An Additional Set of (Automated) Eyes:
Chatbots for Agile Retrospectives

Christoph Matthies, Franziska Dobrigkeit, Guenter Hesse
Hasso Plattner Institute, University of Potsdam, Germany
christoph.matthies @hpi.de, franziska.dobrigkeit@hpi.de, guenter.hesse @hpi.de

Abstract—With the recent advances in natural-language pro-
cessing, combined with the ability to analyze large amounts of
data across various domains, software bots can become virtual
team members, providing an additional set of automated eyes and
additional perspectives for informing and supporting teamwork.
In this paper, we propose employing chatbots in the domain
of software development with a focus on supporting analyses
and measurements of teams’ project data. The software project
artifacts produced by agile teams during regular development
activities, e.g. commits in a version control system, represent
detailed information on how a team works and collaborates.
Analyses of this data are especially relevant for agile retrospective
meetings, where adaptations and improvements to the executed
development process are discussed. Development teams can use
these measurements to track the progress of identified improve-
ment actions over development iterations. Chatbots provide a
convenient user interface for interacting with the outcomes of
retrospectives and the associated measurements in a chat-based
channel that is already being employed by team members.

Index Terms—chatbot, agile software development, Scrum,
retrospective, software process improvement

I. INTRODUCTION

Software tools that help software users and software devel-
opers in their daily tasks have been created for as long as
code has been written [[1]]. Today, a countless number of such
tools exist, from large and powerful to small and simple. They
support various activities such as architectural design, test case
generation [2]] or collaboration within teams [3].

A. Chatbot Definition

Traditionally, support tools which take actions on behalf
of a user were referred to as software agents [4], from the
Latin “agere”, meaning “to take action”. The importance
of automation and autonomy involved with many of these
systems is highlighted in the designation softbots [3|], short for
software robots. More recently, the terms chatbot, chatterbot
or simply bot have been used to refer to support tools that
employ a conversational-style user interface [6]]. These types of
text interfaces to software services have gained popularity due
to the increasing role of instant messaging in the workplace as
well as in social encounters [7]. Messaging platforms which
are widely adopted include Facebook Messenger for social
networking or Slack for work-related communication [8].
Therefore, these platforms, where users already frequently
interact and collaborate, are where chatbots are often em-
ployed [9].

B. Chatbot Operation

At its simplest, a (chat)bot is a computer program which per-
forms various predetermined operations, receiving commands
via chat messages and performing the requested action [|10].
Figure |1| depicts the general interaction flow through such a
system. Initially, a user sends a command as a chat message
to the bot (1). The bot parses the message and performs
operations based on the message’s contents (2). To fulfill
the request, the bot might need to request (3) and receive
(4) additional information from third-party sources, such as
knowledge bases or internet resources [1]. Finally, the bot
computes a result (5), compiles a chat message and sends it
as a reply to the user (6).

~ — = Bot Context =
\

I Data Sources _-

|

|

Chat Context l -————— I
Bot

(1> = (2>' ‘”T 1‘4’ I

<6> 'ﬁl e - N

s P rer |

Overview of Chatbot operations, adapted from Inokuchi et al. [10]

Operation |

Fig. 1.

In this manner chatbots can provide a conduit between users
and tools, integrating external services and additional informa-
tion sources into already existent communication channels [[6].

C. Chatbots in Agile Teams

With the improvement of natural-language processing as
well as big data analytics and their application in conversa-
tional bots [6]], bots can grow from simple scripted tools to
“virtual teammates” [[11f], informing and supporting teamwork.

In this paper, we propose an approach for employing
chatbots in teams with a focus on analyses and measure-
ments of the data produced by the team, particularly in
the domain of software development.

Modern software development teams employing agile methods
spend a substantial amount of their time interacting with
development tools, such as Version Control Systems (VCS),
during regular development activities. The software project
artifacts [[12] produced using these systems, i.e. commits in
a VCS containing code changes, represent a “gold-mine of
actionable information” [13]], i.e. knowledge on how a team

Copyright ©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers

or lists, or reuse of any copyrighted component of this work in other works.

works and collaborates [14]-[|16]. While analyses of this data
can be used for a variety of purposes, they are especially
relevant for software development teams in the context of
their efforts to adapt and improve the executed development
process. For example, relevant metrics such as burndown
charts can be constructed by evaluating the software project
artifacts of a development iteration [17]. Chatbots provide a
convenient user interface for interacting with the project data
and these types of analyses [[6] in a chat-based channel already
being used by teams on a daily basis.

II. RELATED WORK ON CHATBOTS

A wide variety of application scenarios for chatbot usage
in teams has been described, ranging from information pro-
cessing and sharing to detecting and monitoring activities in
team communications and even providing recommendations
regarding possible next tasks [6]. Of course, they have also
been used to search for and send animated cat gifs [18] to
team members [9].

A. Software Engineering

Software developers belong to the early adopters of au-
tomation and bot use as they are familiar with automated
tools increasing code quality and team productivity [6]]. A
particularly interesting approach is the BuildBot by Ablett et
al., a chatbot in the true nature of the term: it communicates
with developers using sound [[19]. The bot uses a robotic
interface, a small Sony AIBO robot dog, which monitors the
build status of software within an agile continuous integration
approach. Should the build be broken, e.g. because tests fail,
the robot walks to the developer whose code is responsible for
the failure and notifies them (in a playful way). The authors
argue that the system increased awareness of the software’s
build status and helped agile teams with self-supervision [[19].
In modern software development, chat solutions have disrupted
previous software development processes and have replaced
email in some cases [9]], [20]]. Fitzpatrick et al. attempted
to combine the informal discussions developers have about
code with version control information reporting code changes
in a ticker tape form [21]. They point out that the studied
software developers used the close integration of versioning
information with chat functionality for such varied tasks as
growing team culture, marking phases of work or managing
work interruptions. Similarly, Lebeuf et al. report on industry
teams that use chatbots to provide instructions for development
procedures, e.g. merging feature branches, to monitor website
outages, or to manage code deployments [6], [[11]

B. Human Factors

In addition to uses in communication and data access,
chatbots have previously also been employed to tackle issues
related to human factors in software engineering. By issuing
commands to bots via chat messages in group chats, every op-
eration is shared with the team as well as logged and persisted
in the chat log [[10]]. This enables transparency and awareness
of other team members interactions with the chatbot and its

functions. It enables nontechnical team members to engage
with the bot’s capabilities without explicitly needing domain
expertise [6]. Having human team members and bots share
the same chat context enables use cases such as adopting the
chat solution as a distributed command line or a collaborative
debugger [7]. Especially relevant to the topic of employing
chatbots for process improvement approaches within agile
teams is the idea of using bots to regulate individual and team
tasks and goals [22]. For collaboration to succeed in a team, all
members must understand and share the goals set for the team
as well as the actions necessary to achieve these goals [11]].
Bots can initiate and track reminders set in earlier meetings as
well as help to monitor and visualize progress towards certain
team goals [22].

III. CHATBOTS IN AGILE RETROSPECTIVES

In order to improve the executed software development
process within a team, the current status has to be measured,
so that changes in the future can be detected. The agile
process framework currently most popular in industry [23],
Scrum, calls for a specific meeting with the goal of process
improvement: the retrospective meeting [24].

A. The Retrospective Meeting

As the name suggests, in the dedicated retrospective meeting
the team looks back at the most recent development iteration
and decides which aspects of the process should be kept and
what should be changed in the future. Issues that should be
improved are recorded as action items as outcomes of the
meeting. In the next retrospective, the development team then
decides whether headway has been made on the previously
defined actions items [25[]. While this decision relies on team
members understanding of their executed process, the Scrum
Guide also specifies that “decisions to optimize value and
control risk are made based on the perceived state of the
artifacts.” It goes on to define a task which is to “detect
incomplete transparency by inspecting the artifacts, sensing
patterns [...] and detecting differences between expected and
real results” [24]]. Similarly, Derby and Larsen suggest to “start
with the hard data” in retrospectives [17], including metrics
such as velocity, defect count, number of stories completed or
amount of refactored code.

<> Inter-team e.g. emails, chat

Unstructured & & > e ’ i

data communication messages, meeting
Intra-team communication notes, wiki entries

Semi- Y Issue ﬂ Code review €g. ':ssues, user
structured » ; stories, tasks, code
data JIRA tracker Gerrit system review comments
& . AN e.g. build reports,
Structured 0 glt alerts, commit diffs,
data Continuous Code Static code generated reports,
Integration repository analysis application logs

Fig. 2. Sources and examples of project artifacts in the software development
domain providing data of different levels of structure.

Figure [2] provides an exemplary overview of the differ-
ent sources of development artifacts available in an agile

software development team. In teams with large code bases
and therefore a large number of development artifacts to
inspect, collection and analysis is a challenge, especially for
human actors. On the other hand, a bot, equipped with human
instruction on what patterns to detect and sense, e.g. desired
outcomes from retrospective action items, can analyze large
quantities of data.

B. Chatbots for Process Improvement

Developers have built or customized chatbots to support
their daily lives, also outside of work and development activi-
ties. Early examples of this are bots which have been used to
assist with information retrieval [26]]. More recent examples
include bots that can help decide where to go to lunch or
help keep a grocery list as well as provide entertainment,
ie. to “search for images and to then add moustaches to
them” [9]]. With the varied background of bot tasks in mind, we
propose having a bot track the progress of retrospective action
items, which can come from a variety of contexts. As agile
software development teams already spend significant amounts
of time communicating in chat solutions and sometimes also
already use these during retrospectives [27]], this means no
context switch is necessary. Instead of the Scrum Master or
an agile coach analyzing project data and providing a different
perspective to team members during retrospectives, it could
be a bot that retrieves and processes the information, leaving
humans more time to interpret it.

C. Integration into the Agile Processes

Software Project Artifacts Artifact Measurements

-
D — ?2)
- , Bot Context —|~ =]~
Chat Context 1' ————— S \|
Bot \I | PY

oe_0

(5). Anal ! P

lysis 4 1 P\

‘ Results :() Q 1 ;

Developer ' 1 1 Teamin

\ , Analysis , retrospective

Fig. 3. Overview of using a chatbot for analysis of software project artifacts

Figure [3] describes the operation of the envisioned chatbot
and its integration into the agile process framework. Agile
software developers produce software project artifacts in their
daily development activities during a development iteration
(1). At the end of an iteration, they hold a retrospective
meeting, focusing on those practices that went well and should
be continued as well as defining action items for those that
should be changed. To track these action items measurements
based on the created project artifacts are created by the team
(2), e.g. the number of commits into the VCS which increase
code complexity but do not provide tests. The bot applies
these measurements to the collected project data and stores
the analysis values over time (4). Using the chat service, it
communicates the results, i.e. the change of the measurement,
to the development team members (5). This information can

be used in the next retrospective to initiate discussions on the
state of an action item, on the basis of concrete data points,
in addition to—and possibly in contrast to—the perceptions
of team members.

IV. INTEGRATION INTO EXISTING TOOLS

The use of tools is vital to collaboration within modern
software development teams, especially for geographically
distributed teams. Tools enable the automation, and control
of the entire development process [3]. Automation is also
key to many common practices of modern agile software
development, such as frequent product deliveries, which would
otherwise not be feasible [28]. There is a range of tools
available, specifically aimed at supporting the retrospective
meetings of agile teams through automation, by setting re-
minders, archiving action items [29] as well as facilitating
activities [30]. The chat solution Slack, which is popular for
work-related instant messaging [9]], features extension points
and APIs for third-party applications and bots to interact with
users via a conversation [31]. These possibilities have already
been used to create initial chatbots on the Slack platform that
support agile teams in their retrospectives [27], [32], [33].
These bots remind team members of the retrospective meeting
and can record the individual statements of developers, sum-
marizing results and archiving outcomes. While they automate
the process, this approach still fully relies on team members’
perceptions to provide the inputs for discussion. Currently
available bots can automate the tedious organizational tasks,
but do not provide an additional perspective based on the
available project data. In order to provide this additional
perspective, the chatbot must be enabled to assess a team’s
situation by measuring the team’s development data. This
can be achieved through various metrics designed for agile
practices [34]-[36] or by using tools, such as the git command
line [|37]], that developers are already familiar with from their
daily development activities.

Slack

® team member

RetrospectiveBot

active | Slackbot

@ ® |a

Today

e

All Threads P B acile team member 1042 Al
New action item: 'Every team member should make code changes
themselves and not rely on a single person to check in code.

- ! RetrospectiveBot 10:44 AMm

Y Alright! I've added your action item to today's (Feb 9th)
retrospective outcomes.

Starred

retros

Add a channel
How could we track progress on this?

Direct Messages

P B acile team member 10:45 A

W slackbot git shortlog -sn L , description: 'contributor count’

- ! RetrospectiveBot 10:45 am
W7 Ok, that command returns '2' as 'contributor count' for the last
iteration.

Do your best as a team to improve and | will report on changes on
request or at latest during your next team retrospective, which is
planned for Fri, Feb 22nd.

Fig. 4. User interface mockup of the interaction between a developer and a
retrospective bot tasked with tracking retrospective action items.

Figure [] shows an exemplary interaction during a ret-
rospective between a development team member and the
envisioned retrospective bot. A team member has identified
an improvement for the next development iteration, i.e. that
everyone should check in code. They notify the retrospective
bot of this new action item and provide a short command line
call, measuring the number of unique contributors in the VCS.
This measurement acts as a proxy for assessing progress on the
new action item. At this point, the bot can take over, repeatedly
taking measurements using the provided code statement, and
can inform team members of the status of the action item. In
the next retrospective the results can then be discussed and
interpreted by the team.

V. CONCLUSION

It seems inevitable that software developers will see more
automation and bots being introduced to support their work-
flow and development-related activities [6]. This includes both
coding activities as well as tending to and improving the
development process executed in teams. This proposal for
using chatbots in agile retrospectives as an additional set of
automated eyes on the software project data of teams is a step
in this direction.

REFERENCES

[1] E. Paikari and A. van der Hoek, “A framework for understanding
chatbots and their future,” in Proceedings of the 11th International
Workshop on Cooperative and Human Aspects of Software Engineering
- CHASE ’18. ACM Press, 2018, pp. 13-16.

[2] A. I. Wasserman, “Tool integration in software engineering environ-
ments,” in Software Engineering Environments, F. Long, Ed. Springer
Berlin Heidelberg, 1990, pp. 137-149.

[3] F. Lanubile, C. Ebert, R. Prikladnicki, and A. Vizcaino, “Collaboration
Tools for Global Software Engineering,” IEEE Software, vol. 27, no. 2,
pp. 52-55, 2010.

[4] H. S. Nwana, “Software agents: an overview,” The Knowledge Engi-
neering Review, vol. 11, no. 03, p. 205, sep 1996.

[5] S. R. Hedberg, “Intelligent agents: The first harvest of softbots looks
promising,” IEEE Intelligent Systems, no. 4, pp. 6-9, 1995.

[6] C. Lebeuf, M.-A. Storey, and A. Zagalsky, “Software Bots,” IEEE
Software, vol. 35, no. 1, pp. 18-23, jan 2018.

[7]1 S. Chan, B. Hill, and S. Yardi, “Instant Messaging Bots: Accountability
and Peripheral Participation for Textual User Interfaces,” Proceedings
of the International ACM SIGGROUP Conference on Supporting Group
Work (GROUP °05), pp. 113-115, 2005.

[8] Jeffrey M. Perkel, “How scientists use Slack,” Nature News, vol. 541,
no. 7635, p. 123, 2014.

[9] B. Lin, A. E. Zagalsky, M.-A. Storey, and A. Serebrenik, “Why

Developers Are Slacking Off: Understanding How Software Teams

Use Slack,” in Proceedings of the 19th ACM Conference on Computer

Supported Cooperative Work and Social Computing Companion - CSCW

’16 Companion. ACM Press, 2016, pp. 333-336.

A. Inokuchi, H. Tamada, H. Hata, and M. Tsunoda, “Toward Obliging

Bots for Supporting Next Actions,” in 2016 4th Intl Conf on Applied

Computing and Information Technology/3rd Intl Conf on Computational

Science/Intelligence and Applied Informatics/1st Intl Conf on Big Data,

Cloud Computing, Data Science & Engineering (ACIT-CSII-BCD).

IEEE, dec 2016, pp. 183-188.

C. Lebeuf, M.-A. Storey, and A. Zagalsky, “How Software Devel-

opers Mitigate Collaboration Friction with Chatbots,” arXiv preprint

arXiv:1702.07011, feb 2017.

D. M. Fernidndez, W. Bohm, A. Vogelsang, J. Mund, M. Broy,

M. Kuhrmann, and T. Weyer, “Artefacts in Software Engineering: What

are they after all?” International Journal on Software and Systems

Modeling, may 2018.

(10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]
[28]
[29]
(30]
[31]
[32]
(33]

[34]

(35]

[36]

[37]

J. Guo, M. Rahimi, J. Cleland-Huang, A. Rasin, J. H. Hayes, and
M. Vierhauser, “Cold-start software analytics,” in Proceedings of the
13th International Workshop on Mining Software Repositories - MSR
’16. ACM Press, 2016, pp. 142-153.

C. Rosen, B. Grawi, and E. Shihab, “Commit guru: analytics and risk
prediction of software commits,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering - ESEC/FSE 2015.
ACM Press, 2015, pp. 966-969.

C. Matthies, R. Teusner, and G. Hesse, “Beyond Surveys: Analyzing
Software Development Artifacts to Assess Teaching Efforts,” in IEEE
Frontiers in Education Conference (FIE). 1EEE, 2018.

E. A. Santos and A. Hindle, “Judging a commit by its cover,” in
Proceedings of the 13th International Workshop on Mining Software
Repositories - MSR ’16. ACM Press, 2016, pp. 504-507.

D. Esther and D. Larsen, Agile retrospectives - Making Good Teams
Great. Pragmatic Bookshelf, 2007, vol. 24, no. 5.

J. Eppink, “A brief history of the GIF (so far),” Journal of Visual Culture,
vol. 13, no. 3, pp. 298-306, 2014.

R. Ablett, E. Sharlin, F. Maurer, J. Denzinger, and C. Schock, “BuildBot:
Robotic Monitoring of Agile Software Development Teams,” in RO-
MAN 2007 - The 16th IEEE International Symposium on Robot and
Human Interactive Communication. 1EEE, 2007, pp. 931-936.

V. Kifer, D. Graziotin, I. Bogicevic, S. Wagner, and J. Ramadani,
“Communication in open-source projects-end of the e-mail era?” in Pro-
ceedings of the 40th International Conference on Software Engineering
Companion Proceeedings - ICSE '18. ACM Press, 2018, pp. 242-243.
G. Fitzpatrick, P. Marshall, and A. Phillips, “CVS integration with
notification and chat,” in Proceedings of the 2006 20th anniversary
conference on Computer supported cooperative work - CSCW ’06.
ACM Press, 2006, p. 49.

M.-A. Storey and A. Zagalsky, “Disrupting developer productivity one
bot at a time,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering - FSE
2016, vol. 13, no. 5. ACM Press, oct 2016, pp. 928-931.

Scrum Alliance, “The State of Scrum Report 2017
Edition,” Scrum Alliance, Tech. Rep., 2017. [Online]. Avail-
able: |https://www.scrumalliance.org/scrum/media/ScrumAllianceMedia/
FilesandPDFs/StateofScrum/StateOfScrum_2016_FINAL.pdf

K. Schwaber and J. Sutherland, “The Scrum Guide - The
Definitive Guide to Scrum: The Rules of the Game,” Tech. Rep.,
2017. [Online]. Available: http://scrumguides.org/docs/scrumguide/
v2017/2017-Scrum-Guide-US.pdf

H. Kniberg, Scrum and XP from the Trenches. C4Media, 2007.

E. M. Voorhees, “Software Agents for Information Retrieval,” Associ-
ation for the Advancement of Artificial Intelligence (AAAI) Technical
Report §S-94-03, pp. 126-129, 1994.

Standuply, ‘Retrospective Meeting Slack Bot,”
Available: https://standuply.com/retrospective- meeting
C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “DevOps,” IEEE
Software, vol. 33, no. 3, pp. 94-100, 2016.

GoReflect, “goReflect - Continuous Retrospectives for Agile
Improvement,” 2019. [Online]. Available: https://www.goreflect.com/
Retrium, “The era of boring retrospectives is over,” 2019. [Online].
Available: https://www.retrium.com

Slack Technologies Inc., “Enabling interactions with bots,” 2019.
[Online]. Available: https://api.slack.com/bot-users:

R. Sharp, “Retrobot - a slack bot for retrospectives,” 2019. [Online].
Available: https://github.com/remy/retrobot

K. McAuliffe, “Retrobot - a Slack bot to record retrospectives!” 2019.
[Online]. Available: https://github.com/PebbleKat/retrobot

A. Ju and A. Fox, “TEAMSCOPE: measuring software engineering
processes with teamwork telemetry,” in Proceedings of the 23rd Annual
ACM Conference on Innovation and Technology in Computer Science
Education - ITiCSE 2018. ACM Press, 2018, pp. 123-128.

C. Matthies, T. Kowark, M. Uflacker, and H. Plattner, “Agile metrics
for a university software engineering course,” in I[EEE Frontiers in
Education Conference (FIE). IEEE, oct 2016, pp. 1-5.

M. Perkusich, K. C. Gorgdnio, H. Almeida, and A. Perkusich, “As-
sisting the continuous improvement of Scrum projects using metrics
and Bayesian networks,” Journal of Software: Evolution and Process,
vol. 29, no. 6, sep 2017.

Git Community, “Git Documentation,” 2019. [Online]. Available:
https://git-scm.com/docs/git

2019. [Online].

https://www.scrumalliance.org/scrum/media/ ScrumAllianceMedia/Files and PDFs/State of Scrum/ State0fScrum_2016_FINAL.pdf
https://www.scrumalliance.org/scrum/media/ ScrumAllianceMedia/Files and PDFs/State of Scrum/ State0fScrum_2016_FINAL.pdf
http://scrumguides.org/docs/scrumguide/v2017/2017-Scrum- Guide-US.pdf
http://scrumguides.org/docs/scrumguide/v2017/2017-Scrum- Guide-US.pdf
https://standuply.com/retrospective-meeting
https://www.goreflect.com/
https://www.retrium.com
https://api.slack.com/bot-users
https://github.com/remy/retrobot
https://github.com/PebbleKat/retrobot
https://git-scm.com/docs/git

	Introduction
	Chatbot Definition
	Chatbot Operation
	Chatbots in Agile Teams

	Related Work on Chatbots
	Software Engineering
	Human Factors

	Chatbots in Agile Retrospectives
	The Retrospective Meeting
	Chatbots for Process Improvement
	Integration into the Agile Processes

	Integration into Existing Tools
	Conclusion
	References

