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Abstract—In any sufficiently complex software system there
are experts, having a deeper understanding of parts of the
system than others. However, it is not always clear who these
experts are and which particular parts of the system they can
provide help with. We propose a framework to elicit the expertise
of developers and recommend experts by analyzing complexity
measures over time. Furthermore, teams can detect those parts
of the software for which currently no, or only few experts exist
and take preventive actions to keep the collective code knowledge
and ownership high. We employed the developed approach at
a medium-sized company. The results were evaluated with a
survey, comparing the perceived and the computed expertise of
developers. We show that aggregated code metrics can be used to
identify experts for different software components. The identified
experts were rated as acceptable candidates by developers in over
90% of all cases.

Keywords-domain experts; expert identification; software met-
rics; software quality;

I. INTRODUCTION

The Bus Number was informally defined by Coplien as
the amount of developers that “would have to be hit by a
truck (or quit) before the project is incapacitated” [1], with the
worst answer to the question being “one”. Losing developers
in a software projects is especially disruptive if they were
experts for a part of the system and contributed to the bus
number. The most common ownership model for code is that
of subsystem ownership [2], in which an expert takes primary
responsibility for one or more software components. However,
in large and usually also distributed software projects it is
often not clear who these experts are and which parts of
the system they have deep knowledge in [3]–[5]. As such,
when needing detailed knowledge of a subsystem, the expert
needs to be found in a time-consuming, manual process,
including possibly multiple referrals. Management has a vested
interested in determining and possibly increasing the bus
number, i.e. the amount of expert developers, in order to make
the project more resilient. Uneven distributions of experts can
additionally be an indicator of low collective code ownership,
a core concept of Extreme Programming. It describes the idea
of every programmer being able to improve any code anywhere
in the system [6]. High levels of collective code ownership can
help in ensuring that the overall design is based on technical

decisions, rather than following Conway’s Law1 [7]. It thus
helps to encourage developers to feel more responsible for the
quality of the whole project [2], [8]. The Analyzr framework
enables analyses on the expertise of developers for parts of
the system based on proven code complexity measures. It is
publicly available as open-source software on GitHub 2 under
the MIT license.

II. RELATED WORK

Related work for the identification of domain experts using
code complexity measures can be found mainly in the areas
of measuring and aggregating source code metrics, code own-
ership as well as alternative methods of expert identification
techniques.

A. Source Code Metrics

Coleman et al. [9] evaluate different software metrics in
regards to their suitability as software maintainability predic-
tors. The authors settle on the McCabe complexity as well as
a set of Halsteads metrics. They point out that their approach
could help “maintainers guide their efforts”. Clark et al. [10]
explore the use of software metrics in the area of autonomous
vehicles. The authors rely solely on the McCabe complexity
as they point out that a correlation between code errors and a
high complexity was found [11]. Nagappan et al. [12] employ
the complexity alongside a set of object oriented metrics to
ascertain software properties. They argue that there is no
universal set of metrics and that metrics have to be chosen
on a per-project basis.

B. Aggregation of Code Metrics

Vasilescu et al. [13], [14] point out the need for aggregating
metrics as most of them are defined on a micro level, such as
functions or classes. However, conclusions have be drawn on
a component or system level. Mordal et al. [15] point out the
deficiencies of using the average to aggregate metric scores.
They introduce the Squale model, which allows effectively
comparing different metric values by normalising them into a
given interval of values.

1Conway’s Law states that the software structure developed in organizations
reflects the organizational communication structure.

2https://github.com/frontendphil/analyzr
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C. Code Ownership

Code ownership describes the approach of assigning source
code or entire software systems to their human owners. these
models can range all the way from a single product specialist,
managing all the code to collective ownership, where respon-
sibilities are shared amongst all developers [2].

Avelino et al. [16] propose an automated approach to
estimating the Truck Factor (TF) of a project, a measure in
the agile community of how prepared for developer turnover
a project is. The authors state that the majority (65%) of the
133 surveyed systems extracted from GitHub had a TF ≤ 2.

Bird et al. [17] show that high levels of ownership were
associated with less defects in the context of the two software
products Windows Vista and Windows 7. Foucault et al. [18]
attempted to replicate Bird’s study in the context of free/libre
and open-source software projects (FLOSS). They explored
the relationship between ownership metrics and module faults
in seven FLOSS projects, but only found a weak correlation.
Thus, the authors conclude that the results of ownership
studies performed using closed-source projects, which showed
ownership metrics as accurate indicators of software quality,
do not generalize to FLOSS projects.

Thongtanunam et al. [19] suggest complementing code own-
ership heuristics that rely on file authorship with code review
metrics. This also includes those developers that contributed
to the code by critiquing changes and suggesting edits.

D. Expert Identification

McDonald and Ackermann [20] describe a general architec-
ture for expertise locating systems. They point out that these
systems are not designed to replace key operational roles, such
as a senior employee or guru, but can decrease workload and
support decisions where previously no help was available.
Furthermore, the authors state that organizationally relevant
sources of information and heuristics need to be fitted to the
work setting. They conclude that recommendation systems can
help in finding experts who may not otherwise have been
identified.

Schuler et al. [21] present an approach for retrieving the
expertise of developers through analysis of method changes
as well as method calls based on data gathered from code
repositories. However, the authors do not take into account
metrics that would indicate the quality of the code being
examined.

Anvik et al. [22] present an approach to recommending a
set of developers suited for assignment to bug tickets in the
context of the Mozilla and GCC projects. They employed
support vector machine classifiers, based on the one-line
summary and full text description of collected bug reports that
developers had previously been assigned to or had resolved.
The feature vector was based on the frequency of terms in the
text. The authors claim a precision of 64% precision for the
Firefox project.

In the same problem domain, Tian et al. [23] propose a
model for assigning developers to bug reports. Their model
combines activity-based (developers who fixed similar bugs

in the past) as well as location-based techniques. The authors
report that the most important similarity feature in their unified
model was whether a developer had previously edited a file
containing a potential bug. The proposed framework expands
on this idea by enabling the rating of changes based on
complexity metrics.

Venkataramani et al. [24] built a model of developer ex-
pertise in a target domain by mining developers activities in
different open source projects. The example used is a rec-
ommendation system for StackOverflow based on data mined
from GitHub. The system is based on author/technical term
mappings extracted from source code and commits by authors
in a bag-of-words model. In a subsequent step, technical terms
associated with autors are mapped to StackOverflow tags.
Unfortunately. the details on this mapping are not presented.
The authors state that for a sample of 15 developers, 7 of them
answered StackOverflow questions with tags that the model
had discovered she was proficient in.

LaTozza et al. [25] point out that expertise not only means
knowing more than others but also knowing where to look
for the answer, or whom to ask. Their research revealed
that interruptions by colleagues were ranked second when it
came to issues hindering developers from working. Therefore
approaches that identify more specific component experts and
thereby spread the workload, would alleviate this burden for
current experts.

III. COMPLEXITY MEASURES

The selection of appropriate complexity measures to de-
termine developer expertise is vital to the quality of Analyzr
results. Code metrics have to be chosen on a case by case
basis as no single set of metrics can fit all use cases and
contexts. As a basis for selecting metrics we propose Kaner’s
“Ten Measurement Factors” [26] for software metrics as well
as further literature concerning the most relevant metrics
for software design [27]–[30]. We employed metrics that
measure independent aspects, used different approaches and
incorporated different code parts in order to compute their
results [31].

Figure 1 shows a summary of the development of a se-
lection of code metrics at the company under study. In the
shown timeframe, the company transitioned from a “start-
up” phase, where the focus lay on fast feature introduction
to support first customers, to a “sustainable” phase, focusing
on a maintainable code base. The shift of focus is apparent in
the increase of code quality around the end of 2011, where
several refactorings took place. Since then, the Cyclomatic
Complexity as well as the Halstead Volume have slowly begun
to degrade again, as new code was added. This shows that
real world circumstances are directly reflected in source code
metrics, allowing insights into the development process.

In our study, the following three code complexity measure-
ments were employed:

A. McCabe Complexity
The McCabe or cyclomatic complexity measure is derived

from the amount of possible control flows that exist in a



Fig. 1. Excerpt of changes in Halstead Volume (green) and Difficulty (orange)
as well as Cyclomatic Complexity (blue) in the back end of the studied
company. Deltas were oriented to indicate improved code quality, e.g. lower
complexity, with rising chart lines. For brevity all charts were combined,
however, as the deltas are from different domains, the absolute values do not
allow direct comparisons. The grey bars indicate the amount of commits.

program [32]. A low McCabe complexity would thus be com-
puted for a method with no branches and or one with only a
simple type check in them. The metric operates on an abstract
syntax tree and does not rely on a specific programming
language [11]. The cyclomatic complexity v of a program G
is defined as:

v(G) = e− n+ 2p

where e is the number of edges, n is the number of nodes,
and p is number of exit nodes (amount of possible program
flow exits).

B. Halstead Metrics

Halstead introduced a set of metrics based on the concept
that the complexity of a program will increase with the
addition of new operators and operands [33]. Halstead based
his metrics on four key variables: η1, N1, the number of
distinct and total operators, as well as η2, N2 the number of
distinct and total operands. We focus on difficulty and volume,
as these are the most accepted in literature [9], [34]. They are
defined as:
• Volume: V = N × log2 η

• Difficulty: D =
η1
2
× N2

η2

C. Coupling

Coupling metrics describe the amount of dependencies
between classes in a package and those outside of it. Software
is easier to understand and maintain if it is split into modules
of reasonable size [35]. However, coupling metrics are only
applicable to programming languages that support object-
oriented idioms such as classes and imports. While this is
the case with Java, JavaScript does not natively support these
concepts [36]. There are two types of coupling:
• Efferent coupling, also known as Fan-Out,
• Afferent coupling, also known as Fan-In.

Efferent coupling describes the number of classes that a given
class depends on. Therefore the class can be affected by
changes made elsewhere. While a high value in this metric
does not necessarily represent bad design, it is often an
indicator that the class has too many responsibilities, is poor
in maintainability and should be split [37]. Afferent coupling

Fig. 2. Analyzr screenshot showing the changes in complexity measures for
a single commit of the Firebug project.

Fig. 3. Analyzr screenshot showing developers ranked by expertise for a
component of the Firebug package.

describes the amount of classes that depend on a given class.
Changes in that class will affect all classes which depend on
it. High values in either case of these metrics can be indicators
for problems. Classes which have high values for both efferent
and afferent coupling are often a source of bugs [12].

IV. THE ANALYZR FRAMEWORK

Analyzr identifies component domain experts by aggregat-
ing the results of various code complexity measurements on
collected development data. Figure 2 shows the changes in
metrics for a single commit3. Using this data, component
domain experts are identified, see Figure 3.

Analyzr abstracts from the different version control sys-
tems that an organisation uses in order to allow analyses
on a unified view of the repositories. For every repository,
commit information, such as modified files and author, as
well as meta-information about the repository itself, such
as a list of branches, are gathered. This collected data is
then used as input for proven third-party tools, specialized
for the employed programming languages, which perform the
chosen complexity measurements. The results of these tools
are extracted, transformed into a common data model and
saved in a typical Extract, Transform, Load (ETL) process,
allowing analyses on well defined data structures. Analyzr
aggregates the analysis results and presents visualizations to
the user in a web interface, see Figure 1.

A. Architecture

Analyzr itself is split into a back end, using the Python
web-framework Django [38], and a front end, using HTML5
and JavaScript, which is accessed with a browser. This allows

3https://github.com/firebug/firebug/commit/
076da997e6bc0cb14b27afcc2d845c730de52fcf

https://github.com/firebug/firebug/commit/076da997e6bc0cb14b27afcc2d845c730de52fcf
https://github.com/firebug/firebug/commit/076da997e6bc0cb14b27afcc2d845c730de52fcf
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Fig. 4. FMC block diagram of the back end architecture of Analyzr.

Fig. 5. UML class diagram of the models used to store gathered repository
information.

long-running analyses tasks to be performed on the server and
not strain client resources. Figure 4 depicts the back end,
which collects data from the different repositories that are
to be analysed and stores the data which is produced during
analyses. It exposes a REST interface to the front end, which
presents a user interface to explore the data.

B. Data Model

The employed data model reflects the basic structure of a
software repository. It is shown in Figure 5. A Repo entity
holds information such as the location of the remote repository
and user credentials and has a number of branches, which in
turn are connected to a number of revisions, e.g. commits.
For the sake of query performance and join avoidance, some
information, such as the revision author is kept redundantly,
in both the file and revision entities.

C. Extensibility

The task of communicating with the version control system
is handled by Connector implementations. Currently, Sub-
version and Git repositories are supported. Every specialised
connector is able to extract information from each revision in
a given branch. Other version control systems can be added
by implementing the minimal interface shown in Figure 6a.
Checker classes (see Figure 6b) wrap third party code analysis
tools, ensuring that they expose a common interface. Multiple
checker instances can be used for analysing a certain program-
ming language, so that that weaknesses in the analysis of one
tool can be covered by another.

D. Third Party Tools

Our approach relies on proven, time-tested third party tools,
that implement the described code metric algorithms. For Java

Fig. 6. The interfaces which have to be implemented when adding a new
Connector or Checker to Analyzr.

as well as JavaScript, specialized tools were chosen.
1) JHawk: Java, as a statically typed language, allows com-

puting a variety of metrics, ranging from generic complexity
to object oriented ones [39]. JHawk [40] offers support for all
of the software metrics required by Analyzr. It is possible
to start measurements in a given directory and restrict the
set of files which will be analysed. Using this mechanism
we could incorporate the knowledge available in the version
control system to only reassess changed files. JHawk produces
an XML that is then further processed and loaded into the
database.

2) Complexity Report: Complexity Report [41] is an open
source JavaScript software, which can be run from the com-
mand line. As JavaScript is loosely typed, it does not natively
facilitate the concept of packages, therefore Ce and Ca cannot
be measured. Nevertheless, we are able to measure the Mc-
Cabe complexity, the Halstead metrics, and the source lines
of code (SLOC) using Complexity Report.

V. METRIC AGGREGATION AND EXPERTISE EXTRACTION

One of the main functions of Analyzr is to aggregate the
different collected complexity measures into a single score,
representing developer expertise for components. Metrics are
computed on a file basis, instead of directly at package or
component level, as this allows more fine-grained analyses
and supports applying weighting operations earlier in the cal-
culation. These values are then again aggregated on a directory
level to form overall metrics for packages. However, some of
the employed complexity measurements produce results on a
function level. These low-level results need to be aggregated
into a single value. Regular aggregation methods, such as mean
and median are not suitable for all code metrics [14]. As code
metrics have their own domain and semantics they are hard
to compare. This is an issue Mordal et al. tried to solve with
their Squale model [15].

A. Software Quality Enhancement (Squale)

Squale summarizes metric values by highlighting those
which are problematic and weighs those values more that
have recently improved [15], e.g. it emphasizes improvements
in badly-rated system parts. In general, Squale provides a
bounded, continuous scale for the comparison of metric values.
It combines low-level marks into individual marks, which are
then aggregated to a global mark:



TABLE I
INDIVIDUAL MARK COMPUTATION FOR THE COMPLEXITY METRICS

EMPLOYED BY ANALYZR.

The lower and upper thresholds describe those input values below and
above which constants are returned for IMi.

Metric Formula Lower
Thr.

Upper
Thr.

Ref.

Cyclomatic
Complexity

IMcc = 2 (7−cc)/3.5 2 19 [42]

Halstead
Volume

IMhv = 3− 3×hv
1000

20 1000 [43]

Halstead
Difficulty

IMhd = 3− 3×hd
50

10 50 [43]

Afferent
Coupling

IMCa = 2 (30−Ca)/7 19 60 [42]

Efferent
Coupling

IMCe = 2 (10−Ce)/2 6 19 [42]

1) Low-level marks are raw values retrieved from source
code analysis, either manual metrics, assessed by hu-
mans, or automated tools, such as code metrics or rule
checking.

2) Individual marks are computed from low-level marks.
The thresholds for “good” or “bad” values with respect
to project quality are determined by experts for the given
field. They are mapped to a unified scale from 0 to 3 to
allow comparisons.

After each individual mark (IM) has been computed they
are aggregated using a weighting function. It is is defined as:

weight(IM) = λ−IM

λ defines the strength of the weighting. Common strength
values are 3, 9, and 30 for soft, medium, and hard, respectively.
Hard weightings give more weight to bad results than soft
weightings. The global mark GMλ, combining all individual
marks [15], is computed as:

GMλ = − logλ

 1

|IM |
·
|IM |∑
i=1

weight(IMi)


B. Computation of Employed Metrics

To compute the individual marks for the employed metrics
presented in Section III we used the formulas presented in
Table I, originally developed by Balmas et al. [42]. The lower
threshold and upper threshold describe the boundaries above
and below which constant values of 0 and 3 are returned. If the
raw metric value is lower than the lower threshold, the code
is assumed to not be complex and an individual mark of 3 is
returned, indicating low relevance for refactoring. In the case
of a raw metric value being larger than the upper threshold, an
individual mark of 0 is returned, indicating a strong need for
further review. Individual marks for raw metric values between
the two thresholds are computed using the presented formulas
in Table I.

C. Extracting Expertise of Developers

Our main goal is to determine the expertise of individual
developers for specific program parts. For that purpose, we
only regard developers having committed to the respective
parts within a certain time frame4. Within this time frame,
the set of revisions (r) created by an author (a), from the set
of all authors (A) up to a certain point in time (T ) is defined
as:

RT (a) = {r | r ∈ RT ∧ a ∈ A ∧ author(r) = a}

Naive approaches like counting the number of commits or
the number of lines changed as an indicator for expertise can
be used for a first estimation. However, we are confident that
for developers in an established team the expertise concerning
a program part is better reflected in the quality of the code
they produce. As most development takes place on an already
existing code base, we focus on the changes of the quality
metrics, i.e. deltas, in code metrics. For each revision within
the set RT (a), we check whether the global mark, computed
using Squale, improved or deteriorated. These changes are
attributed to the developer who authored the commit. We
count all commits resulting in increases and decreases of
software quality and calculate the developer’s individual score
(scoreT (a)):

qi = min

(
increasesT (a)

decreasesT (a)
, 1

)
scoreT (a) = qi× ln (1 + |RT (a)|)

The ratio of commits that increase versus those that decrease
software quality (qi, quality impact) is multiplied with the
logarithmic smoothed amount of total commits of the author.
The formula incorporates the total amount of commits, but
does not double the score for double the number of commits,
which would skew the score in favor of long-serving devel-
opers. In the unlikely case that a developer has not produced
a commit which decreased the code quality, we fall back to
evaluating the number of commits that were produced, as qi is
1. However, the normal case in software development is that
there are more commits which decrease, rather than increase
code quality [44], resulting in qi being lower than 1.

The score therefore combines the experience of a developer,
expressed by the number of his commits with his quality
impact, to reflect his expertise.

VI. TEST BED SELECTION

In order to evaluate the quality of Analyzr results, the
software was deployed at a collaborating software company
and real development data was analyzed. The company chosen
was a German software development company in the sector of
business process modelling. It was chosen as one of the authors
was employed there and had insights into the structures and
processes within the company.

4In our study we picked 62 days, as this served as a distinguishing
factor between temporary and permanent leave, in the context of the studied
company.



A. Company Introduction

As the company that was analyzed builds mostly applica-
tions for the web, they practice a separation between front
and back end code. Of the then about thirty developers in
the company, around ten are active in the front end and the
other twenty are concerned with back end development. The
back end of the software is implemented in Java, whereas
the front end is a JavaScript application. Furthermore, the
developed software is split into well-defined components,
providing clearly bound domains of expertise. Currently code
metrics are not an official part of the development process of
the company. However, code reviews are performed amongst
developers, with the aim of keeping the code maintainable.

B. Time Frame

When attempting to determine the current experts of a soft-
ware project the history of the project that is being analyzed
needs to be restricted to allow focusing on those developers
that have recently contributed code and are well-versed with
the current status of the software. For the studied company, our
observations and interviews pointed to an optimal time frame
for analysis of around 62 days. This period is long enough so
developers who are on a temporal leave do not get sorted out,
but it is short enough to exclude developers who are no longer
active in a certain module or have left the company.

C. Threats to Validity

Real world development data from a company has incon-
sistencies, that make analysis challenging. In the data set
collected for this paper, credentials of developers differed over
time, for example if a developer changed his user name in the
version control system. We consolidated these changes in a
manual correction phase. Data was gathered from the master
(Git) and trunk (SVN) branches of the version control systems,
as only this code represents usable increments of the software.
Code that was in other, possibly specialized development or
feature branches was not analyzed.

VII. EVALUATION

In order to evaluate the results of Analyzr and compare them
to the expectations of the developers, a survey was devised.
Survey participants were developers who volunteered. Overall,
13 developers participated, aged 20 to 30 years. Among them
were 12 males and 1 female; 5 participants were seniors, while
8 were junior developers. For the following analysis all names
were anonymized. The survey consisted of two main parts:
• Expert Selection Developers self-assessed whether they

were active in the front or the back end. Based on
their decision they were presented with the respective
components of their division and were asked to select
an expert for each. They were free to name two other
qualified developers as well.

• Proposal Evaluation Developers were presented with the
top three component experts identified by Analyzr and
were asked to rate the accuracy of each result.

FRONT END COMPONENTS

Component 1st choice 2nd choice 3rd choice
Administration Marler (100%) Prud (100%) Braaten (100%)
Analytics Marler (60%) Braaten (100%) Marler (100%)
Comparator Marler (100%) Waring (100%) Marcuso (50%)
Editor Marler (100%) Moyer (60%) Mayberry (67%)
Explorer Marler (100%) Waring (50%) Mayberry (67%)
Glossary Marler (100%) Waring (100%) Moyer (67%)
Utils Moyer (60%) Mayberry (50%) Waring (100%)
Portal Marler (100%) Waring (100%) Moyer (100%)
Quick Model Marler (60%) Waring (100%) Marler (50%)
Simulation Marler (40%) Braaten (50%) Marler (100%)
Testing Moyer (80%) Salmeron (50%) Marler (25%)

BACK END COMPONENTS

Component 1st choice 2nd choice 3rd choice
Diagram API Marston (88%) Gillette (67%) Prouty (50%)
Glossary Anstine (38%) Marston (57%) Gillette (33%)
Platform Anstine (100%) Prud (57%) Marston (50%)
SVG Renderer Marston (88%) Gillette (50%) Braaten (50%)
User Mgmt Anstine (88%) Prud (50%) Braaten (40%)
Warehouse Anstine (100%) Prud (75%) Braaten (33%)

TABLE II
EXPERTS FOR THE DIFFERENT FRONT END (TOP) AND BACK END
(BOTTOM) COMPONENTS AS VOTED BY COMPANY DEVELOPERS.

DISPLAYED PERCENTAGES REPRESENT THE CONSENSUS OF DEVELOPERS
FOR A GIVEN RANK.

A. Expert Selection

Table II summarizes the selections of the company’s staff
for first, second and third choice of rank of expertize for
each software component. The percentages given represent
the consensus of the developers for the given rank, meaning
that for example Marler was chosen most often as the best
expert for Analytics (representing 60% of the votes), and the
missing 40% of the vote-shares for the first rank favored other
candidates. A developer could be nominated as first, second
and third choice at the same time, if respondents see someone
as the only choice (or best choice and last fallback, if the
second best expert is not available). For 6 components out
of 11 in the front end and 2 components out of 6 in the
back end all surveyed developers agreed on the first choice of
expert. High uncertainty among developers concerning expert
selection, i.e. less than 50% agreement, was only apparent in 6
out of 51 choices. This data lends credibility to the hypothesis
that developers have a specific component expert in mind,
whom they would most likely consult if they had a question
in that specific domain. Furthermore, we found a high level of
agreement who was considered to be among the top experts
when asking the developers. However, both in the front as
well as in the back end, only two distinct developers were
voted as first choice: Marler and Moyer as well as Marston
And Anstine, respectively. While this is certainly flattering for
these developers, it also introduces problems. They will most
likely be interrupted frequently and if they are out of the office,
developer’s single point of contact in case of questions is lost.

The accuracy of Analyzr results was evaluated by com-
paring the level of agreement between the lists of manually



and automatically selected component experts. The developers,
who chose the experts manually, did not have prior knowledge
of Analyzr results. Figure 7 summarizes the accuracy of
Analyzr predictions for the first choice of component experts
for the whole company repository. If the prediction equalled
the manually identified expert, it was classified as a match.
Otherwise an Anaylzr result can be classified one or two off,
depending on whether the prediction missed the top result by
one or two ranks. If the prediction was not included in the
list of manually selected component experts it was considered
a miss. Analyzr was able to produce a match in 47,37% of
observed cases, with 15,79% of cases classified as one or two
ranks off. This is influenced by the fact that in the front end in
50% of cases the manually identified expert was missed. This
raises the question whether some of the developers simply did
not know who the component experts were and misidentified
them, or whether Analyzr results were inaccurate. In order
to answer this question the expert proposals by Analyzr were
directly rated by the developers.

B. Proposal Evaluation

For each of the three experts identified by Analyzr for the
software components, all interviewed developers were asked
to rate the results on a 4-point scale: “strongly disagree” (0),
“disagree” (1), “agree” (2), “strongly agree” (3). The choice
of “neutral” was deliberately omitted, as it has no semantics
concerning the acceptance of a proposed expert. Considering
the evaluated expertise of a developer, this means the proposed
developer ...

0 ... does not have knowledge of the component.
1 ... does not have enough knowledge to be considered a

component expert.
2 ... is acceptable as component expert, but someone else

would be better suited.
3 ... is identified correctly as component expert and the

result is considered useful.
The ratings regarding the first choice of expert presented
by Analyzr are summarized in Figure 8. Overall, experts
recommended by Analyzr as the first choice were rated as
either acceptable or completely correct (2 or 3 points) with
a rate of 100% in the back end and 90% in the front
end. This is evidence for the hypothesis that there are non-
obvious component experts that are unknown to developers
and cannot be identified by simply asking staff members.
However, Analyzr was able to identify these experts who were
accepted by the vast majority of survey participants.

VIII. CONCLUSION AND FUTURE WORK

In this paper we presented Analyzr, a framework for elic-
iting the expertise of developers for software components
using complexity analysis on source code. We showed that
using our approach, it is feasible to extract component experts
in a case study with a medium-size software development
company. The experts we found and suggested differed from
those that developers picked intuitively. However, the algorith-
mically extracted experts were rated by developers as accurate

in the vast majority of cases. This lends credibility to the
hypothesis that Analyzr was able to find “hidden experts”, i.e.
developers who have a lot of specific component knowledge
and can answer questions, but may not be the intuitive choice.
Identifying these experts is helpful for organisations as no
longer all questions and enquiries have to be directed to
the single obvious expert. This relieves pressure from this
expert and enables wider distribution of knowledge as more
developers become involved in solving challenging questions.
Furthermore, developers can visualize and track their statistics,
see the progress they are making, which provides an additional
incentive to produce cleaner code. Future work will focus on
iteratively improving the software based on user feedback after
having productively used it at the surveyed company for an
extended period of time. Especially, improvements to metric
selection and thresholds will further enhance the accuracy of
results. For the case of analysing object-oriented languages,
more specific metrics, such as the Method Hiding Factor or
the Attribute Hiding Factor, could be employed [39]. These
can provide better insights into the code base at the cost of
general applicability.
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