Lightweight Collection and Storage of Software Repository
Data with DataRover

Thomas Kowark, Christoph Matthies, Matthias Uflacker, and Hasso Plattner
Hasso Plattner Institute, University of Potsdam
August-Bebel-Str. 88
Potsdam, Germany

{firsthname.lasthame}@hpi.de

ABSTRACT

The ease of setting up collaboration infrastructures for soft-
ware engineering projects creates a challenge for researchers
that aim to analyze the resulting data. As teams can choose
from various available software-as-a-service solutions and
can configure them with a few clicks, researchers have to
create and maintain multiple implementations for collect-
ing and aggregating the collaboration data in order to per-
form their analyses across different setups. The DataRover
system presented in this paper simplifies this task by only
requiring custom source code for API authentication and
querying. Data transformation and linkage is performed
based on mappings, which users can define based on sam-
ple responses through a graphical front end. This allows
storing the same input data in formats and databases most
suitable for the intended analysis without requiring addi-
tional coding. Furthermore, API responses are continu-
ously monitored to detect changes and allow users to up-
date their mappings and data collectors accordingly. A
screencast of the described use cases is available at https:
/ /youtu.be/mt4zt{f4S{U.

CCS Concepts

eInformation systems — Extraction, transformation
and loading; eSoftware and its engineering — Software
evolution;

Keywords

Data Collection, Data Mapping Definition, Link Discovery,
API monitoring, Data Storage

1. INTRODUCTION

Software development teams are nowadays not only sup-
ported by issue trackers and source code management sys-
tems. A variety of software-as-a-service solutions for tasks
like project management, continuous integration, or code

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ASE’16, September 3-7, 2016, Singapore, Singapore
© 2016 ACM. 978-1-4503-3845-5/16/09...
http://dx.doi.org/10.1145/2970276.2970286

810

analysis, can be set up with only a few clicks. The informa-
tion stored in these systems is vital for researchers to reason
about the effects of software engineering practices and their
effects on product and process metrics. In order to perform
such analyses the data first needs to be extracted from the
different source system, transformed into a single, holistic
representation, and loaded into a suitable target database,
in a so-called ETL process.

In data collection, it is challenging to keep up with the
development of new systems and the evolution of existing
tools. Connection plugins or scripts need to be created and
maintained either on-demand or by maintainers of plugins
for systems like Sonarqubeﬂ in order to be able to collect the
required data. With regards to data storage, the suitability
of database systems and data formats is influenced by the
intended analysis. If social graphs formed by developers are
of interest, a graph database that is shipped with built-in
graph analysis algorithms is superior to a document store
lacking those features. The document store, on the other
hand, allows for simpler text analysis. Thus, in addition
to providing source code for data collection, the same input
data needs to be transformable to different output formats
depending on the analysis use case.

In this paper, we introduce DataRover. The system re-
duces the implementation effort for ETL workflows by sepa-
rating API connection and querying from data storage. Min-
imalistic connector implementations solely perform API con-
nection and querying. The returned results are transformed
into property graphs according to user-defined mappings,
which are created through a graphical front end based on
sample JavaScript Object Notation (JSONED responses. By
that, users can link ground data from different sources and
store it in a schema and database most suitable for their
use case without programming knowledge. DataRover fur-
ther monitors API responses to detect changes in document
structure or endpoints and, thus, allows to change connector
implementations or data mappings in a timely manner.

The paper first presents DataRover’s target users and
their desired use cases (Section . Subsequently, we walk
through a sample parsing procedure (Section [3|) and discuss
the system’s architecture along with its implications for the
development of connector implementations and storage com-
ponents in Section[d] Initial evaluation ideas and results are
shown in Section Finally, we discuss related work, the
current state of implementation, and future work.

Thttp:/ /www.sonarqube.org
Zhttp://www.json.org

https://youtu.be/mt4ztff4SfU
https://youtu.be/mt4ztff4SfU
http://www.sonarqube.org
http://www.json.org

2. USERS

Our main user group are researchers in the area of software
repository mining (MSR). In their work, they analyze the
influence of software development practices on the outcome
and progress of projects. To this end, they need to collect
artefacts created by software development teams, process
them (cleansing, link detection, etc.) and then test their
hypotheses by executing queries on the created dataset. For
validation purposes, they also have to perform this import-
process-analyze workflow for data originating from projects
which employed a different collaboration infrastructure.

Beyond researchers, the people involved in the software
development processes (developers, project managers, etc.)
have a valid interest in such analyses to introspect and im-
prove their development practices in a data-driven manner.
While their infrastructures rarely change completely, up-
dates or replacement of existing and addition of new col-
laboration tools also require at least a review of the data
extraction scripts and systems; in the worst case new tools
have to be developed.

For both groups, their primary task is not programming or
maintaining these systems, but analyzing the gathered data.
Hence, effort in terms of programming, setup overhead, and
general amount of interactions with the system should be
minimal. This requires the tool to provide a simple front
end for selecting and configuring parsing implementations,
as well as defining how returned data is stored in the desired
target database. Furthermore, the implementation should
reduce the amount of programming required to update an
existing or create a new parsing implementation or connec-
tion to a new database management system. We discuss
both aspects of our system in the following chapters.

3. DATA COLLECTION & LINKAGE

We now outline how researchers and and practitioners can
setup DataRover. As a use case, we recreate the work done
for |7] and collect issue tracker and repository data from
the “Ruby on Rails” Github project and combine it with
Travis-CI’|build information. As an extension of the original
study, we further integrate question and answer data from
Stackoverflow and link it to the developers and contributors
of the Rails project. A screencast of this use case is provided
at https://youtu.be/mt4ztff4SfU. The created datasets are
available at |https://bit.ly /kowark-ase-16-datal

3.1 Job Definition

Data collection Missions are defined by specifying the
database type that results will be written to, as well as the
database url, and access credentials. Currently users can se-
lect between Neo4j graphs, MongoDB document stores, and
different schemas for an SAP HANA database. Support for
further relational databases is planned. Afterwards, users
can select Ezplorers from the list of available implementa-
tions. Each explorer internally defines which input data is
required from the user and a simple input form is rendered
accordingly. For the Github and Travis-CI explorers, the
repository name and owner suffices as information. If the
to be parsed project is private, access can be granted us-
ing OAuth authorisation. Finally, users can define how of-
ten parsing tasks are performed, ranging from continuous
parsing to only daily explorer runs. The mission control

3http://api.travis-ci.org/

811

overview shows all selected explorers, their parameters, and
status messages created throughout data collection and stor-
age runs on a single screen (see Figure|[1)).

3.2 Mapping Selection

Once an explorer is chosen and configured with the re-
quired input data, users are asked to define the data map-
ping. Each mapping can be named and stored in order to
be reused as a template. The interface for mapping defi-
nition is displayed in Figure 2] Based on a JSON sample
that is created from previous API calls (see Section [4] for de-
tails), users define which data schema they want to achieve.
To this end, they define classes for elements, choose to ig-
nore keys, move elements between JSON objects, or define
links between nodes. To better understand the resulting
data structures, a graphical representation is available on
demand (see Figure . Mapping templates can be loaded
through a dropdown list. The “opt-in” flag specifies whether
elements, for which no mapping is defined, are ignored or
stored automatically (see Section .

In the example use case, one possible option is to cre-
ate a flat object hierarchy that contains commits as nodes.
Committer and author information is added as attributes of
these nodes instead of links to nodes of type “GithubUser”.
Thus, the memory footprint of the resulting data set can be
reduced, which might be necessary for larger projects con-
taining thousands of users. Build information from Travis-
CI is in this case also be added as an attribute, e.g., as
a boolean flag stating that the build was successful. To
achieve this, the mapping for builds does not create a sep-
arate node of type “Build”, but identifies the corresponding
GithubCommit node using the commit url, and adds the
desired attribute.

For other analyses, graph structures are a better choice, as
they, for example, allow to detect developer groups around
certain files and folders through network analysis. In this
case, users define a mapping that creates nodes for each el-
ement and establishes links between them instead of storing
the same information twice. Builds could thereby also be-
come nodes of their own, and links to the respective commits
are established.

3.3 Mission Extension

As an extension point of the original study, Stackoverflow
data can be used to provide a proxy for someone’s exper-
tise with a given language or framework. To add this data,
users first need to select the respective explorer and define
keywords of interest (e.g., “ruby-on-rails”). Secondly, they
have to create a mapping that specifies a link between the
Stackoverflow data and the Github/Travis-CI data. This
can be achieved by creating a foreign key field on the dis-
play_name property of the Stackoverflow user object. If
a user registered their Github and Stackoverflow accounts
with the same username, the system creates the respective
link between the two user objects. Similar to the Travis-
CI/Github linkage, the memory footprint can be reduced by
merging the Stackoverflow user information into an existing
Github user node. Beyond explicit links, users can instruct
DataRover to scan strings like the body of Stackoverflow
questions for URLs. If hyperlinks are found, that reference,
for example, a Github Issue or a Github Commit, they are
also created within the resulting dataset.

https://youtu.be/mt4ztff4SfU
https://bit.ly/kowark-ase-16-data
http://api.travis-ci.org/

Data-Rover Missions Connected APls Background Tasks Logout
Collect Rails Data
Last run: n/a
Edit Mission Run all Explorers! Initialize DB Cleanup DB

Explorers

Github Commit Explorer Explore! Mappings

update samples: false, repo_name: rails, repo_owner: rails, branches: master, dev

update samples: false, repo_name: rails, repo_owner: rails

Stackoverflow Question Explorer Explore! Mappings

update_samples: false, keywords: ruby-on-rails

Available Explorers for your Rover

Search

Stackoverflow Question Explorer (v2.1)
Gets Stackoverflow questions for a given keyword.

Github Commit Explorer (v3.0)

Extracts Git commit information for a given github repository and owner. Will smartly use the datetime of the last run to avoid costly stalls.

Github Issue Explorer (v3.0)
Extracts Issue tracking information for a given github repository and owner.

Google Drive Explorer (v1.0)
Extracts metadata from Google Drive folders (who edited what when...).

Mission Status

Github Commit Explorer

© page: 130, results: 3900 20.05.2016
11:30:45
() page: 120, results: 3600 20.05.2016
11:30:37
© page: 110, results: 3300 20.05.2016
11:30:28
() page: 100, results: 3000 20.05.2016
11:30:20
© page: 90, results: 2700 20.05.2016
11:30:11
Travis-Cl Explorer
Stackoverflow Question Explorer
[er———
Add to Mission
Data Import
Add to Mission _
() adding 95 relationships (0.055s) 20.05.2016
11:30:19
Add to Mission
_ © updating [["GithubUser", 4], ["GithubCc 20.05.2016
11:30:19
Add to Mission _ .
o storing [] new nodes (0.0s) 20.05.2016
11:30:19

Figure 1: Screenshot of the mission control overview page of DataRover. Users can edit mission parameters,
add explorers from the catalogue, jump to configuration pages for each explorer, and get latest status infor-
mation from each explorer and the data storage system on the right hand side. Explorers can also be started
individually or all at once through the “Explore!” and “Run all Explorers!” buttons.

(GithubUser)
login: tkowark

url: https://api [...] sers/Somae

committer |html_url: https://github.com/Somae

GithubBranch

author

[GithubCommit
author_date: 2015-02-04722:18:26+00:00
commit_date: 2015-02-04722:18:26+00:00

commit.message: Merge pull [...] , ref #361 branch name: master
htmi_url: https://git [...] ba99255c0f url: https://api [...] ree/master
sha: dlellb7fd7d [...] ba99255c0f files

GithubFileChange
filename: app/models/event.rb
status: modified
additions: 2
deletions: 2
changes: 4
raw_url: https://qit [...] s/event.rb
patch: @@ -289,9 + [...] nd end

GithubCommit]
(url: https://api [...] 8b68de600f)

url: https://api [...] ba99255c0f

\

parents

Figure 3: Graphical representation of the “Linked
Mapping” for Github repository data.

3.4 API Changes

Once a data collection job is set up, it will continuously
run until users decide to stop it. If during this time the API
of a tool changes, explorers will produce errors, of which the
users are notified via email. They can then either select a
new explorer that is suitable for the new API version or need
to implement one themselves. If changes only manifest in
the returned data, e.g., if a field is added to the result, users
will also get notified, but only have to change the mapping
definition instead of altering the parser definition. Once the
mapping is updated, the explorers are restarted and parsing
continues as expected.

In summary, the front end limits user interaction to pro-
viding input parameters for the explorers and adapting data
mappings to their needs. By using template mappings, and
the “opt-in” flag, the amount of mapping entries that have

812

to be provided manually is limited to only fields of direct
interest to the user.

4. IMPLEMENTATION

DataRover is a web application written in Ruby on Rails.
Its architecture is presented in Figure [l In the following,
we describe implementation details of the main classes: ex-
plorers, mappings, and data stores.

~

DataRover

Mission

trigger trigger

[—————

Explorer 1 Explorer n
T Tools
store H
Mapping . ¥
:default_keys => [“url”] | A/ | """ 7
:opt_in => true JSON Document Jemmmmmmm = .
“” -> type_name: A {link: { | Target DBs
“link” -> type_name: B url: “example.org” :
1
1 Neodj
1

store/query

1
Base Data Store i Mongo
I L+—" b8
¥ create

Concrete Data

. Store
Constrained Property ~—a| sap
Graph traverse : HANA
link 1
l\ ’

Figure 4: Overview of the internal classes (angled
corners) and data (round corners) involved in stor-
ing software repository information with DataRover.

Data-Rover Missions Connected APls Background Tasks Logout

Mappings for Github Commit Explorer of Mission Collect Rails Data

Linked Mapping

+EECRCETCI | Name | Linked Mapping

JSON sample

"author": {
"login": "tkowark",
"id": 7260676,
"avatar_url": "https://avatars.githubusercontent.com/u/7260676?v=3",
"gravatar_id": "",
"url": "https://api.github.com/users/Somae",
"html_url": "https://github.com/Somae",
"followers_url": "https://api.github.com/users/Somae/followers",
"following_url": "https://api.github.com/users/Somae/following{/other_user}",
"gists_url": "https://api.github.com/users/Somae/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Somae/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Somae/subscriptions”,
"organizations_url": "https://api.github.com/users/Somae/orgs",
"repos_url": "https://api.github.com/users/Somae/repos",
"events_url": "https://api.github.com/users/Somae/events{/privacy}",
"received_events_url": "https://api.github.com/users/Somae/received_events",
"type": "User",
"site_admin": true

1,
"branch": {

"name": "master”,

"url": "https://api.github.com/hpi-swt2/event-und-raumplanung/tree/master"
1

"commit": {

"author": {
"name"

Meike Baumgdrtner",
"email": "meike.baumgaertner@googlemail.com",
"date": "2015-02-04722:18:26Z"

"committer”: {
"name": "Meike Baumgdrtner",
"email": "meike.haumaaertner@acoalemail.com".

Default key url

[erm———————
j Opt in? @ Graph Preview

B éomments_url ": "https://api.github.com/repos/hpi-swt2/event-und-raumplanung/commits/dlel1b7fd7d7983e33a3f76aeddt

Mappings
w Q
type_name GithubCommit
datatype j
"author" Q
type_name GithubUser
datatype j
"author.login" Q
datatype j
"branch" Q

type_name GithubBranch

j -

datatype

Figure 2: Screenshot of the mapping definition front end of DataRover. Users can select JSON element on
the left side and either edit an existing or create a new mapping. For the overall collection of mappings, it
is possible to define whether unmapped elements are by default ignored or stored, as is. The “Graph View”
button triggers the creation of a graphical representation of the resulting dataset (see Figure [3)).

4.1 Explorers

Each explorer is a subclass of an abstract explorer class.
To implement a new explorer, only a single method that
performs the respective API call using the parameters spec-
ified by the user has to be implemented. For example, the
explorer for git repository data on Github queries the API
for all commits in a given repository and continues to col-
lect details (i.e., file changes and patches) about the single
commits, which are not included in the initial response.

Each returned element (i.e., JSON object containing infor-
mation about commits) is stored in a “DataStore” instance.
These instances are initialized with a mapping and later
perform data transformation, linking, and storage. The
explorer implementation itself is oblivious to this process.
Hence, for example, the whole parser for Github Commits
only contains code for client creation, a call to retrieve all
branches, retrieving a list of commits, and the details for
each commit. Overall, 10 lines of code (LoC) suffice when
using the OctokitEI client gem for Ruby. Creating similar
implementations for other APIs are straightforward as Ruby
even provides internal mechanisms for XML to JSON trans-
formation (Hash.from_zml(zml_doc).to_json). Other poten-
tial data sources are third party tools and libraries, e.g.,
for source code analysis. For them, the implementation in-
cludes encapsulating preparations of the source code repos-
itory, configuring the tool, calling it through the command
line interface (CLI), parsing the output, and transforming it
into JSON. For the metric_fu tool suite available for Ruby

“https://github.com/octokit/octokit.rb

813

on Railsﬂ this amounts to roughly 200 LoC, albeit most of
this performs repository setup and cleaning and is therefore
independent from changes to the tool.

4.2 Data Mappings

For the JSON documents retrieved by an explorer, a map-
ping needs to be present which, in turn, comprises a set of
mapping entries. Each mapping entry either directly refers
to a JSON key or specifies a regular expression. In the lat-
ter case, the mapping is applied for all matching elements.
This, for example, is useful to avoid duplicate mapping defi-
nitions for all elements ending with “_at” within Github API
responses. Within mapping entries, any of the options pre-
sented in Tablecan be specified. DataRover checks wether
combinations of options are invalid or contradictory (e.g.,
using type_name and datatype for the same element) and
warns the user accordingly. Unmapped JSON elements are
ignored if the “opt_in” flag is set for the entire mapping. Oth-
erwise, the elements will be stored using the corresponding
JSON keys as relation, or attribute names. Type names
have to be provided by users for all objects nested within
the JSON document. Finally, a “default_key” can be defined
to avoid having to specify “url” as a uniquely identifying
attribute for all objects.

4.3 Data Stores

Based on the provided mapping, the DataStore base class
performs transformation of JSON objects into constrained

®https://github.com/metricfu/metric_fu

https://github.com/octokit/octokit.rb
https://github.com/metricfu/metric_fu

Table 1: Reference of mapping entry options.
Mapping Key Meaning
:type_name Type of a resulting node. If the for-
eign_key option is also set, type of the
linked node.
JSON key that uniquely identifies a node,
e.g., a Github URL or an email address

:primary_key

:datatype Allows to denote special types like long
strings or dates, which require different
column types or preprocessing for certain
target databases.

:ignore Skips this field in graph creation

:move_to Target element to which a JSON element

and its sub-elements are moved

Allows renaming an attribute or relation

Uniquely identifying attribute of a node
class which this element refers to

Strings will be parsed for URLs that iden-
tify other nodes

Only a relation is created but the linked
object is not updated.

Relations are only inserted if the linked
object is already present in the database.

:rename_to
:foreign_key

:contains_links

:no_updates

:no_inserts

directed property graphs in which nodes are labeled with
a class, have attributes, and are linked by relations, which
itself do not contain attributes. Once the graphs are built,
they are stored into concrete database systems according to
rules defined within database specific data store implemen-
tations. For graph databases, the resulting property graph
is stored, as is. For relational databases, a table for each ob-
ject class is created and relations are persisted in separate
join tables. To avoid creation of duplicates upon multiple
parsing runs, the primary_key property is used by the data
stores to query for existing elements, which in turn are up-
serted with the newly retrieved data. Thus, each concrete
data store has to also implement a query interface allowing
for node lookups based on primary key and attribute values.

4.4 API Monitoring

DataRover monitors the queried APIs. Contrary to the
approach presented in [6], our system does not use a proxy
server, but directly compares each returned JSON object
against previously received versions. This allows to detect
whether new elements have been added to the responses or
if data types of any elements changed. Null-values, empty
strings, or empty arrays do not overwrite existing samples. If
elements are no longer detected in the JSON responses, they
are not removed from the sample, as it is possible that this
behavior is specific to a certain project and does not apply
to all explorers. This method can also be used to bootstrap
mappings when creating new explorers. Upon their first in-
vocation without a valid mapping, responses are collected to
form a sample JSON file. From this file, a sample mapping
is created containing an entry for each detected JSON key.
Users can then modify these mappings as needed.

S. EVALUATION

Evaluation of our system is ongoing. To show that it
simplifies ETL processes for MSR researchers, we plan to
perform an evaluation according to Kitchenham [4], i.e., de-

814

Table 2: Query times and memory consumption
for flat and linked mappings on the Ruby on Rails
repository data. System: 2,3 GHz Macbook Pro,
16GB RAM, Mac OS X 10.11.5. Queries: average
of 20 runs, fastest and slowest removed. Databases:
Neo4j Community 2.3.2 and PostgreSQL 9.4.1.

Schema Memory Query Runtime
Linked, no “opt-in” (Neo4j) | 261.08 MiB | 492ms

Linked (Neo4j) 121.15 MiB | 280ms

Flat (Neodj) 132.57 MiB | 221ms

Flat (PostgreSQL) 24.50 MiB | 30ms

Linked (PostgreSQL) 33.88 MiB | 54ms

fine requirements for an ETL tool, identify shortcomings of
existing solutions, and discuss how our tool overcomes them
based on exemplary use cases. Beyond ease of use, the fol-
lowing aspects are also relevant for assessing data rover.

5.1 Data Footprint

For a first estimate of different data schemas on memory
consumption and query performance, we extracted commit
data from the Ruby on Rails Github projectEI and stored
it once using a flat mapping, and using a linked version,
with and without the “opt-in” flag being set. As of May
20, 2016, the repository contains around 58.000 commits
created by close to 3000 collaborators. Using the flat map-
ping and omitting any unnecessary elements, only one node
per commit is created containing the email addresses of the
committer and author, as well as the commit timestamps.
Using the graph-like mapping, separate nodes for users and
commits are created. As an example query, the amount of
commits contributed by each author is determined.

The results for a Neodj database are shown in Table [2|
Without the “opt-in” flag, the resulting data set is about
twice as big as the minimal one. In terms of total data size,
this difference seems marginal at first, but scaling up to mul-
tiple repositories of similar or even larger size, it can decide
whether an analysis is performable on a personal laptop or
a larger system is required. The flat mapping does not fur-
ther reduce memory footprint as each commit node needs to
store duplicate information, which outweighs the overhead
for node, relationship, and index creation for users. Query
times for the flat mapping, on the other hand are faster, as
no relationships need to be considered. Storing the same
data in a PostgreSQL database, the flat mapping not only
provides faster query times but also reduces memory foot-
print significantly. We plan to extend these analyses to data
sets created from multiple sources and more complex queries
in the future.

5.2 Data Import

The flexibility in data storage comes at the cost of ad-
ditional computing that is necessary to transform each re-
turned JSON object, lookup objects in the target database
by their primary keys, and perform the upsert operations.
To compare our solution to state-of-the-art implementations,
we plan to perform identical data import tasks with the sys-
tems mentioned in Section [6] and DataRover and measure
the overall completion time. Through data mappings iden-
tical data schemas can be created, thus, allowing to compare

Shttps://github.com /rails/rails

https://github.com/rails/rails

data quality, as well. For the presented use case, we can al-
ready conclude that, in comparison to the response times
of the APIs, the data import overhead is negligible. Hence,
future evaluation will mainly focus on cases where data im-
port costs slow down the overall process significantly, such
as the import of large, local Git repositories.

5.3 Link Discovery

To assess the quality of link discovery, a gold standard
dataset of Stackoverflow members and their corresponding
Github accounts needs to be created and compared against
the links DataRover detected through foreign key mapping
and link detection in texts. From this data, precision and
recall allow to quantify link quality and compare it to com-
peting systems. For the sample use case, links for 2320 of
the total 3075 Github user accounts could be detected using
the foreign key approach presented in Section

Through these different evaluations, we aim to not only
assess whether DataRover actually allows MSR researchers
and practitioners to collect, link, and store software reposi-
tory data in a more convenient manner with less program-
ming overhead, but also determine if the resulting datasets
allow for faster analysis by reducing query times or memory
consumption.

6. RELATED WORK

Import of ground data is a necessity for all software repos-
itory mining (MSR) tools. Mainly, this task is achieved
through plugin architectures, which allow for distributed de-
velopment of data collectors and on-demand addition of new
features. A downside of this approach is the strong connec-
tion to the target platform. An Alitheia Core [3] plugin for
parsing Bugzilla data, for example, requires approximately
300 lines of code, most of which implements integration of
the data into the platform and therefore is not reusable for
other tools. A different approach was taken by Ghezzi et al.,
who developed SOFAS, a service-oriented platform for soft-
ware repository mining [2|. Here, data collectors are stan-
dalone services who return data in RDF format according
to the Software Evolution ontology family. While RDF data
can be transformed into other formats to enable different use
cases, e.g., by using RDF-to-relational mapping systems like
ontop [5], the additional data processing step is time con-
suming, especially for large software repositories. To pro-
cess such large repositories, BOA was developed [1]. It frees
users entirely from data importing tasks and lets them fo-
cus on large scale analysis. Unfortunately, this setup also
prevents single users from directly extending and using the
platform for their own purposes, e.g., importing data from
industry projects. Our system therefore extends the existing
landscape of MSR tools with lightweight data collection and
transformation. The configurable mappings further enable
reuse of existing analyses by creating data schemas similar
to the ones used by the aforementioned tools.

7. SUMMARY

In this paper, we presented how DataRover stores soft-
ware repository data by mapping input JSON objects to con-
strained property graphs. Using this approach, minimalistic
data sets tailored to specific use cases can be created, which
reduces memory consumption and increases query perfor-
mance. The system’s linking mechanisms further allow to

815

add new data sources on demand in order to extend exist-
ing analyses. With the built-in API monitoring mechanism,
necessary adaptations to explorer implementations or map-
ping definitions are detected in a timely manner.

7.1 Availability

The system is publicly available at |http://bitbucket.org/
tkowark /data-rover|and distributed under MIT license. The
presented use cases can already be performed and additional
explorers for Jira issue trackers, organisation directories of
large companies, and plain websites are available. Deploy-
ment is automated through Capistrancﬂ tasks, which create
a running DataRover instance on a selected target system.
To create such a system, a Vagrantﬂ file can be used to install
and setup all necessary operating system packages within a
virtual machine.

7.2 Future Work

Besides cleaning up the implementation and providing
bugfixes, future development will focus on creating explor-
ers for additional source systems and supporting further
target databases. With this foundation, we aim to deploy
DataRover within real companies, to observes how the in-
stant availability of holistic, interlinked software develop-
ment data is used by development teams in practice.

8. REFERENCES

[1] R. Dyer, H. Nguyen, H. Rajan, and T. Nguyen. Mining
Source Code Repositories with Boa. In SPLASH 2013,
October 2013.

G. Ghezzi. SOFAS, Software Analysis as a Service.
Improving and rethinking software evolution analysis.
PhD thesis, University of Zurich, 2012.

G. Gousios and D. Spinellis. A Platform for Software
Engineering Research. In Mining Software Repositories,
2009. MSR ’09. 6th IEEE International Working
Conference on, pages 31-40, 2009.

B. A. Kitchenham. Evaluating software engineering
methods and tool part 1: The evaluation context and
evaluation methods. SIGSOFT Softw. Eng. Notes,
21(1):11-14, Jan. 1996.

M. Rodriguez-Muro, R. Kontchakov, and

M. Zakharyaschev. Ontology-based data access: Ontop
of databases. In The Semantic Web - ISWC 2013 -
12th International Semantic Web Conference, Sydney,
NSW, Australia, October 21-25, 2013, Proceedings,
Part I, pages 558-573, 2013.

S. M. Sohan, C. Anslow, and F. Maurer. Spyrest:
Automated restful API documentation using an HTTP
proxy server (N). In 30th IEEE/ACM International
Conference on Automated Software Engineering, ASE
2015, Lincoln, NE, USA, November 9-13, 2015, pages
271-276, 2015.

P. Wagstrom, C. Jergensen, and A. Sarma. A Network
of Rails: A Graph Dataset of Ruby on Rails and
Associated Projects. In Proceedings of the 10th
Working Conference on Mining Software Repositories,
MSR ’13, pages 229-232, Piscataway, NJ, USA, 2013.
IEEE Press.

2]

(6]

"http://capistranorb.com
8http://vagrantup.com/

http://bitbucket.org/tkowark/data-rover
http://bitbucket.org/tkowark/data-rover
http://capistranorb.com
http://vagrantup.com/

	Introduction
	Users
	Data Collection & Linkage
	Job Definition
	Mapping Selection
	Mission Extension
	API Changes

	Implementation
	Explorers
	Data Mappings
	Data Stores
	API Monitoring

	Evaluation
	Data Footprint
	Data Import
	Link Discovery

	Related Work
	Summary
	Availability
	Future Work

	References

