all figures are the one-minute rates of incoming
MPS, which is a KPI provided by Apache Kafka. For all
benchmark scenarios with the maximum configured input of
1,000K MPS, we selected the runs with the most stable input
rates.

The highest input rate with about 421K MPS was achieved
with two distinct data sender processes, each sending
250K MPS. However, this is less than the configured input rate.
With a single data sender configured to send 1,000K MPS, the
input rates are lower. The results for the acks levels of 7 and all
are similar with input rates around 340K MPS. Surprisingly,
sending messages without waiting for acknowledgment, i.e.,
acks set to 0, decreased the achieved input rate. The maximum
is at about 294K MPS with increased batch size. In contrast to
the other benchmark scenarios, the achievable input rate with
acknowledgments disabled could be positively influenced by
a higher batch size without harming the stability of the input
rate.
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acks=all, ir=1,000K MPS | | 3.39 - 10°
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Number of Incoming Messages per Second

Fig. 4. Ingested messages/second - one-minute rate

C. Input Rate of 100,000 Messages/Second

Figure 5 visualizes the one-minute rate of incoming MPS
for a configured input of 100K MPS. The parameters under
investigation for this benchmark series are the data sender
locality, the acks level, and the read-in-ram option. Similar to
all other observations, an increase in the number of incoming
MPS can be seen at the beginning. This is when the data sender
is started and the one-minute rate begins to adapt accordingly.
Also, a sudden decrease in ingested messages is present in
all charts after the data sender has transmitted messages for
the configured duration and has shut down. Consequently, the
most interesting part of the evaluations is the data presented
in the center of plots.
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Fig. 5. Ingested messages/second - one-minute rate, configured 100K MPS

Figure 5 further shows that almost all chosen settings reach
the configured input of 100K MPS. The only exception is
the remote; acks=0; read-in-ram=false configuration, which is
represented by the blue line. In this setting, the data sender was
executed remotely, specifically on a 2015 Apple MacBook Pro,
which was connected using Ethernet. For the other benchmark
runs, the data sender was executed on the broker where
the topic is stored. All of the tested acks level and read-
in-ram combinations reach the configured ingestion rate of
100K MPS.



D. Input Rate of 250,000 Messages/Second

Figure 6 shows the results for an input rate of 250K MPS.
As we already identified the limits of the commodity hardware
in Figure 5, we do not pursue further tests with the laptop
configuration. Figure 6 highlights the significance of the read-
in-ram configuration, detailed in Section III-B. Particularly,
the three configurations where read-in-ram is set to true reach
the configured input of 250K MPS, whereas the run where
read-in-ram is set to false, represented in blue, does not. This
configuration, where read-in-ram is not active, is not able to
handle more than about 220K MPS. Thus, enabling read-in-
ram has a positive influence on the achievable number of
incoming messages per second as the latency for accessing
the main memory is lower than for accessing the disk. It is
evident that with read-in-ram disabled, there is a bottleneck
at the data sender side at this configured input rate. The data
can not be read as fast as it is required to achieve an ingestion
rate of 250K MPS.
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Fig. 6. Ingested messages/second - one-minute rate, configured 250K MPS

E. Input Rate of 1,000K Messages/Second

Figure 7 visualizes the results for an input rate of
1,000K MPS. As we discovered the limits of configurations
with read-in-ram set to false previously, the parameter is en-
abled for all following measurements. Next to testing different
acks levels, we analyze the effects of changes to the barch
size. Particularly, we study the default size and a batch size
increased by a factor of four, which results in 65.54 kB.

None of the configurations reach the configured ingestion
rate. While the highest ingestion rates peak at about 420K MPS
for a short period, the lowest one is at about 250K MPS. The
two configurations that achieve this maximum peak are the
ones with a batch size of 65.54kB and acks set to I and
all. However, these are also the only two scenarios where no
steady ingestion rate could be established. The acks level of
0 combined with the default batch size reached the lowest
ingestion rate. Changing acks to either I or all resulted in a
rise to a rate of about 320K MPS. Concerning the batch size,
the increase resulted in a higher ingestion rate for the scenarios
without acknowledgments. Specifically, a rise of more than
20K MPS can be observed. For the other acknowledgment
settings, the raised batch size led to an unstable ingestion rate.
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Figure 8 shows the incoming data rate in MB/second, which
is provided by Apache Kafka as the metric BytesInPerSec.
The chart fits the corresponding ingestion rates shown in
Figure 7. The highest peaks are at about 90 MB/second.
The measured maximum network bandwidth between the
Apache Kafka brokers is about 117.5 MB/second, see Table 1.
Therefore, if further network traffic is created, that is not
captured by the BytesInPerSec metric, the bandwidth of the
employed commodity network could be a limiting factor in
peak situations if data is sent from a remote host. As we
executed the data sender on the node storing the corresponding
topic partition, there was intra-node transfer and we used
the loopback interface with its higher bandwidth of about
908 MB/second, which is not a bottleneck. The determined
write performance of about 70 MB/second described in Table I
is even closer to the observed limits in Figure 8. Depending
on how optimized Apache Kafka writes to disk, the achievable
performance might be higher. Nevertheless, the observations
lead to the conclusion that the ingestion rate is likely to be
disk-bound in the viewed benchmark setting.

Figure 9 shows the short-term system load of the broker
containing the topic partition, which is the server where the



data sender is executed. The system load gives an overview
over the CPU and I/O utilization of a server, i.e., also reflecting
performance limits regarding disk writes. It is defined as
the number of processes demanding CPU time, specifically
processes that are ready to run or waiting for disk I/O. Figure 9
shows one-minute-averages of this KPI. As we are using
servers with an eight-core CPU each, it is desirable that no
node exceeds a system load of eight to do not over-utilize a
machine.
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Fig. 9. Short-term system load of the Apache Kafka broker containing the
topic partition - one-minute rate, configured 1,000K MPS

Figure 9 reveals that in all settings which led to a steady
input rate, the broker node has a system load lower than eight
and thus, seems to be not over-utilized from a system load
perspective. The two remaining scenarios show the highest
system loads with a value close to 15, which indicates an
over-utilization that could limit the achievable ingestion rate.
Interestingly, the system load is not proportional to the corre-
sponding ingestion rates. At the time of the peak ingestion rate,
e.g., the highest system load has not reached its maximum.
That might be an indicator of a growing number of waiting
write operations.

E Input Rate of Overall 500K MPS with Two Data Senders

To see if server resources regarding CPU are a limiting
factor, we distributed the data sender. We included the default
batch size and left out the measurements where acks are set
to all as they are, similar to the previously presented results,
practically identical to the runs with acks set to /. Figure 10
shows the achieved ingestion rates. The blue and green lines
illustrate the runs where both senders run locally, i.e., on
the broker node containing the topic partition. The blue line
visualizes the results for disabled acks and the green line those
for an acks level of 1. The purple line in Figure 10 represents
the run where one data sender is invoked on the broker that
stores the topic and one data sender at another broker. The
brown line shows the results for the run where the data senders
are executed on the two brokers that do not store the topic.

Our measurements show that the two settings where at least
one data sender is executed remotely lead to the same result:
a steady input rate of about 420K MPS. The benchmark runs
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total with two data senders

having both senders run locally have a different outcome.
Similar to the previous results, the acks set to [ overall
outperforms acks set to 0. However, neither configuration
reaches a steady input rate. Both have the highest spike at
the beginning, which is a behavior observed before.

Next to almost identical trends regarding the ingestion rates
compared to the two benchmark settings presented before,
the system loads are also equal with a value consistently
approaching 15. This again indicates an over-utilization of the
server. The system load never exceeds a value of three on any
server with distributed data senders. Nevertheless, the input
rates for the setting with two data senders are the overall

highest on average, with a maximum input rate of about
460K MPS. Figure 11 shows the data size characteristics.
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The amount of incoming data in MB/second is visualized for
the setting where both data senders were executed locally
and remotely with acks set to /. The maximally achieved
input rate of Figure 10 corresponds to an input rate of about
100 MB/s. For the constant input rate where both senders were
executed remotely, a size-wise input of close to 92 MB/s is
reached. The amount of incoming MB/s exceeds the measured
maximum write performance mentioned in Table I, which
could be due to increased parallelization or an optimized way
of storing messages implemented in Apache Kafka. As the
fully distributed setting uses the eth0 interface to the broker,
the network bandwidth of about 117.5MB/second applies.
Since the reported number of incoming bytes is close to this
limit and metadata or further traffic might not be captured, the
network represents a potential bottleneck.

Figure 12 visualizes the number of packages received on
interface ethO exemplary for three benchmark runs with a
logarithmic scale on the y-axis. This interface is the only
one next to the loopback interface on the used servers. The
figure highlights the differences caused by changes in data
sender locality. While the number of received packages is
not impacted if data is only sent from the node where the
corresponding target topic is stored, transmitting data from
a remote host significantly increases this KPI. Specifically,
no remote data senders result in between 25 and 60 received
packages on eth0. One remote data sender amounts to about
30K received packages, while two remote data senders are
about to double this number accordingly.

G. Summary

Our benchmark results reveal two main insights: Firstly,
although a single data sender can create an input rate of
250K MPS as shown in Figure 6, two independently executed
data senders do not reach the expected input rate of SO0K MPS.
Secondly, we show the influence of where data senders are
invoked. When two data senders are executed in parallel on
the same host, they are able to overwhelm the server or impede
each other, as the observed system load of about 15 indicates.
Another limiting factor can be found in the write-to-disk
performance of the used server and the network bandwidth
when sending data from a remote host. The observed memory
usage was never close to its limits for any of the presented
benchmark scenarios.

The most promising configuration in the study, which led to
stable input rates, has the default batch size and acks set to I or
all. A stable rate is desirable as it leads to predictable system
behavior. Multiple data senders distributed across nodes are
able to increase the achievable ingestion rates. An input rate
of about 250K MPS to Apache Kafka can be achieved using
a single data sender.

V. RELATED WORK

Dobbelaere and Esmaili [23] compare Apache Kafka with
RabbitMQ [24], another open-source message broker. In their
work, they compare both solutions qualitatively and quantita-
tively. The impact of different acknowledgment levels is one

of the factors the authors evaluated in their study. However,
their results do not show a clear difference in the achieved
throughput between an acks level of one and zero in the
analyzed setting.

Noac’h, Costan, and Bougé [25] evaluate the performance of
Apache Kafka in combination with stream processing systems.
They also study the influence of Apache Kafka characteristics,
the producer batch size being one of them. Similar to our
results, their findings reveal that an increased batch size does
not necessarily lead to a higher throughput.

Kreps et al. [9] present a performance analysis of three sys-
tems: Apache Kafka, RabbitMQ, and Apache ActiveMQ [26].
Similar to the work presented before, they analyze the influ-
ence of the batch size of the Apache Kafka producer. Next to
the producer, they study the Apache Kafka consumer behavior
and compare it to the other systems. The achieved throughput
for Apache Kafka in [9] is in a similar range as the results of
this paper.

Apache Pulsar [27] is a message broker originally developed
at Yahoo!. It makes use of the distributed storage service
Apache BookKeeper [28]. Similarly to Apache Kafka, Apache
Pulsar employs the concept of topics to which producers can
send messages and to which consumers can subscribe. The
blog post [27] presents a brief performance analysis. The
throughput that was achieved in their study using an SSD is
1,800K MPS. However, they do not give details about the test
setup, making it hard to assess the results.

Next to these open-source systems, there are commercial
solutions, such as Google Cloud Pub/Sub [29] and Amazon
Simple Queue Service (SQS) [30]. Studying further systems
were out of the scope of this paper.

VI. LESSONS LEARNED

Overall, the conducted performance study shows that esti-
mates regarding the performance impact of different Apache
Kafka producer configurations, based on experiences and
perceptions, are not always true. We particularly emphasize
two unexpected behaviors that are present in the collected
results. These findings are related to two configuration options
of the Kafka producer: the acknowledgments level and the
batch size. We theorized that a lower level of acknowledgments
would necessarily lead to a higher input rate, as sending of
messages and waiting for an acknowledgment of their arrival
represents an overhead. However, our study shows that this
theory does not hold in all observed cases.

Similarly, this is true for the Kafka producer batch size
configuration option. Our expectation was that increasing
the batch size would lead to a higher input rate, since the
number of send actions can be reduced, also lowering the
overall overhead. The presented performance study revealed
that higher batch sizes can indeed increase the input rate as
expected, see Figure 7. However, although increasing the batch
size may lead to a higher peak input rate, it often caused a
non-steady, fluctuating input rate. Additionally, the observed
average input rates for acks set to I and all are lower for the
configuration with an increased batch size.



As aresult of these experiences, we highlight the importance
of benchmarking message brokers to explore their behavior in
application scenarios and to obtain realistic KPI’s. This allows
basing discussions regarding technology selection on facts.
Additionally, it lowers the likelihood of wrong assessments.

Regarding the tooling utilized for observing the performance
characteristics of Apache Kafka, we made use of virtualization
technology in the form of Docker containers. This turned out
to be a low-effort way of deploying different systems. Also,
orchestrating these independently running containers, as in the
proposed benchmarking architecture, did not introduce any
significant management overhead. So for similar settings, we
recommend using virtualization technologies due to the easy
and fast setup. Additionally, moving to a different server or
updating systems are tasks that can be done with low effort.

VII. CONCLUSION AND FUTURE WORK

We propose and implement a monitoring architecture for
Apache Kafka and similar systems running in a JVM. We
incorporate state-of-the-art technologies such as Grafana and
collectd with a focus on ease of use and adaptability for
future measurements. We performed a performance study of
Apache Kafka using our developed benchmarking setup. We
evaluate and discuss our benchmark results for varying data
sender configurations. The benchmark artifacts, such as the
data sender tool and the Grafana dashboard, are published for
transparency and reproducibility.

In the configuration featuring a single topic with one parti-
tion and a replication factor of one, we achieve a maximum
steady ingestion rate to Apache Kafka of about 420K MPS
or about 92 MB/s. We quantified the impact of the Apache
Kafka producer batch size, acknowledgment level, data sender
locality as well as of additional aspects on the input rate
performance. We analyzed the server’s behavior during the
benchmark runs to explore potential performance bottlenecks.
Our study highlights the influence of the chosen acknowl-
edgment level. Configurations with enabled acknowledgments
showed better performance, i.e., a higher message input rate,
which was counter to our working hypothesis. An analysis
of why this behavior was observed is part of future research.
Moreover, a comparison of apache Kafka to similar systems,
such as Apache Pulsar or RabbitMQ, would be of interest to
the research community. Further work should focus on the
analysis of Apache Kafka producers employed in data stream
processing frameworks, such as Apache Flink or Apache
Beam. These systems often provide their own Apache Kafka
producer implementations or interfaces. It would be interesting
to investigate if these embedded producers perform differently
in comparable settings regarding the achievable input rate.

Furthermore, it is valuable to know how the input rate
behaves when scaling via, e.g., the number of topic partitions.
With a growing number of partitions, scaling the number
of broker nodes becomes an additional dimension whose
influence can be measured. The impact of higher replication
factors is another open domain of future research.
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